
Taking into Account Expected Future Bids in

ePolicy Optimisation Problem

Nic Wilson and Lars Kotthoff∗

July 29, 2014

1 Introduction

This report considers a particular optimisation problem that has arisen in the
e-Policy project (http://www.epolicy-project.eu), which corresponds to a vari-
ation of the classic knapsack problem, where the items are received in large
batches.

We assume that we will receive a set of bids, where each bid is of the form
Bj = (wj , vj), and where wj is the cost, or grant requested, and vj is the power
which the bidder is offering to produce. We have a given total budget, and the
objective is to choose a subset of the bids with maximal total power, subject to
the constraint that the total cost of chosen bids is less than the budget. Thus,
if C is the set of bids chosen (accepted), then we are maximising

∑
Bj∈C vj

subject to the constraint that
∑

Bj∈C wj is no more than the budget. If we
receive all the bids at the same time, this is an instance of the classic knapsack
problem (cf. Deliverable e-Policy Deliverable 5.2).

The complication is that in the e-Policy optimisation problem we do not
receive all the bids at the same time (nor do we receive bids one at a time, as
in an online knapsack problem). We accept a collection of bids each year, over
a number of years, and we choose the bids we will accept for each year.

A difficulty in solving this form of online problem is the division of the
allocation of budget between the years. For instance, if we place no limit to the
budget we use in the first year, then we may well use the whole budget then,
which will prevent us from accepting any very attractive bids in later years. We
can instead divide the budget allocation equally between the years, but this can
also be sub-optimal, if, for example, we receive many more very attractive bids
in the first year than expected. The idea behind our approach here is to take
into account any information we might have about the future bids we expect to
receive, and use this to determine whether a current bid is worth accepting, or
if we expect to be able to do better later.

∗Insight Centre for Data Analytics, School of Computer Science and IT, University College
Cork, Ireland, email: nic.wilson@insight-centre.org, lars.kotthoff@insight-centre.org

1

2 Basic Algorithm

Here we describe the basic structure of our algorithm, as applied to the bids
received in a particular year. The idea is to try to choose the bids that have
maximal ratio of power to cost, taking into account the expected future bids.

We will use a function V that, given remaining budget R, estimates the total
value (total power) V (R) we expect to achieve in later years. A single year’s
bids B consists of a set of pairs of the form Bj = (wj , vj), where wj is cost to
the budget, and vj is the value (power gained). We first sort B in such a way
that it has decreasing values of

vj

wj
, breaking ties by increasing value of wj , i.e.,

for i, j ∈ {1, . . . |B|}, if i ≤ j then vi

wi
≥ vj

wj
, and if vi

wi
=

vj
wj

then wi ≤ wj .

Suppose at any point in the algorithm (applied to that year) we are consid-
ering bid Bj = (wj , vj) and suppose we have remaining budget E. If we accept
bid Bj we expend cost wj to gain value (power) vj .

Suppose we stop without accepting bid Bj . Then the expected extra total
value we will obtain using the future years’ bids is V (E). If, on the other hand,
we accept bid Bj and stop then, the expected extra total value we will obtain
using the future years’ bids will be V (E − wj). Thus it is better to (a) accept
bid Bj and then stop, rather than (b) stopping now, rejecting bid Bj , if and
only if vj + V (E − wj) > V (E), i.e., vj > V (E)− V (E − wj). This is the idea
behind the test in the algorithm which determines whether to accept bid Bj .

Let E be the current remaining budget as we receive the current year’s bids.
At each point, R will represent the remaining budget.

Basic Algorithm

R := E

Total Value := 0

for j = 1, . . . , |B|,
if vj > V (R)− V (R− wj) then

(* We accept bid Bj = (wj , vj) *)

Accepted Bids := Accepted Bids ∪ {Bj}
Total Value := Total Value + vj .

