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A B S T R A C T   

The optimization of laser-induced graphene (LIG) patterning is crucial for achieving desirable electronic prop
erties in flexible electronic devices. In this study, we applied state-of-the-art automated parameter optimization 
techniques, specifically Bayesian optimization, to enhance the electrical resistance of LIG patterns. By iteratively 
optimizing the laser power, irradiation time, pressure, and gas type, we achieved minimum LIG resistance within 
eight batch configurations suggested by the Bayesian optimization (BO) approach. Our method eliminates the 
reliance on skilled operators, as the initial surrogate models were trained with random parameter evaluations. 
Notably, our system enables the optimization of material properties even when characterizations are only 
available outside the experiment loop. Furthermore, the surrogate model provided insights into the underlying 
mechanisms of LIG growth on quartz substrates. Through partial dependence analysis, we identified relevant 
physical domains for further investigation, leading to the discovery of negative capacitance and a correlation 
between structural and electrical properties in LIG. These findings were supported by XPS, Raman, and optical 
characterizations. Our approach streamlines the experimental design, reducing time and cost while accelerating 
materials research, and offers human-interpretable conclusions for a deeper understanding of LIG patterning 
processes.   

1. Introduction 

Laser-induced graphene (LIG) has shown potential in fabricating 
flexible electronic devices [1]. Following the discovery of LIG, precise 
control over its physical, chemical and electronic properties would allow 
one to broaden the scope of its applications to new areas such as 
micro-supercapacitors [2,3] and fuel cell technology [4]. Therefore, 
there is considerable interest in advancing strategies for property engi
neering of LIG; in particular, optimizing the lasing parameters and the 
local environment for different substrates allows to control its compo
sition and morphology. 

Optimization studies aim to find optimal configurations by opti
mizing an objective function based on a set of parameters. Grid search is 
a commonly used strategy where the parameter space is divided into a 
grid and sampled for evaluation. While grid search works well for 
experimental design, it becomes inefficient when dealing with real- 
valued and dependent parameters in higher dimensions. Traditional 

approaches like the Taguchi method and the Fisher method rely on 
predefined grids or discrete parameter values, respectively, which may 
overlook important features of the objective landscape. These strategies 
often require a large number of experiments or computations to 
adequately sample the grid, making them unsuitable for optimization 
studies with expensive objective function evaluations [5–7]. 

The optimization of laser reduction parameters in LIG fabrication is 
typically performed through manual trial and error, as exhaustive grid 
searches are infeasible. The efficiency and outcome of the optimization 
process often depend on the expertise of the individual conducting it. 
Bayesian optimization (BO) is a state-of-the-art machine learning (ML) 
approach that is well established in solving such parameter optimization 
problems [8–10]. BO employs surrogate models to estimate the perfor
mance of different hyperparameter configurations, iteratively selecting 
configurations that are predicted to yield the best results while consid
ering both the model’s predictions and uncertainty. 

State-of-the-art techniques in materials informatics have primarily 
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focused on leveraging large databases of computational work to accel
erate the discovery of new materials [11–14]. To optimize the properties 
of a new material, extensive parameter studies are often required. Some 
research groups have reported successful implementation of closed-loop 
experimental work, where ML models were sequentially updated with 
new measurements [15–17]. These studies follow a general Bayesian 
optimization approach, enabling the optimization of LIG patterning 
conditions with a minimal number of iterations. 

The iterative and adaptive approach can streamline the optimization 
of LIG patterning conditions. Automated parameter tuning techniques, 
specifically Bayesian optimization aim to find the best parameter 
configuration for a given application by iteratively predicting and 
evaluating different configurations [18]. Surrogate models are utilized 
to efficiently explore the parameter space and identify promising con
figurations for further evaluation [18,19]. With the BO approach, one 
might argue that accurate predictions are not even necessary as long as 
promising regions of the parameter space are progressively identified in 
subsequent iterations. 

In this study, we describe BO-assisted fabrication of a graphene- 
based capacitor using laser-induced graphene and a TiO2 dielectric. 
We discovered experimental conditions that lead to LIG patterns with 
electrical performance comparable to literature, and deduced the 
electrical-structural correlation of LIG. We then demonstrate the human 
interpretability of the model that gives insight into the LIG processing 
conditions. Additionally, we report the indirect occurrence of negative 
capacitance, which, when exploited, could compensate for parasitic 
capacitances, reduce power consumption, and extend the operational 
bandwidth of advanced electronic devices [20]. Since the BO approach 
presented here suggests promising configurations iteratively, we 
consider this work an initial step in the development of 
human-in-the-loop automated LIG patterning and characterization 
systems. 

2. Experimental setup and methods 

2.1. Synthesis of multi-layered thin films 

Briefly, we describe here the synthesis of each layer in our capacitive 
device, namely laser-induced graphene (LIG) bottom and top electrodes 
and the TiO2 insulating layer. 

