
An Empirical Assessment of Progress
in Automated Theorem Proving

Geoff Sutcliffe1(B) , Christian Suttner2, Lars Kotthoff3 ,
C. Raymond Perrault4 , and Zain Khalid1

1 University of Miami, Miami, USA
geoff@cs.miami.edu , zsk17@miami.edu

2 Miami, USA
3 University of Wyoming, Laramie, USA

larsko@uwyo.edu
4 SRI International, Menlo Park, USA

ray.perrault@sri.com

Abstract. The TPTP World is a well established infrastructure that
supports research, development, and deployment of Automated Theorem
Proving (ATP) systems. This work uses data in the TPTP World to
assess progress in ATP from 2015 to 2023.

Keywords: Automated Theorem Proving · Empirical Evaluation ·
Progress

1 Introduction

The TPTP World [69] (www.tptp.org) is a well established infrastructure that
supports research, development, and deployment of Automated Theorem Prov-
ing (ATP) systems. The TPTP World includes the TPTP problem library, the
TSTP solution library, standards for writing ATP problems and reporting ATP
solutions, tools and services for processing ATP problems and solutions, and it
supports the CADE ATP System Competition (CASC). This work uses data in
the TPTP World to assess progress in ATP from 2015 to 2023.

Any meaningful assessment of progress in ATP must refer to the ability of
ATP systems to solve problems. As the systems improve over time, the prob-
lems that they must solve also change to meet the demands of applications (with
a fixed set of problems the systems can simply be finely tuned to the set, with
inevitable asymptotic progress towards solving all the problems [52]). The TPTP
problem library provides an evolving set of ATP problems that reflect the needs
of ATP users, and is an appropriate basis for assessing the changing ability
of ATP systems (the library is almost monotonically growing, but occasionally
problems are removed – see Sect. 4.1). Alongside the TPTP problem library, the
TSTP solution library provides data about ATP systems’ abilities to solve the
problems in the TPTP problem library. This paper examines progress in ATP,

C. Suttner—Deceased.
c© The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14739, pp. 53–74, 2024.
https://doi.org/10.1007/978-3-031-63498-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63498-7_4&domain=pdf
http://orcid.org/0000-0001-9120-3927
http://orcid.org/0000-0003-4635-6873
http://orcid.org/0009-0001-1178-343X
http://orcid.org/0009-0001-2063-6933
https://www.tptp.org
https://doi.org/10.1007/978-3-031-63498-7_4


54 G. Sutcliffe et al.

based on the data from TPTP v6.3.0 released on 28th November 2015 to TPTP
v8.2.0 released on 13th June 2023. It is important to differentiate between eval-
uations at instances in time, such as provided by competitions, and evaluations
over time. At instances of time the test problems used for evaluation, the sys-
tems being evaluated, and the hardware/software platform used, are static, e.g.,
as done in [20]. That provides a clean basis for a detailed comparison between
systems. In contrast, evaluation over time is complicated by changing test prob-
lems, changing systems, and changing hardware/software. This dynamic evalua-
tion environment requires additional control to provide meaningful results. The
analyses done in this work do not explicitly factor in the resources needed to
find solutions, e.g., hardware, time limits, etc.; Sect. 3.1 explains why this makes
sense in the ATP context.

Related Work: The use of system performance data to evaluate a field of endeav-
our is common. In the realm of logic-based systems, examples include the various
competitions [6] for logic-based systems (e.g., CASC [68], the SAT Competition
[36], SMT-COMP [5], the ASP Competition [18]), longitudinal surveys of com-
petitions [20,75], the Technical Performance chapter of Stanford University’s AI
Index Annual Report [45], the use of Shapley values to evaluate algorithmic
improvements in SAT solving [25,41], comparison of algorithmic and hardware
advances (in SAT solving) [24], and other more specialized benchmarking, e.g.,
[89]. A general examination of the requirements for such benchmarking is pro-
vided by [9]. An ontology of artificial intelligence benchmarks is described in
[14]. [52] provides an insightful analysis of the global dynamics of using bench-
mark sets in computer vision and natural language processing, and the takeaway
messages are broadly applicable, including to benchmark sets for logic-based
systems. In all cases the common measures for evaluation are (i) the ability of
systems to solve problems, and (ii) the resources required by the systems to
solve the problems. In order for results to be relevant, test problems must be
representative of the problems the systems will face in applications, and the
resource measurements must be appropriate for the availability and demands of
the applications.