R := R− wj

end (* if *)

end (* for *)

Naturally, the final value of variable Accepted Bids will contain the collection
of accepted bids, with total power equalling (the final value of) Total Value,
which equals the sum of vj over all j such that Bj is in Accepted Bids.

Roughly speaking, we are accepting bids whose ratio
vj

wj
is greater than we

would expect to obtain from the worst bids we would expect to be accepting
from future years.

2

3 Estimating value V (R)

The basic algorithm involves the key test of whether vj > V (R) − V (R − wj).
In this section we discuss our approach for estimating V (R) (and hence also
V (R)− V (R−wj)). Recall that V (R) is the expected additional power we can
achieve using the bids in future years, given the remaining budget R.

An important consideration is the efficiency of determining if vj > V (R) −
V (R − wj). The size of the collection of bids B will often be very substantial,
and the basic algorithm loops over every element of B. We thus may need that
the test vj > V (R)− V (R− wj) is not too expensive.

3.1 Estimating V (R) based on collection S of future bids

First let’s consider how we could proceed if we knew the collection S of bids we
will receive in the future. Let V S(R) be our estimate of V (R) for this situation.
For reasons of efficiency, we simplify in a couple of ways. We define V S(R) to
be equal to the maximum total power achievable given set of bids S and total
budget R, where fractions of bids are allowed. (If a fraction p between 0 and
1 of bid (wj , vj) is accepted then it costs pwj to the budget, and gives us an
additional pvj of power.) Thus firstly, we are ignoring the fact that the future
bids S will be split between years; and we only know which bids we receive one
year at a time; and secondly, we approximate the situation by allowing fractional
bids. The second assumption will not likely make much difference to the result,
apart from in some exceptional circumstances (and the fact that V S(R) will
then depend more smoothly on R than if we were not to allow fractional bids,
may in fact help the accuracy of the overall algorithm). The first assumption
will tend to mean we are somewhat overestimating V (R) by V S(R).

Simple implementation of function V S(R)

Let S be a collection of bids, each bid consisting of a pair (wj , vj). We first order
S in such a way that it has decreasing values of

vj

wj
, breaking ties by increasing

value of wj , i.e., for i, j ∈ {1, . . . |S|}, if i ≤ j then vi

wi
≥ vj

wj
, and if vi

wi
=

vj
wj

then wi ≤ wj .
For real value (of budget) R, the value V S(R) is the total power we achieve

by choosing, using a greedy algorithm, a subset S′ of S subject to the constraint
that the sum of wj in the chosen set S′ is no more than R.

function V S(R)

A := R

Total Value := 0

for j = 1, . . . , |S|,
if wj ≤ A then

Total Value := Total Value + vj .

A := A− wj

3

end (* if *)

end (* for *)

Total Value := Total Value + vj(wj −A)/wj

return Total Value

3.2 Estimating V (R) based on a distribution over future
bids

Now, we consider the case where we have an estimate Q of the distribution
governing future bids, and that we expectN future bids for some natural number
N (which may well tend to decrease over the years).

We use a Monte-Carlo simulation algorithm involving a number M of trials.
For each i = 1, . . . ,M , we create a random collection of bids Si of cardinality
N , drawn independently with distribution Q.

We then estimate V (R) as 1
M

∑M
i=1 V

Si(R), where V Si(R) is defined below.

Generating the distribution Q

A simple approach is to let Q be the distribution of bids we have seen so far.
So, for the first year, Q is just the collection of bids submitted in the first year.
For the second year, Q is the collection of bids submitted in the first two years.

If we have additional information about what Q might be like, we could add
extra elements to take this into account, or use some weighted average between
the bids we have so far, and some guessed distribution.

If the distribution changes over time, so that e.g., the bids for the second
year are much less attractive than those for the first year, then this should be
taken into account. We might, for example, give more weight to the most recent
bids.