2.1.1. Bottom- and top-layer graphene 
Graphene oxide (GO) was synthesized from graphite using the 

improved Hummers’ method [21] and processed into GO thin films that 
were deposited on a quartz substrate via ultrasonic spray deposition, as 
previously described [22]. The appropriate thickness of GO to use in the 
device was determined based on the upper limits of the reactor tem
perature during TiO2 deposition; GO films thicker than 300 nm resulted 

in local film expansion when annealed up to 450 ◦C (see Fig. S1). 
Therefore, GO thickness of 250 nm was deposited and verified by 
scratching the surface and measuring the height using an optical pro
filometer (VK-X1000, Keyence). The samples were stored in a closed 
container in a vacuum desiccator, and taken out in ambient air at a 
maximum of a day between layer depositions and characterizations. 

The LIG lines were patterned via a fully automated one-step laser 
direct-writing process on the deposited GO thin film. The lines were 
patterned using lasing and environmental parameters that were opti
mized using a Bayesian optimization approach, which is further elabo
rated in Section 2.3. In particular, the parameters where chosen at the 
minimum electrical resistance of the LIG line, given the spatial con
straints of the sample. The sample area is 1 cm2, which allows patterning 
a total of 14 lines at the bottom GO layer (Fig. 1a); the lines are 2 mm in 
length, where constant speed is maintained throughout. For the device, 
two identical LIG lines were patterned across the bottom layer (Fig. 1b); 
the lines at the top GO layer is limited to 12 lines to allow for silver pad 
contacts (Fig. 1d, V-One, Voltera) for the two-point probe measure
ments. The capacitive area where the top and bottom LIG layer overlaps 
is about 2500 μm2 (Fig. S2). 

2.1.2. TiO2 layer 
Titanium dioxide (TiO2) films were prepared via chemical vapor 

deposition (CVD) from a titanium ethoxide precursor. Following the 
preparation of bottom LIG electrodes (Fig. 1c), the samples were placed 
in the reactor for 45 min along with a silicon standard as a visual guide 
for TiO2 thickness. The main heating element was set to 410 ◦C and 
auxiliary plumbing was also kept heated to prevent condensation of 
reactants. The precursor was vaporized at 140–142 ◦C, and a ~10− 5 

mol/cm3 flow through the reactor was generated using a vacuum pump 
at pressures of 120–150 mTorr. The samples were allowed to cool in air 
for approximately 30 min. The thickness of the TiO2 films was deposited 
consistently at about 270 nm, verified by ellipsometry at normal inci
dence (Filmetrics F20, San Diego) for an average deposition rate of 90 Å/ 
min. 

2.2. Structural and electrical characterizations 

The quality of the laser-induced graphene (LIG) lines was determined 
using Raman spectroscopy (532 nm, Isoplane SCT320, Princeton In
struments), namely from G, D, 2D bands characteristic of carbon-based 
materials [23,24]. Additionally, we consider a broad feature D1 (also 
known as Dʹ-band [25], or Dʹʹ-band [26]) between the D- and G-bands, 
which has been reported in the Raman analysis of carbon-based mate
rials [27–29]. Others have reported a full deconvolution of the Raman 
spectrum between 1100 cm− 1 – 1800 cm− 1, including the D4 (or 
D*)-band (~1175 cm− 1) and the D2 (or Dʹ)-band (~1620 cm− 1) [26,30]. 
However, when we reproduced their analysis on our patterned samples, 

Fig. 1. Schematic of the graphene-based TiO2 capacitive device. (a) The batch of laser-induced graphene (LIG) lines used for Bayesian optimizations; (b) the LIG lines 
for the bottom electrodes; (c) deposition of the TiO2 insulating layer; (d) the LIG lines for the top electrodes; (e) Side-vide of the layers in the device. 

H. Wahab et al.                                                                                                                                                                                                                                 



Ceramics International xxx (xxxx) xxx

3

we found these peaks highly convoluted and the fits gave undesirably 
high uncertainties. Therefore, we have limited the fits to three peaks 
(Fig. 3) to avoid the risk of overfitting. The pre-, post-processing and 
fitting of Raman data are outlined in more detail in our previous work 
[31]. Additional Raman 2D maps of the electrode intersection were 
performed on an 18 × 11 grid using a Gaussian-based interpolation [32]. 

An X-ray Photoelectron Spectrometer (XPS, Kratos AXIS SUPRA) 
with an Al-Kα source and a charge neutralizer, was used to detect the 
changes of the C1s, O1s and Ti2p binding energies in the samples. All the 
XPS spectra were calibrated to the C1s adventitious carbon peak at 
284.8 eV, following robust standards [33]. A standard Shirley back
ground is used for all sample spectra shown in this work. XPS spectra 
were fitted with a least-squares Levenberg-Marquardt algorithm. 
Pseudo-Voigt functions were used to account for the asymmetric line 
shapes where necessary [44]. The C1s peaks were fit using general 
fitting parameters for graphitic, graphene, and carbon nanotube type 
materials [33]. 