Summary of Findings: There has been progress in the last eight years, with
stronger progress from v6.3.0 (2015) up to v7.1.0 (2018), but then a period of
quiet until some more signs of progress in v8.2.0 (2023). There have been some
first solutions of problems that are of direct interest to humans, a quite large
number of first ATP solutions of problems from the TPTP, and some noteworthy
improvements in individual ATP systems. There has been an apparent slowing
of progress compared to the five years prior to 2015.

Paper Structure: Sections 2 and 3 provide a brief background to the TPTP
problem library and TSTP solution library, highlighting features relevant to
this work. Section 4 describes how the TPTP and TSTP data was prepared for
analysis, and describes the measures used. Section 5 is the core of the paper,
giving the results with commentary. Section 6 concludes.



Progress in ATP 55

Table 1. Overview of TPTP releases

Release Date Changes Size Analysed
v6.3.0 28/11/15 New TFO problems with arithmetic 20762 20168
v6.4.0 31/06/16 New problems 20897 20839
v7.0.0 24/07/17 First TH1 problems 21851 21310
v7.1.0 06/03/18 TXF syntax specified 22011 21893
v7.2.0 10/07/18 New problems 22026 21909
v7.3.0 02/08/19 New problems 22686 22570
v7.4.0 10/07/20 New problems 23291 23118
v7.5.0 13/07/21 New problems 24098 24027
v8.0.0 19/04/22 First TXF problems 24785 24027
v8.1.0 30/07/22 New problems 25257 25103
v8.2.0 13/06/23 New problems 25474 25325

2 The TPTP Problem Library

The core of the TPTP World is the TPTP problem library [66]; it is the de facto
standard set of test problems for classical logic ATP systems. The problems can
be browsed online1 and documentation is available2 Each release of the problem
library is identified by a number in the form version.edition.patch. The current
release at the time of writing was v8.2.0. Section 3 explains why the analyses
of progress presented in this paper start at v6.3.0. Table 1 gives some summary
data about the editions from v6.3.0 to v8.2.0. The Size column gives the number
of problems in the release at the time of the release, while the Analysed column
gives the number of problems left for analysis after the data cleaning described
in Sect. 4.1. The acronyms for problem types are given in Sect. 2.1.

Each TPTP problem file has a header section (as comments) that contains
information for users in four parts: the first part identifies and describes the
problem; the second part provides information about occurrences of the problem
in the literature and elsewhere; the third part provides semantic and syntactic
characteristics of the problem; the last part contains comments and bugfix infor-
mation. The third part is most relevant to this work. It contains the problem’s
SZS status [77] that provides the semantic status of the problem, e.g., if it is a
Theorem, a Satisfiable set of formulae, a problem whose status is Unknown,
etc. It also includes statistics about the problem’s syntax, e.g., the number of for-
mulae, the numbers of symbols, the use of equality and arithmetic, etc. The SZS
status and the syntactic characteristics are used to form the Specialist Problem
Class of the problem, as explained in Sect. 2.1.

1 www.tptp.org/cgi-bin/SeeTPTP?Category=Problems.
2 www.tptp.org/cgi-bin/SeeTPTP?Category=Documents.

https://www.tptp.org/cgi-bin/SeeTPTP?Category=Problems
https://www.tptp.org/cgi-bin/SeeTPTP?Category=Documents


56 G. Sutcliffe et al.

2.1 Specialist Problem Classes

The problems in the TPTP library are divided into Specialist Problem Classes
(SPCs) – classes of problems that are homogeneous wrt recognizable logical,
language, and syntactic characteristics. Evaluation of ATP systems within SPCs
makes it possible to say which systems work well for what types of problems.
Empirically, homogeneity is ensured by examining the patterns of system perfor-
mance across the problems in each SPC. For example, the separation of “essen-
tially propositional” problems was motivated by observing that SPASS [85] per-
formed differently on the ALC problems in the SYN domain of the TPTP. A
data-driven test of homogeneity is also possible [26].