4 More Detailed Implementation of the Algo-
rithm

In Section 2 we described the basic algorithm, and in Section 3 we described
how a sampling approach can be used an approximation in the implementation
of the function V (R). Here we describe a more efficient method of implementing
our method.

Recall that a single year’s bids B consists of a set of pairs of the form Bj =
(wj , vj), where wj is cost to the budget, and vj is the value (power gained). We
first sort B in such a way that it has decreasing values of

vj

wj
, breaking ties by

increasing value of wj , i.e., for i, j ∈ {1, . . . |B|}, if i ≤ j then vi
wi

≥ vj
wj

, and if
vi

wi
=

vj
wj

then wi ≤ wj .

Let E be the current remaining budget as we receive the current year’s bids.
At each point, R will represent the remaining budget.

4

The idea is to use an approximate form for V S(R) for each sample collection
S of bids. V S(R) is the maximum total power one can get for cost R, if we allow
fractional bids. That is, the total power obtained by an optimal solution of the
fractional knapsack problem (i.e., the continuous knapsack problem) based on
the set of bids S.

The sample collection S of bids

To distinguish the costs and powers of the bids in the sample from those in the
current inputs, we use a slightly different notation.

Each bid in S is of the form (w̄i, v̄i), where w̄i is the cost of the bid, and
v̄i is the power offered. As discussed earlier, we order the bids in decreasing
order of their power to cost ratio so that if i ≤ j then v̄i/w̄i ≥ v̄j/w̄j . (Lets say
also that if i ≤ j and v̄i/w̄i = v̄j/w̄j then w̄i ≤ w̄j , but the correctness of the
algorithm does not depend on this.)

V S(R) is the maximum total power one can get for cost R (for this sampled
collection S), if we allow fractional bids. It can be expressed as follows. Let

Aj =
∑j

i=1 w̄(i), and let k be maximal such that Ak ≤ R, so that Ak ≤ R <

Ak+1. Then V S(R) is equal to
∑k

i=1 v̄(i) + (R − Ak)v̄(k + 1))/w̄(k + 1). This
is implemented efficiently using function evaluateV(R, k) defined below.

4.1 Algorithm using a single sampled collection of bids S
To aid clarity we first present the algorithm when we only use a single sampled
collection S of bids. This corresponds to the case of M = 1 in the more general
algorithm below in Section 4.2.

Suppose the sample S contains N bids. We can use linear arrays for the
sample bids, and also the partial sums.

• sv[i] is equal to v̄i, and

• sw[i] equals w̄i.

We also use arrays for the partial sums:

• sum-sv[j] represents
∑j

i=1 v̄(i);

• sum-sw[j] represents
∑j

i=1 w̄(i).

The following function1returns the value of V S(R). When the function is
called in the algorithm, the parameter k has been arranged to be such that k
be maximal such that Ak ≤ R, i.e., sum-sw[k] ≤ R.

function evaluateV(R, k)

return sum-sv[k] + ((R− sum-sw[k]) * sv[k + 1])/sw[k + 1]

1We are assuming here that not all bids in S could be accepted given budget R, i.e., that
sum-sw[N] > R. If sum-sw[N] ≤ R then we set evaluateV(R, k) to be sum-sv[N].

5

The following is a more detailed implementation of the basic algorithm (see
Section 2 above), but using only one sampled collection S of bids.

Variable k stores the maximal integer such that
∑k

i=1 w̄(i) ≤ R, where R is
the remaining budget at each point. Thus, k (once the for-j loop starts) only
changes when a bid Bj = (wj , vj) is accepted, which is when wj is taken off the
value of R. Because R is decreasing, k is decreasing. Variable h is looped in
order to determine the value VRwj of V S(R− wj).