For the electrical measurements, we quantified the conductivity of 
the induced graphene by uniformly printing silver contacts (Voltera V- 
One, Ontario) at the ends of each line and measuring the electrical 
resistance with a two-point probe. The silver prints contact were chosen 
instead of direct contact with the LIG line, as the former allows for a 
more stable contact resistance, which guarantees a linear relationship 
between the two point-contact resistance and the probe separation [34]; 
a uniform load is also applied on the contacts for consistent resistance 
measurements. Results were averaged over nine individual measure
ments. We note that these measurements are only possible by removing 
the sample from the reaction chamber, i.e. after 14 lines have been 
patterned, as removing and replacing the sample after each line is too 
much human effort to be feasible in practice (in particular realigning the 
sample would be a very time-consuming task). This means that the re
sults of an experimental evaluation are only available after a complete 
batch has been evaluated. The capacitance was determined by 
measuring the impedance with an LCR precision meter (7600 Plus 
Precision, IET Labs). 

2.3. Batch optimizations 

An existing challenge to advance materials sciences is the physical 
disconnect that exists among the stages of synthesis, characterizations 
from multiple systems, and performance evaluations. In this study, even 
though the laser synthesis and structural characterization processes are 
automated, the automation of the process involving the extraction and 
reinsertion of the sample from the pressurized gas chamber for electrical 
characterization after each line necessitates an extensively customized 
robot arm. This arm must feature a range of specialized grippers and 
precision screw tools, a time- and cost-prohibitive endeavor that is 
impractical to achieve in most conventional materials science labs. 
Fortunately, the application of Bayesian batch optimization offers a 
promising solution to this challenge. 

Batch optimization is qualitatively and fundamentally different to 
the original sequential BO formulation, where only one candidate is 
proposed per iteration, followed by the performance evaluation of that 
configuration; this optimal point can be definitively identified using all 
the available information from the acquisition function. In contrast, 
batch optimization proposes and evaluates multiple candidates simul
taneously. Indeed, batch optimization avoids the need for sophisticated 
instruments and the trade-off is worth the savings in time and cost of 
experimentations. 

We generated the batch proposals employing the constant liar 
technique [36]. The first point is chosen in the usual manner expected 
improvement is used to propose a single point, as previously demon
strated [22]. To obtain the second point, we make the assumption that 
the evaluation of the first point is complete. Since we lack an actual 
outcome at this stage, we attribute a fabricated value, i.e. a lie, to it. 
Typically, the best outcome is adopted as this fabricated lie value. This 

fixed lie value is then used to update the model, thereby guiding the 
generation of subsequent points. This iterative process is repeated until 
the desired proposals are generated. The code snippet for the batch BO 
can be found in the Supplementary Information. 

Choosing the Constant Liar (CL) method over alternatives like multi- 
acquisition functions is driven by several considerations. Firstly, multi- 
acquisition functions may propose the same point or very similar 
points because they leverage the same state of the surrogate model. In 
contrast, CL uses different surrogate models subsequently with each 
additional lie, i.e. the surrogate model is retrained on new data. Thus, CL 
avoids the risk of getting stuck at a local minimum. Secondly, the batch 
size can be limited to the number of acquisition functions available. 
Although in practice, a batch of 14 lines can be proposed by changing 
the parameters in the acquisition function (e.g. λ-parameter of upper/ 
lower confidence bound). Lastly, CL facilitates reproducibility, 
providing a deterministic approach with a constant value. This enhances 
experiment reproducibility, simplifying result comparison and analysis 
across different runs. 

The surrogate model was trained using the Gaussian process 
regression (GPR) package regr.km provided in the mlr3 documentation 
with recommended hyperparameter configurations [35]. In contrast to 
other models e.g. random forest, they not only provide point estimates 
but also offer uncertainty quantification in the form of predictive vari
ances. The benchmark for surrogate model performance comparing GPR 
to other models can be found in the Supplementary Fig. S3. Further
more, the default covariance matrix Matern(3/2) captures the smooth
ness and correlations in the data. These configurations are especially 
valuable when dealing with experiments affected by noise, as it allows 
the domain expertise to make informed decisions while accounting for 
the inherent uncertainty in the data. To address noisy objectives, we 
modified the surrogate model. Instead of pure interpolation, we 
employed GPR to estimate the measurement error. This approach allows 
the Gaussian process to consider the measurement error, resulting in 
non-zero standard deviation predictions for the training data, reflecting 
the uncertainty in the observed function values due to measurement 
errors [36]. 

The experiments patterning lines had a total experimental budget of 
nine samples with 14 lines per sample, for a total of 126 lines. Despite 
the desire to minimize speculativeness by using fewer lines, we opted for 
14 lines due to practical constraints. The physical limitations of the 
samples prepared and the high cost associated with each sample made it 
impractical to choose a smaller number of lines. One of the samples (14 
parameter configurations) was used to evaluate configurations 
randomly sampled from the parameter space to train the initial surro
gate model using the constant liar strategy [37]; The remaining eight 
samples were used to optimize the resistance of the patterned material. 
For the resistance measured for lines of graphene, we propose batches of 
14 parameter settings to evaluate the surrogate model and is retrained 
for the next BO iteration after 14 such evaluations. 