The characteristics used to define the SPCs in TPTP v8.2.0 are . . .

1. TPTP language:
CNF – Clause Normal Form FOF – First-Order Form
TF0 – Typed Monomorphic First-order form
TF1 – Typed Polymorphic First-order form
TX0 – Typed Monomorphic eXtended First-order form
TX1 – Typed Polymorphic eXtended First-order form
TH0 – Typed Monomorphic Higher-order form
TH1 – Typed Polymorphic Higher-order form

2. SZS status:
THM – Theorem CSA – CounterSAtisfiable
CAX – Contradictory AXioms (merged with THM in this work)
UNS – UNSatisfiable SAT – SATisfiable
UNK – UNKown OPN – OPeN

3. Order (for CNF and FOF):
PRP – PRoPositional
EPR – Effectively PRopositional (known to be reducible to PRP)
RFO – Real First-Order (not known to be reducible to PRP)

4. Equality:
NEQ – No EQuality EQU – EQUality (some or pure)
SEQ – Some (not pure) EQUality PEQ – Pure EQUality
UEQ – Unit EQUality CNF NUE – Non-Unit Equality CNF

5. Hornness (for CNF):
HRN – HoRN NHN – Non-HorN

6. Arithmetic (for T* languages):
NAR – No ARithmetic ARI – ARIthmetic.

Using these characteristics 223 SPCs are defined in TPTP v8.2.0. For exam-
ple, the SPC TF0_THM_NEQ_ARI contains typed monomorphic first-order the-
orems that have no equality but include arithmetic. Combinations of SPCs
are written using UNIX globbing, e.g., TF0_THM_*_NAR is the combination of
TF0_THM_EQU_NAR and TF0_THM_NEQ_NAR – typed monomorphic higher-order
theorems problems, either with or without equality, but no arithmetic.

The SPCs are used when computing the TPTP problems difficulty ratings,
as explained in Sect. 2.2.



Progress in ATP 57

2.2 TPTP Problem Ratings

Each TPTP problem has a difficulty rating that provides a well-defined measure
of how difficult the problem is for current ATP systems [76]. The ratings are
based on performance data in the TSTP (see Sect. 3), and are updated in each
TPTP edition. Rating is done separately for each SPC. First, a partial order
between systems is determined according to whether or not a system solves a
strict superset of the problems solved by another system. If a strict superset is
solved, the first system is said to subsume the second. Then the fraction of non-
subsumed systems that fail on a problem is the difficulty rating for the problem.
Problems that are solved by all of the non-subsumed systems get a rating of 0.00
(“easy”); problems that are solved by some of the non-subsumed systems get a
rating between 0.00 and 1.00 (“difficult”); problems that are solved by none of
the non-subsumed systems get a rating of 1.00 (“unsolved”).

3 The TSTP Solution Library

The complement of the problem library is the TSTP solution library [65,67].
The TSTP is built by running all the ATP systems that are available in the
TPTP World on all the problems in the TPTP problem library. At the time of
writing this paper, the TSTP contained the results of running 87 ATP systems
and system variants on all the problems in the TPTP that they could attempt.
This produced 1091026 runs, of which 432718 (39.6%) solved the problem. One
use of the TSTP is for ATP system developers to examine solutions to problems
and thus understand how they can be solved, leading to improvements to their
own systems. The use considered here is for TPTP problem ratings.

Prior to 2010 the data in the TSTP came from results submitted by ATP
system developers, who performed testing on their own hardware. From 2010 to
2013 the data was generated on the TPTP World servers at the University of
Miami. Since 2014 the ATP systems have been run on StarExec [63], initially
on the StarExec Iowa cluster, and since 2018 on the StarExec Miami cluster.
StarExec has provided stable platforms that produce reliably consistent and
comparable data in the TSTP. The analyses presented in Sect. 4 start at TPTP
v6.3.0, which was released in November 2015. By that time the problem ratings
were based on data produced on the StarExec computers.