Algorithm based on a single sample collection of bids

R := E

Total Value := 0

(* The next few lines generate the initial values of k and VR *)

k := N

while sum-sw[k] > R do k := k − 1 ;

(* k is now the maximal integer such that
∑k

i=1 w̄(i) ≤ R, *)

VR := evaluateV(R, k)

(* VR is the value of V S(R), i.e., currently V S(E) *)

for j = 1, . . . , |B|,
h := k

while sum-sw[h] > R− wj do h := h− 1 ;

VRwj := evaluateV(R− wj , h) (* VRwj is the value of V S(R− wj) *)

if vj > VR− VRwj then

(* We accept bid Bj = (wj , vj) *)

Accepted Bids := Accepted Bids ∪ {Bj}
Total Value := Total Value + vj .

R := R− wj

VR := VRwj

k := h

end (* if *)

end (* for *)

Discussion

The algorithm (like the basic algorithm) uses the loop variable j to go through
the bids in B. A crude implementation would independently also loop over
the elements of S in the computation of V S(R). This last algorithm avoids
this excessive looping by first of all pre-computing the values of the partial
sums sum-sw[k] and sum-sv[k], and, secondly, updating k incrementally. The

6

algorithm still has the smaller loop for h (for each value of j), but typically this
will just involve a small number of different values of h for each value of j.

There are, however, exceptional collections S where many values of h will be
required for some values of j; this happens when w̄i is very small for all the worst
(lowest/last) values of v̄i/w̄i. For such cases, a cleverer implementation can be
used, involving a sufficient condition for the antecedent vj > V (R)−V (R−wj)
of the if-statement. However, this should not usually be necessary.

4.2 Version of algorithm using mean over M sampled col-
lections of bids

Now we extend, in the obvious way, the algorithm in Section 4.1 making use of
M sampled collections of bids. The idea is as in Section 4.1 above, but we need a
parameter s to range from 1 to M to index the computation with respect to each
sample of bids. We thus have collection of N bids Ss, for each s = 1, . . . ,M .

Each bid in Ss is of the form (w̄s
i , v̄

s
i), where w̄

s
i is the cost of the bid, and v̄si

is the power offered. As discussed earlier, we order the bids in decreasing order
of their power to cost ratio so that if i ≤ j then v̄si /w̄

s
i ≥ v̄sj/w̄

s
j .

We now have to index all arrays also by the sample number s.
sv[s, i] is equal to v̄si , and sw[s, i] equals w̄s

i .

• sum-sv[s, j] represents
∑j

i=1 v̄
s(i);

• sum-sw[s, j] represents
∑j

i=1 w̄
s(i).

The following function returns the value of V Ss(R). The parameter k[s] is ar-
ranged to be such that k[s] be maximal such thatAk[s] ≤ R, i.e., sum-sw[s, k[s]] ≤
R.

function evaluateV(s,R, k[s])

return sum-sv[s, k[s]] + ((R− sum-sw[s, k[s]]) * sv[s, k[s] + 1])/sw[s, k[s] + 1]

7

Algorithm using M collections of bids

R := E

Total Value := 0

(* The next few lines generate the initial values of k[s] and VR[s] *)

for s = 1, . . . ,M

k[s] := N

while sum-sw[s, k[s]] > R do k[s] := k[s]− 1 ;

(* k[s] is now the maximal integer such that
∑k[s]

i=1 w̄
s(i) ≤ R, *)

VR[s] := evaluateV(s,R, k[s])

end (* for s *)

for j = 1, . . . , |B|,
for s = 1, . . . ,M

h[s] := k[s]

while sum-sw[s, h[s]] > R− wj do h[s] := h[s]− 1 ;

VRwj[s] := evaluateV(s,R− wj , h[s])

end (* for s *)

if vj >
1
M

∑M
s=1(VR[s]− VRwj[s]) then

(* We accept bid Bj = (wj , vj) *)

Accepted Bids := Accepted Bids ∪ {Bj}
Total Value := Total Value + vj .

R := R− wj

for s = 1, . . . ,M

VR[s] := VRwj[s]

k[s] := h[s]

end (* for s *)

end (* if *)

end (* for *)

5 Preliminary implementation and evaluation

We implemented the algorithm for a single sample collection of bids (cf. Sec-
tion 4.1) for the simplest case where the sample S is equal to the complete set
of bids received during a time step.