For the lines, we considered the following parameter space:  

• The power range is limited to 10 mW–1190 mW to avoid damage to 
the sample we observed for high powers in some cases [22]. The 
precision was 10 mW and the step size 10 mW.  

• The patterning speed was varied between 0.267 mm s− 1 to 1.905 
mm s− 1. This is dictated by the physical limits of the motor moving 
the sample chamber. The step size and precision were 0.001 mm s− 1.  

• The pressure in the reaction chamber. The values for this parameter 
range from 60 psi to 350 psi, with a precision of 10 psi and a step size 
of 10 psi. 

• The gas in the reaction chamber was limited to argon, based on re
sults from irradiating spots where argon performed better [22]. 

These parameters give rise to a large space of possible combinations 
that is intractable to explore exhaustively. Data collection is expensive – 
running experiments is time-consuming and requires precursor 
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materials to be available. In contrast to big-data approaches, we need 
techniques that work with small amounts of data, such as the BO we 
apply here. 

3. Results 

3.1. Layer-by-layer structural characterization 

The Raman spectroscopy plot in Fig. 2 show peaks characteristic of 
crystalline graphene include the G- (~1585 cm− 1) and the 2D-bands 
(~2700 cm− 1), associated with the first- and second-order allowed 
Raman mode E2g, respectively [38]; the D-band at ~1350 cm− 1 appears 
when the basal plane structure of graphene is altered during graphite 
oxidation and the subsequent reduction of GO [39]. Compared to pris
tine graphene or graphite, some weak peaks centered between 1100 
cm− 1 and 1800 cm− 1 were observed in GO flakes and powders [40,41]. 
Among these is the D1-band (~1500 cm− 1), which some authors have 
related to the vibrational density of states in graphite crystals of finite 
sizes [42]. S. Vollebregt et al. attributed the band to amorphous lattices 
after observing an inverse relationship of the decrease in D1-peak in
tensity with increase in crystallinity [25]. Other groups support the as
sociation of the D1-band with amorphous carbon fragments which may 
be functionalized small molecules at interstitial defects in sp2-domains 
[27,29]. The mechanism of the existence of D1 is further outlined in 
Section 3.3. 

The chemical states of Ti, O and C species and the interaction of 
graphene and TiO2 at the surface and interface of graphene/TiO2 were 
studied using XPS and Raman spectroscopy. Fig. 3 compares the Raman 
spectra of the quartz substrate and the GO, LIG, TiO2/GO and TiO2/LIG 
layers deposited on top. The prominent peaks associated with GO and 
LIG are observed at about 1350 cm− 1 and 1590 cm− 1, corresponding to 
the D- and G-bands, respectively, as previously discussed. For the LIG 
layer, the increase in G/D ratio and presence of the 2D-band at about 
2700 cm− 1 confirms graphitized structures. For the TiO2/GO and TiO2/ 
LIG layers, we see the characteristic peaks of the anatase TiO2 phase; the 
intense peak at ~145 cm− 1 is attributed to the main Eg anatase vibra
tional mode. Additionally, three vibration peaks at 391 cm− 1 (B1g), 509 
cm− 1 (A1g) and 645 cm− 1 (Eg) were observed (emphasized with dashed 
vertical lines), indicating that the anatase TiO2 crystallites were the 
major species [43]. Significantly, the peaks associated with GO and LIG 
structures were also observed for TiO2/GO and TiO2/LIG, respectively. 

Interestingly, the TiO2 peaks are more obvious in TiO2/GO than in 
TiO2/LIG, as the quartz signals are well suppressed; a similar suppres
sion is observed for the GO curve. This suggests that the Raman signal of 
TiO2 can be enhanced depending on the optical property of the under
lying layers and substrate, as recently shown by others [44] and in 

previous work [45]. Accordingly, when light passes through materials 
with variable refractive indices, it undergoes multiple reflections and 
interferences. In this case, the laser beam encounters the deposited 
layers and the underlying substrate, all with different refractive indices. 
In the visible range, GO has a comparable refractive index to the un
derlying quartz substrate (n ~1.5), such that the reflection of GO 
dominates the total backscattered intensity [46]. In contrast, the 
refractive index of LIG (n ~2.5) is higher than quartz [46], such that the 
quartz substrate reflects more strongly; consequently, LIG appears 
transparent in the visible wavelength region. 