The StarExec Iowa computers have a quad-core Intel Xeon CPU E5-2609
CPU running at 2.40GHz, 128 GiB memory, and the CentOS Linux release
7.9.2009 operating system. The StarExec Miami computers have an octa-core
Intel Xeon E5-2667 v4 CPU running at 2.10GHz, 128 GiB memory, and the
CentOS Linux release 7.4.1708 operating system. One ATP system is run on one
CPU at a time, with a 300 s CPU time limit and a 128GiB memory limit (see
Sect. 3.1). The minor differences between the Iowa and Miami configurations can
be ignored for the task of “solving problems”, as is explained in Sect. 3.1.



58 G. Sutcliffe et al.

3.1 Resource Limits

Analysis shows that increasing resource limits does not significantly affect which
problems are solved by an ATP system. Fig. 1 illustrates this point; it plots the
CPU times taken by several contemporary ATP systems to solve the TPTP
problems for the FOF_THM_RFO_* SPCs, in increasing order of time taken. The
relevant feature of these plots is that each system has a point at which the time
taken to find solutions starts to increase dramatically. This point is called the
system’s Peter Principle [55] Point (PPP), as it is the point at which the system
has reached its level of incompetence. Evidently a linear increase in the compu-
tational resources beyond the PPP would not lead to the solution of significantly
more problems. The PPP thus defines a realistic computational resource limit
for the system. Therefore, provided that enough CPU time and memory are
allowed for an ATP system to reach its PPP, a usefully accurate measure of
what problems it can solve is achieved. The performance data in the TSTP is
produced with adequate resource limits.

Fig. 1. CPU times for FOF_THM_RFO_*

4 Analysis Processes

4.1 Analysis Data

The analyses performed in this assessment use the TPTP problem ratings, and
historical data about which ATP systems solved which problems in each TPTP
release. The data was extracted from the ProblemAndSolutionStatistics file
that accompanies each TPTP release, which summarizes information from the
header fields of the TPTP problem files and corresponding TSTP solution files.
As explained in Sect. 3, TSTP data starting from TPTP v6.3.0 in November
2015 has been used, taking snapshots at each TPTP edition up to v8.2.0.

Before analysis the rating data was cleaned as follows:



Progress in ATP 59

Cleaning for Bias: The TPTP tags problems that are designed specifically to be
suited or ill-suited to some ATP system, calculus, or control strategy as biased.
The biased problems were excluded from the analyses.

Cleaning for Bugfixes: Over time some problems have had to be removed from
the TPTP because they are renamed, duplicates, wrongly formulated, etc. Such
problems in a TPTP release are thus not in subsequent releases. The removed
problems were excluded from the analyses.

Cleaning for the Past: Problems are added to the TPTP in each release, and
corresponding TSTP data is generated using the available ATP systems. As it
is not possible to run all previously available ATP systems on new problems
when they are added to the TPTP, it has been (quite reasonably) assumed that
if a problem was unsolved by the current ATP systems when it was added to
the TPTP (initial rating 1.00), then it would have been unsolved by previously
available ATP systems. The rating data was thus augmented for problems that
were added after v6.3.0 and had an initial rating of 1.00, by setting the problems’
ratings in the prior TPTP releases to 1.00. There were 1854 such problems.
This, however, can lead to an unfairly optimistic view of progress, because those
retrospectively added 1.00 ratings increase the average problem rating in the
past. For problems that were solved when they were added to the TPTP (initial
rating less than 1.00), it is unknown if the previously available ATP systems
would have been able to solve them. Augmenting the rating data by setting the
problems’ ratings in prior TPTP releases to their initial rating of less than 1.00
could lead to an optimistic or pessimistic view of progress, depending if the rating
was greater or less than the average in the past releases. In this work the rating
data was augmented for problems that were added after v6.3.0 and had an initial
rating less than 1.00, by setting the problems’ ratings in the prior TPTP releases
to their initial rating. There were 2632 such problems. The optimistic/pessimistic
effect gets stronger when rating data is augmented for problems that were added
in more recent TPTP releases. A total of 1854+2632 = 4486 problems had their
initial ratings propagated backwards, starting from the various releases over the
eight years of analysis. Overall this could have had a slightly optimistic impact
in the analyses.