We ran a set of preliminary experiments to compare this approach to the pure
optimisation approach. We used the budgets levels AC1,000,000, AC2,000,000,
AC3,000,000, AC4,000,000, AC5,000,000, AC6,000,000, AC7,000,000, AC8,000,000, AC9,000,000,
AC10,000,000, AC20,000,000, AC30,000,000, AC40,000,000, AC50,000,000, AC60,000,000,

8

AC70,000,000, AC80,000,000, AC90,000,000, AC100,000,000, AC200,000,000, AC300,000,000,
AC400,000,000, AC500,000,000, AC600,000,000, AC700,000,000, AC800,000,000, AC900,000,000,
and AC1,000,000,000. Both national and regional incentives were enabled and
first come, first serve budget distribution used for the Emilia-Romagna region.

Figure 1 compares the total installed capacity at the end of each simula-
tion. The results achieved by both approaches are very close, with the partial
allocation approach achieving higher installed capacity in the majority of cases.
There are cases where lower installed capacity is achieved as well. These results
demonstrate the uncertainty inherent in this approach – we do not know future
bids and can only make assumptions what they may be. Such assumptions may
turn out to be wrong.

0

200,000,000

400,000,000

1e
+

06

2e
+

06

3e
+

06

4e
+

06

5e
+

06

6e
+

06

7e
+

06

8e
+

06

9e
+

06

1e
+

07

2e
+

07

3e
+

07

4e
+

07

5e
+

07

6e
+

07

7e
+

07

8e
+

07

9e
+

07

1e
+

08

2e
+

08

3e
+

08

4e
+

08

5e
+

08

6e
+

08

7e
+

08

8e
+

08

9e
+

08

1e
+

09

regional budget (Euro)

optimisation partial allocation

total power capacity installed (kWh)

Figure 1: Total power capacity over regional budget for optimisation and partial
allocation.

Nevertheless the results show the promise of the approach. We are able to
improve on results that are provably optimal for each single time step by taking
the entire simulation into account. This is very desirable, as it enables the policy
maker to achieve more with the same budget.

Figure 2 presents the same comparison for the total cost incurred. Again
the total cost is very similar for both approaches (except for the three largest
budgets) and there are cases where the partial allocation approach spends less
than the optimisation approach, but achieves a higher installed capacity. This
again underlines the promise of the approach – we are able to exploit cases
where not funding a bid not but a better one later will yield an overall better
result.

For the largest three budgets, the overall cost of the partial allocation ap-
proach is much lower than that of the optimisation approach, even though the
achieved installed capacities are similar. Indeed, in two out of three cases, the
installed capacity achieved by the partial allocation approach is slightly higher.

9

0

500,000,000

1,000,000,000

1,500,000,000

2,000,000,000

2,500,000,000

1e
+

06

2e
+

06

3e
+

06

4e
+

06

5e
+

06

6e
+

06

7e
+

06

8e
+

06

9e
+

06

1e
+

07

2e
+

07

3e
+

07

4e
+

07

5e
+

07

6e
+

07

7e
+

07

8e
+

07

9e
+

07

1e
+

08

2e
+

08

3e
+

08

4e
+

08

5e
+

08

6e
+

08

7e
+

08

8e
+

08

9e
+

08

1e
+

09

regional budget (Euro)

optimisation partial allocation

total cost (Euro)

Figure 2: Total cost over regional budget for optimisation and partial allocation.

It is unclear why this is happening and what dynamics contribute to this
phenomenon. Further research is needed and more work required to make it fea-
sible to include this approach in the ePolicy system. The aim of the preliminary
implementation and evaluation here is to highlight the promise of the approach
as a potential direction for future research, not to present an alternative system
ready for deployment.

10