Further understanding of the electronic and chemical nature of the 
carbon/TiO2 interface was found in the layer-by-layer XPS measure
ments in Fig. 4. In Fig. 4a, the laser reduction in LIG shifts the C]C sp2 

peak to lower binding energies by about 0.1 eV, as seen by others [47, 
48]. The structural shift between GO and LIG is also observed in the 
Raman spectra (Fig. 3). This occurs due to the laser reduction that re
stores the sp2 network and removes functional groups, as noted by 
others [49,50]. The restoration via laser reduction is further supported 
by observing CC- and CO-bonds; CC refers to the sum of C]C sp2 and C–C 
sp3 and the CO is the combination of C]O, C-OH and COOH groups. The 
ratio of the CC- to the CO bond (CC/CO) rises about three-fold from 1.9 
(GO) to 5.7 (bottom LIG) and 6.3 (top LIG), which shows how oxygen 
functional groups were effectively removed from the GO substrate. 
Interestingly, even though our batch-optimized model was trained on 
minimizing electrical properties, the structural properties of LIG were 
also optimized; this supports how the two properties can be correlated, 
in particular, suggesting that the CC/CO can be used as a proxy to pre
dict electrical properties of LIG or vice versa. 

The effect of the TiO2 layer at the LIG/TiO2 interface is further 
investigated in the O1s and Ti2p binding energy regions in Fig. 4b and c, 
respectively. Without Ti, three oxygen species are fitted at 530.1 eV, 
531.8 eV and 533.0 eV; these are attributed to crystal lattice oxygen O2

− , 
oxygen vacancy defects O2

− ,O2
2− ,O− , CO3

2− and, at least for graphene 
oxide GO, hydroxyl species OH- or surface-adsorbed water molecules 
(H2O), respectively [51]. The residual water molecules in GO illustrates 
its hydrophilic nature. For pure TiO2, the determined binding energies of 
Ti2p3/2 and Ti2p1/2 are 459.2 eV and 465.1 eV, respectively, which 
agrees well with anatase TiO2 [52]. A slight shift in the Ti2p and O1s 
binding energies was observed, indicating a perturbation of the Ti and O 
electronic environment due to an electronic transformation at the same 
interface between LIG and TiO2; similarly, shifts observed for C]O from 
287.7 eV to 287.9 eV and for COOH from 288.8 eV to 289.3eV, are 
attributed to these transformations at the interface. Consequently, the Eg 
Raman mode of TiO2 at 145 cm− 1 has undergone a slight shift to higher 
wavenumbers upon its interaction with LIG. To be more precise, the 
Raman mode has shifted to 150 cm− 1. It’s important to note that this 
shift doesn’t indicate a structural transformation from Eg in anatase to 
B1g in rutile TiO2, as such a shift would actually lead to a decrease in 
wavenumbers, not an increase [53]. Instead, these subtle shifts have 
been documented by others in cases where additional interfaces are 
present between different TiO2 facets and the graphene surface [54]. 
Therefore, XPS and Raman results confirm, that there is an electronic 
transformation at the LIG/TiO2 interface. 

Furthermore, the small peak found at 531.0 eV–531.2 eV in the LIG/ 
TiO2 and GO/TiO2 samples can be attributed to Ti–O–C bonds due to 
chemical interaction between metal oxide and graphene [55,56]. When 
comparing GO/TiO2 and LIG/TiO2 to GO and LIG, respectively, the 
relative peak ratios (OIII/OI) and (OII/OI) have increased, which others 
have identified as hydroxylated surfaces that result in negatively 
charged oxygen vacancies [57,58]. 

3.2. Batch optimization of electrical resistance 

In Fig. 5a, the measured resistances for the lines patterned in batches 
are showcased. Notably, the optimized results exhibit improvement over 
the initial random data, albeit at a gradual pace. Impressively, the Fig. 2. Raman spectrum characteristic of LIG.  
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Fig. 3. Raman spectra for the layers in the LIG/TiO2/LIG capacitor. The TiO2 anatase bands B1g, A1g, Eg are emphasized with the dashed vertical lines. The vertical 
dashed line at ~1585 cm− 1 is a visual guide to see the structural shift of the G-band from GO to LIG. 

Fig. 4. High resolution core-level XPS for the LIG/TiO2/LIG capacitor layer-by-layer: (a) C 1s (b) O 1s and (c) Ti 2p (peak fitting on Shirley backgrounds).  
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median resistance of the final Bayesian Optimization (BO) batch sur
passes the minimum resistance of the initial evaluations, providing 
conclusive evidence of the effectiveness of our approach. Fig. 5b pre
sents a detailed breakdown of each iterative run, highlighting the 
associated uncertainties within each batch. Overall, a positive trend in 
prediction accuracy is observed with each successive batch. As the 
number of observations increases, the measured resistances consistently 
align more closely with the predicted values, indicating an improvement 
in the overall performance of the model. 

The minimum resistance overall is comparable to literature (see 
Table 1); note however that these values are rough estimates as they 
were compared without consideration of geometry correction factors. 
It’s also noteworthy that, despite the option to parallelize with batches, 
our experimental setup poses a considerable challenge for Bayesian 
Optimization. In this context, there’s a lack of immediate feedback on 
the chosen parameter configuration, and as more constant liar evalua
tions are incorporated, the proposed configurations become 

progressively speculative. Consequently, the experimenter faces a deli
cate trade-off between the quality of predictions and the number of 
parallel experiments, a consideration typically tailored to the unique
ness of each experimentation workflow. 