Cleaning for Change: A counterintuitive feature of an individual problem’s dif-
ficulty ratings is that they sometimes increase with time. It is counterintuitive
because the problem has not changed. (This was also noted in a prior analysis
[69].) Increases are caused by new ATP systems or system versions becoming
available. If a new system is not subsumed then its TSTP data is used in the
rating process: the ratings of problems that it solves decrease, but at the same
time the ratings of problems that it does not solve increase – you have to “pay the



60 G. Sutcliffe et al.

piper”.3 A common instance of this phenomenon is a new system that can solve
some previously unsolved (rating 1.00) problems, but that cannot solve a sub-
stantial number of problems that are solved by other systems (rating less than
1.00). In this work the anomaly is resolved by additionally looking at monotonic
ratings: if a problem’s rating in a TPTP release is greater than its previous
rating, the monotonic rating is set to the previous lower rating. Monotonized
ratings make clear sense in the case of problems that were unsolved (rating 1.00)
and were later solved by a new system (the rating drops to less than 1.00) – if a
problem is solved, it cannot become unsolved – the solving system still exists in
principle. In cases where the rating is less than 1.00 monotonized ratings might
be considered to be optimistic because ratings do have to “pay the piper”.

4.2 Coherent SPC Sets

Five of the analyses performed (see Sect. 4.3) require data from sets of problems
with similar characteristics, so that the analysis results are wrt that type of
problem. The basis for such sets is the SPCs (see Sect. 2.1), which provide a
fine-grained partitioning of the TPTP problems so that each SPC is coherent.
Some SPCs that capture compatible problem characteristics can be merged to
form a coherent SPC set.

The coherent SPC sets used for the analyses are listed in Table 2. The SPC
set column lists the SPCs that are in the set, using the abbreviations given
in Sect. 2.1. Some noteworthy exclusions are: typed extended first-order prob-
lems, because they were added to the TPTP only in v8.0.0; typed polymorphic
first-order and higher-order problems, because too few systems are capable of
attempting the problems and generating the necessary TSTP data; some SPCs
that have too few problems, e.g., TF0_CSA_*_NAR and TF0_SAT_*_NAR, which
combined have only 154 problems.

4.3 Six Analyses

The cleaned TPTP problems ratings and historical TSTP data has been used
for six analyses of progress in ATP. Individual problem ratings are used for the
first analysis. The other five analyses are wrt the coherent SPC sets described
in Sect. 4.2.

First Solutions: Arguably the most successful use of ATP comes from the “ham-
mers” [15] associated with Interactive Theorem Proving (ITP) systems, where
the individual problems being solved are typically not of direct interest to the
human users who are focussed on the larger task being addressed in the ITP sys-
tem. In contrast, the use of ATP by practitioners to solve individual problems

3 Conversely, if a system that was not subsumed becomes unavailable, it no longer
contributes TSTP data for new problems. This phenomenon is rare (e.g., Isabelle
ran fine on StarExec Iowa but did not port to StarExec Miami in 2018) and has not
materially impacted the analyses of progress.



Progress in ATP 61

Table 2. Coherent SPC sets

SPC set Description
CNF_UNS_RFO_PEQ_UEQ Unsatisfiable really-first-order unit

equality clauses
CNF_UNS_RFO_NEQ_* ∪
CNF_UNS_RFO_SEQ_* ∪
CNF_UNS_RFO_PEQ_NUE

Unsatisfiable really first-order clauses
that are not unit equality

CNF_SAT_RFO_* Satisfiable really-first-order clauses
FOF_*_PRP ∪ FOF_*_EPR_* ∪
CNF_*_PRP ∪ CNF_*_EPR_*

Unsatisfiable and satisfiable
propositional and effectively
propositional clauses. Un/Satisfiable is
coherent because the problems are
decidable

FOF_THM_RFO_* Really first-order theorems, with or
without equality

FOF_CSA_RFO_* ∪
FOF_SAT_RFO_*

Really first-order non-theorems and
satisfiable sets, with and without
equality

TF0_THM_*_NAR Typed monomorphic first-order
theorems, with and without equality, no
arithmetic

TF0_THM_*_ARI Typed monomorphic first-order
theorems, with and without equality,
with arithmetic

TH0_THM_*_NAR Typed monomorphic higher-order
theorems, with and without equality, no
arithmetic

that have resisted manual approaches is less common and possibly less success-
ful, but the sparsity makes successes particularly noteworthy. First solutions of
problems that are of direct interest to humans are indications of progress. Such
problems are identifiable by (i) the rating decreasing from 1.00, and (ii) evidence
that the problem is of direct interest to some humans.