We can extract more insights from what the surrogate models have 
learned using partial dependence plots of a pair of parameters used for 
the patterning (Fig. 6). Partial dependence plots show how a specific 
feature’s value impacts the predicted outcome of a model while keeping 
all other features constant. These plots help understand the relationship 
between individual features and the model’s predictions, revealing how 
changes in one feature influence the model’s output. In this study, they 
indicate that high scanning speeds and mid pressures are generally 
favorable according to the surrogate model (Fig. 6a). The low- to mid- 

Fig. 5. Progress of the optimization of the electrical resistance in produced 
laser-induced graphene lines, shown in (a) batches and (b) for each iteration 
within each batch. On the left, the distribution of resistance for the initial 
training data is shown. The boxplot on the right shows the distribution of 
measured resistances for all configurations that the BO explored. In (a), each 
boxplot represents one batch, and each batch consists of 14 lines. In (b), black 
dashed lines mark the start of the 14 runs in each batch. The gray intervals 
show the uncertainty of the model for each iteration. 

Table 1 
State-of-the-art literature values for electrical resistance of different LIG 
materials.  

Material Resistance [kOhm] Ref 

Polyimide 0.3 [59] 
GO/SiO2 0.25 [34] 
GO/nitro-cellulose 2 [60] 
SU-8 21 [61] 
GO/Au/glass 10 [26] 
GO/SiO2 0.67 Ours  

Fig. 6. Partial dependence plots for pairs of continuous parameters of the 
predictions of a surrogate model trained for LIG. Orange circles denote 
parameter configurations that were evaluated experimentally and are concen
trated in the areas with the best predicted electrical resistance. (For interpre
tation of the references to colour in this figure legend, the reader is referred to 
the Web version of this article.) 
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pressure conditions are optimal for plume formations and thermal ef
fects that result in good structural quality [22], and in turn favorable for 
minimum electrical resistance. Furthermore, low resistance also appears 
to be achievable at both low and high laser power regions, suggesting 
that the irradiated power without our parameter design does not play a 
significant role; although this is in agreement with our previous obser
vations [22], we must note that the reliability of partial dependence 
estimates can have sampling bias, as shown recently [62]. In particular, 
well-explored regions show, on average, lower uncertainty than those in 
less-explored regions. Therefore, a larger experimental evaluation 
budget can lead to better insights into our surrogate model. 

3.3. Correlation of structural-electrical properties of laser-induced 
graphene 

The statistically significant correlation between LIG structural pa
rameters and electrical resistance is shown in Table 2 (full table in 
Table S4). Interestingly, in contrast to our expectations, it is observed 
that the prominent characteristics of high-quality graphene, i.e. high G/ 
D ratio) is not well correlated to the high conductivity of LIG; instead, 
the best correlations are found in the set of fitted parameters that are 
associated with defects-based bands, in particular the D1-band, as 
evident in Fig. 7a (see also pair plot distributions in Fig. S5). This is 
complementary to others who report that, for crystalline graphene, 
electrical resistance decreases with D-peak intensity I(D) and thus with 
the number of defects probed by a laser spot [63]. This is in agreement 
with our observations, albeit less significantly; in contrast, the D1-band 
shows a stronger trend. 

To determine the origins of the D1-band, it is worth comparing the 
different types of defects that are present. While there are multiple 
possibilities of where the D1-band originates specifically, we know that 
it is linked to single-phonon double-resonance defect scattering pro
cesses [64], which also give rise to other types of defects e.g. the 
D2-band convoluted near the G-peak [65]. The correlated D-band 
observed is activated by vacancies and edge defects [63], which suggests 
a break in the sp2 atoms in rings. López-Díaz et al. reported that the 
width and position of the D1-band in graphene may be indirectly 
influenced by oxygen content [66]. The experimental data proposes that 
the removal of oxygen could play a role in restoring the crystallinity of 
the graphene basal plane. Furthermore, the observed increase in the 
D1-band has been experimentally associated with a concurrent decline 
in crystallinity [25,28]. Since the correlation we observed for the 
D-band is less significant than for the D1-band, this suggests that the 
patterning process that removed oxygen content whilst preserving the 
number of sp2 rings and crystallinity improves the electrical property of 
LIG. 

Our prior study in investigating the high-temperature thermal effects 
on crystallite sizes of graphene oxide (GO) [40] aligns well with existing 
literature. Specifically, our study corroborates the observations made by 
Vollebregt et al. [25] and Claramunt et al. [28], demonstrating that 
heightened crystallinity corresponds to a decrease in D1-band intensity, 
and the D1-band width scales accordingly. This relationship underscores 
the impact of crystallinity on both structural and electrical 

characteristics. Notably, our findings suggest that amorphous phases can 
serve as electrical charge traps, limiting charge mobility. The notable 
absence of such phases may be a contributing factor to the observed high 
electrical conductivity in the material under examination. 

The correlations between structural and electrical properties of LIG 
are also evident in the morphology and the Raman two-dimensional map 
of the patterned line in Fig. 8. It is interesting to see how the Raman 
structures depend on the morphology. For the line with the higher 
resistance (Fig. 8a), higher G/D ratio is found around the edges and not 
the center of the trenched line. In comparison, the line with lower 
resistance (Fig. 8b) has a broader and smoother patterned surface, yet 
the G/D ratio is inhomogeneous throughout. In contrast, the 2D/G map 
is more clearly homogenous for the more conductive line (Fig. 8b). At 
first glance, this might be counterintuitive to the trend in Table 2. 
However, note in Fig. 4a that the electrical resistance is high despite 
high G/D and 2D/G ratios. Indeed, it seems the structural-electrical 
correlation is more pronounced with the homogeneity and continuity 
of the structures. In other words, the prediction of a well-conductive line 
can be improved with richer and larger input data, i.e. an array of 
Raman laser spots rather than single spots. Interestingly, the exception 
to this is the D1-band. The map for the high resistance line in Fig. 8a 
shows that the D1-band is more present but less homogenous than that 
for the low-resistance line in Fig. 8b; although the latter map does 
intuitively demonstrate lower resistance, measuring single spots along 
the line for Table 2 also show the same trend. Considering the higher 
cost of measuring two-dimensional maps, this suggests that the struc
tural D1-band is potentially a cheap yet important feature/proxy to 
predict electrical properties of LIG. 

Table 2 
Correlation of fitted Raman peak parameters to the electrical resistance of LIG, 
as indicated by Spearman coefficient (+1 is perfect positive correlation, − 1 is 
perfect negative correlation; ****p≤1e− 4, ***p≤1e− 3, **p≤1e− 2, *p≤5e− 2).  

variable correlation p-value 

I(D) 0.379 *** 
Pos(D) − 0.592 **** 
Width(D) 0.505 *** 
I (D1) 0.744 **** 
Width (D1) − 0.176 * 
I(G) − 0.206 * 
I (2D/G) 0.348 ***  

Fig. 7. Structural and electrical properties of patterned laser-induced graphene 
(LIG). (a) Correlation between the Raman D1 structures, which is attributed to 
amorphous carbon fragments (see Section 3.1) to the electrical resistance; the 
error bars for both images are removed for clarity; the correlation of all 
structural peak parameters to electrical resistance is shown in Table S4. (b) The 
measured capacitance density and the loss angle, averaged over five measure
ments taken from different patterns on the same sample; the error bars for the 
loss angle are smaller than the symbol size. 
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3.4. Capacitance-frequency characteristics 

The primary focus of characterizing the LIG/TiO2/LIG capacitors lies 
in the frequency-dependent capacitance, which is assessed using an LCR 
meter to measure the real (R) and imaginary (Z) components of the 
impedance Z = R+ iX. The formula provided shows the calculation for 
the loss angle (δ) based on the equivalent circuit of a capacitor in parallel 
with a resistor: 

tan(δ)=
X
R
=

1
ωCpRp  

In this context, ω represents the angular frequency, Rp corresponds to 
the parallel resistance, and Cp refers to the parallel capacitance. In 
Fig. 7b, the frequency dependency of the capacitance density Cp/A and 
the loss tangent are shown. It is clearly seen that capacitance decreases 
with increasing frequency. The higher capacitance values at low fre
quencies have been reported by others as excess capacitance contribu
tion by interface states at the metal-insulator interface, which can follow 
the low frequency AC signal [67,68]. The capacitance gradually de
creases but remains relatively stable between frequencies of about 1 
kHz–100 kHz, averaging 9.2 pF and corresponding to a high dielectric 
constant (k ~ 78) commonly found in TiO2 thin-film capacitors [69,70]. 
In an ideal capacitor the voltage lags the current by 90◦, or a loss angle of 
0◦. The loss angle is stable around 1.5◦ close to 0◦ across the afore
mentioned frequencies. The gradual decrease in capacitance may be due 
to the decreased response of the interface states that are unable to follow 
high frequency input signals [67,68]. 

Negative capacitance (NC) regions observed at higher frequencies 
(~100 kHz–1 MHz) generally indicate an inductive behavior in the 
material. However, there are varying opinions within the research 
community regarding the nature of the NC phenomenon, depending on 
the materials and frequency regimes under investigation. Ferroelectric 
and non-ferroelectric materials exhibit NC originating from distinct 
sources [71,72]. In some cases, the pseudo NC effect has been observed 
in high-frequency (MHz) regimes, which is attributed to defect states in 
the material, such as strain, trap-states, and oxygen vacancies [73,74]. 
Our XPS results confirm that oxygen vacancies are prevalent structural 
defects in high permittivity oxides such as TiO2. These vacancies have a 

direct impact on electrical performance. Hu et al. conducted a study on a 
single-crystal TiO2 thin film device, revealing the coexistence of mem
ristive behavior and the NC effect. They explained that the NC effect in 
this case is attributed to a conductive state change caused by the 
migration of oxygen vacancies in the TiO2 thin film [75]. 