Average Difficulty Ratings: This is the average problem difficulty rating, and
the average monotonized difficulty rating. (This approach was used in [73].) As
the problems are unchanged (they are not actually getting easier), decreases are
evidence of progress in ATP systems.

Never-Solved: This is the fraction of problems that were unsolved (rating 1.00)
in all TPTP releases up to each TPTP release, relative to the number in v6.3.0.
(The converse of this is plotted in [78].) Decreases are evidence of progress.



62 G. Sutcliffe et al.

Solved: For the given system and a given TPTP release, this is . . .

ProblemSolvedInRelease − LeastSolvedAcrossAllReleases

MostSolvedAcrossAllReleases − LeastSolvedAcrossAllReleases

The releases with a 1.00 value are those in which the most problems were solved,
and those with 0.00 had the least number solved. Increases are evidence of
progress.

Always-Easy: This is the converse of Never-solved – the fraction of problems
that were easy (rating 0.00) in all TPTP releases back to each TPTP release,
relative to the number in v8.2.0. Increases are evidence of progress.

Shapley Value: A State-of-the-Art (SotA) ATP system for a TPTP release is
defined as one that solves the union of the problems solved by the individual
ATP systems, e.g., by using competition parallelism [79]. The Shapley value
[87] is the average of the marginal contributions (how much the SotA system
improves when adding each given system) over all systems added to all possible
subsets of other systems. First, temporal Shapley analysis [41] is used to measure
the SotA systems’ contributions to progress, normalized by the number of pre-
viously unsolved problems so that 0.0 means no previously unsolved problems
were solved and 1.0 means all previously unsolved problems were solved. Peaks
indicate stronger progress. Next, (non-temporal) Shapley analysis [25] is used
to measure the contributions of the individual systems in each release. Finally,
temporal Shapley analysis for all systems in all releases is used to measure the
contributions of the individual system versions when they were introduced. The
latter two analyses were used to provide insights for the commentary about the
systems’ performances (they are not plotted in Sect. 5).

5 Evidence of Progress

5.1 First Solutions

There are some nice examples of ATP systems finding first solutions to problems
that are of direct interest to humans . . .

– Model finding ATP systems were used to solve previously open problems con-
cerning the existence of quasigroups satisfying certain additional conditions
[61]. Many examples are in the GRP domain of the TPTP.

– The solution of the Robbins problem4 by the specialist ATP system EQP
[47] in 1996 was a noteworthy success, as the problem had defied the efforts
of eminent mathematicians [29]. It is ROB001-1 in the TPTP, and still has a
rating of 1.00 because it has not been solved by a non-specialist ATP system.

4 The Robbins problem was posed in personal communications between Edward
Huntington, Herbert Robbins, and Alfred Tarski. The background is given in
en.wikipedia.org/wiki/Robbins_algebra.

https://en.wikipedia.org/wiki/Robbins_algebra


Progress in ATP 63

– The first inner five-segment theorem of Tarski’s geometry [60] was first auto-
matically proved by E [58] in 2019, after being posed by Quaife in 1989 [56].
It is problem GEO033-2 in the TPTP.

– The proof of the consistency of an encoding of a large fragment of a high school
textbook on biology [19] by iProver [38] in 2021 showed how new techniques
could be used to find models in large theories. It is problem BIO001+1 in the
TPTP.

– Larry Wos’ challenge to find a “circle of pure proofs” that shows the equiva-
lence of the four Moufang identities [86] was met by careful application [81] of
Otter [48] in 2021. While those specific problems are not in the TPTP, many
related problems are in the ring theory (RNG) domain of the TPTP.