Graphene-based devices have also demonstrated NC effects, with 
explanations including minority carrier injection into polarization and 
interface states in Graphene-TiO2 diodes [76], space charge accumula
tion in inkjet-printed PANI/reduced GO nanocomposites [20], or surface 
plasmon resonances in graphene/PPS composites [77]. However, it 
should be noted that plasmon frequencies typically occur at much higher 
ranges (10–100 THz) than the frequencies observed in this study 
(around 100 kHz). 

Based on the present work, it is believed that the observed NC effect 
is likely a combination of two phenomena. Firstly, contact injection 
strongly influences the small-signal characteristics and results in NC 
after 100 kHz [76,78]. Secondly, defect states in oxide-based samples 
play a role [73,74], where localized charge carriers trapped within 
defect sites gain energy from the externally applied field, particularly at 
high frequencies. These charge carriers then hop between sites along a 
nonlinear path, leading to the dominant inductive component and a 
change in capacitance polarity at approximately 100 kHz. 

4. Discussion 

There are several directions for future research. Firstly, although 
partial dependence plots have provided insights into our model, they 
can be misleading if the model is too complex, especially with respect to 
feature interactions. Future explainable AI systems should quantify the 
complexity of the model and integrate them into the optimization pro
cess [79]. For example, model selection can depend on the reduced 
interaction strength among features. Notably, relying solely on sum
marizing these averaged effects with a single numerical value (e.g. 
averaged coefficient of a linear model) can prove unreliable; for 
instance, in cases where feature effects exhibit a U-shaped pattern, the 
average effect might be zero. Consequently, rather than providing one 
numerical value, it’s beneficial to segment a given model and report the 
coefficients of the segmented model. The partial dependence analysis 

Fig. 8. Morphology and Raman two-dimensional map of laser-induced graphene (LIG) with (a) high electrical resistance and (b) low electrical resistance. The bar is 
200 μm. 
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conducted in this study marks a crucial initial stride towards integrating 
physics within machine learning. 

Second, while we have achieved good electrical properties, the 
simultaneous optimization of other objectives, such as the structural and 
thermal properties, can be beneficial to fabricate electronic devices. 
Multi-objective optimizations often face the challenge of improving one 
property at the expense of degrading another. To address this, the 
concept of a Pareto front, which represents the optimal trade-off be
tween different configurations, is commonly used. However, multi- 
objective optimization can be data exhaustive [80]. As a result, many 
materials discovery studies prioritize single-objective optimization, 
which allows for combining multiple objectives into a single criterion to 
support multi-objective optimization. Another practical challenge is that 
often measurements can only be taken at multiple levels. For example, 
Raman characterization of a material can happen immediately after LIG 
patterning has been performed, but measurements of electric resistance 
in this study were performed after an experimental campaign is finished 
as this requires removal of the sample from the reaction chamber. Our 
batch optimization approach is a step towards integrating multi-level 
measurements that occur at different frequencies into a Bayesian opti
mization process, and would potentially allow further improvements. 

Finally, a more comprehensive understanding of the NC phenome
non is needed to fully leverage the unique effects observed in this study 
and in current literature. These effects include diverging negative/pos
itive capacitance at characteristic resonance frequencies (kHz) and high- 
frequency (MHz) negative capacitance. Future research can explore 
machine learning approaches that consider the frequency range in 
which NC occurs, unlocking opportunities to compensate for parasitic 
capacitances, reduce power consumption, and extend the operational 
bandwidth of advanced electronic devices. Additionally, the use of laser 
direct writing techniques can enhance the feasibility and applicability of 
these advancements. 

5. Conclusion 

We have demonstrated the application of state-of-the-art automated 
parameter optimization techniques to laser-induced graphene (LIG) 
patterning and improved the electrical resistance of LIG patterns. The 
best LIG resistance was achieved within eight batch configurations 
suggested by the BO, and is comparable to state-of-the-art values. The 
initial surrogate models were trained with random parameter evalua
tions that are independent of the skills and experience of individual 
researchers – our method does not rely on skilled operators to “guide” it 
towards good results. Further, our system can optimize material prop
erties for which characterizations are only available outside of the self- 
driving experiment loop. We further demonstrate how the surrogate 
model can be used to improve our understanding of the underlying 
processes for LIG patterned on quartz. The partial dependence analysis 
identified relevant physical domains for further investigation after 
optimization, leading to the observance of negative capacitance and a 
correlation between structural and electrical properties in LIG. This 
conclusion is supported by XPS, Raman and optical characterizations. 
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