5.2 Solutions and Ratings

A total of 25325 problems were analysed over the coherent SPCs, of which 19762
(78%) were solved in TPTP v6.3.0, increasing to 20227 (80%) in v8.2.0. Of the
25325 problems, 5563 (22%) were unsolved when they were added to the TPTP,
of which 1009 (4%) were solved in some release by v8.2.0. Conversely, there were
8984 problems (35%) that had a rating of 0.00 in v8.2.0, of which 2965 (12%)
had a higher rating in some preceding release. These overall figures provide
evidence of overall progress, but the contributions vary across the coherent SPC
sets. Figures 2, 3, 4, 5, 6, 7, 8, 9 and 10 plot the values for each coherent SPC
set for the latter five analyses described in Sect. 4.3.5 The captions provide the
numbers of ‘P’roblems in TPTP v8.2.0, the number left for analysis after the
data cleaning, and the numbers of ‘N’ever-solved, ‘S’olved, and ‘A’lways-easy
problems in releases v6.3.0-v8.2.0.

Figures 2, 3 4, 5, 6 and 7 plot the values for the CNF- and FOF-based coherent
SPC sets. CNF is now the “assembly language” of most ATP systems, which
typically translate more expressive logics down to CNF. As such, progress in
CNF typically contributes to progress in other SPCs.

CNF_UNS_RFO_PEQ_UEQ showed progress in v6.4.0 due to the strong perfor-
mance of Twee 2.0 [62], which made a lot more problems always-easy by v7.0.0.
Also in v6.4.0, Waldmeister 710 [44] solved five problems that had never been
solved before. In v7.4.0 E 2.5 made a strong contribution, then in v8.1.0 Twee 2.4
made another strong contribution, alongside CSE_E 1.3 [88]. Waldmeister 710
had the highest Shapley value across all the releases, but in v8.1.0 both Twee
and CSE_E solved more problems than Waldmeister. The lowest number of
problems solved was in v7.5.0 and v8.0.0, when 23 fewer problems were solved
than in v7.4.0 – not many in the context of the 1034 solved in v7.4.0. The only
discernible common feature of those 23 problems is that they had ratings over
0.90 in v7.4.0. Apparently some changes in the ATP system versions from v7.4.0
to v7.5.0 made the problems unsolvable in v7.5.0, and further changes reversed
the situation for v8.1.0 when 1043 problems were solved.

5 Data: github.com/GeoffsPapers/ATPProgress2024/raw/master/DataForAnalysis.

https://github.com/GeoffsPapers/ATPProgress2024/raw/master/DataForAnalysis


64 G. Sutcliffe et al.

CNF_UNS_RFO_*_NUE had a small but quite consistent decline in the problem
ratings, indicating some progress. The big advances were in v7.0.0 when Vam-
pire 4.2 performed well, including solving 33 problems that had never been solved
before. In v8.2.0 SnakeForV 1.0 solved 26 problems that had never been solved
before. The biggest drop in problems solved was between v7.2.0 and v7.3.0,
when 66 fewer problems were solved. The largest increase in problems solved
was between v8.1.0 and v8.2.0, when 50 more problems were solved. SnakeForV
was again the big contributor to the increase. SnakeForV is interesting, as it is
a variant of Vampire with an independent reimplementation of Spider-style [82]
strategy discovery and schedule construction that factors in prover randomiza-
tion [64].

CNF_SAT_RFO_* had only one high point, in v6.4.0 when Vampire 4.0.5 made
a strong contribution, including solving four problems that had never been solved
before. The sudden drop in problems solved in v7.0.0 was due to Prover9 1105
[46] data not being available; the reason is lost in the mists of time, but it is
interesting to note that the older system was able to solve some problems that
other systems could not. By v7.1.0 new systems had taken up the slack. The
plots are all quite stable from v7.1.0 onwards.

{FOF,CNF}_*_EPR_* had two points of progress, the first in v7.0.0 and the
second in v7.3.0. In v7.0.0 the progress came from iProver 2.6 that had inte-
grated an abstraction-refinement framework [30], and Vampire 4.2 that had some
changes in its model building. Between them they solved five problems that had
never been solved before. In v7.3.0 iProver 3.0 integrated superposition [23].
The number of problems solved increased continuously until v8.2.0. The drop in
v8.2.0 was due to poorer performances by the new iProver 3.7, SnakeForV 1.0,
and Vampire 4.7. These systems share the same FOF to CNF translator, which
might have been the source of the common change.

FOF_THM_RFO_* is the best known of the FOF-based SPCs, with the most
ATP systems able to attempt the problems, and is the target of most new sys-
tems. The problem difficulty ratings are quite flat, but the number of problems
solved increased quite regularly, from 6086 in v6.3.0 to 6235 in v8.2.0. The largest
step of progress came in v7.0.0 when Vampire 4.2 solved 72 problems that had
never been solved before, thanks to improvements in preprocessing. ET 0.2 [37]
also contributed to the progress in v7.0.0. In v7.4.0 Enigma 0.4 [32,33] was a
new system that made a strong contribution to progress. Vampire 4.5 also con-
tributed to progress in v7.4.0, with a new layered clause selection approach [27]
and a new subsumption demodulation rule [28].

FOF_{CSA,SAT}_RFO_* is also well known, and along with its typed first-order
counterpart (not analysed due to insufficient data) is important for applications,
e.g., [22]. The largest sign of progress was in v6.4.0. The main contributors were
Vampire 4.0.5 with improvements to its satisfiability checking, and iProver 2.5
with restructured core data structures and improved preprocessing including
predicated elimination. Vampire 4.0.5 solved 10 problems that had never been
solved before. There is a drop of 10 problems solved from v8.0.0 to v8.2.0. As
in CNF_UNS_RFO_PEQ_UEQ, there is no discernible common feature of those 10



Progress in ATP 65

problems, and their ratings were at most 0.75. This again shows that the set of
problems solved by evolving versions of systems does not grow monotonically.

Figures 8, 9 and 10 plot the values for the TFF- and THF-based coherent
SPC sets. TF0_THM_*_NAR uses the simplest of the typed TPTP languages. In
v7.0.0 there was progress thanks to Vampire 4.2 and CVC4 1.5.2 [4]. In v8.2.0
there was progress thanks to SnakeForV 1.0. In between those points of progress
there was a drop in the number of problems solved, from 282 in v7.4.0 down
to 260 in v7.5.0, apparently due to poorer performance of CVC4 1.9 in v7.5.0
compared to that of CVC4 1.7 in v7.4.0.

TF0_THM_*_ARI is important because it uses the simplest TPTP language
that includes arithmetic, which occurs naturally in application areas [16,39,53].
There was clearly some significant progress in v6.4.0 as many problems were
solved for the first time by Vampire 4.0.5, which had integrated Z3 [50] since
Vampire 4.0. This contributed to the increase in the number of problems solved,
from 915 in v6.3.0 to 1009 in v6.4.0. CVC4 1.5 [4] and Princess 150706 [57] also
performed well.

TH0_THM_*_NAR uses typed higher-order logic, and despite using a more
expressive language than the TF0_* SPCs, has been the focus of ATP system
development longer [70,74]. The problem ratings declined moderately, and there
were bursts of progress in v7.0.0 and v7.5.0. The progress in v7.0.0 was largely
thanks to Satallax 3.2 [17], which included a SInE-like [31] procedure for premise
selection that enabled it to solve some large problems that were previously out
of reach. That progress increased the number of always-easy problems by v7.1.0.
In v7.5.0 Zipperposition 2.0 [8] improved over the previous version, and solved
18 problems that had never been solved before.

Fig. 2. CNF_UNS_RFO_PEQ_UEQ P:1140-
1140N:120-86 S:1020-1049A:38-233

Fig. 3. CNF_UNS_RFO_*_NUE P:4445-4441
N:569-391 S:3873-3966 A:1004-1780

Figure 11 was presented (verbatim) in a prior analysis done at TPTP release
v6.4.0 [69]. The figure plotted the average ratings for the 14527 problems that
were unchanged in the TPTP since v5.0.0, and whose ratings had not been stuck
at 0.00 or 1.00 since v5.0.0. It was noted in [69]: “The ratings generally show a
downward trend - there has been progress!”. Figure 12 shows the same done at
TPTP release v8.2.0, for the 16236 problems that were unchanged in the TPTP
since v6.3.0, and whose ratings have not been stuck at 0.00 or 1.00 since v6.3.0.



66 G. Sutcliffe et al.

Fig. 4. CNF_SAT_RFO_* P:1044-1042N:
155-147 S:887-889A:476-598

Fig. 5. {FOF,CNF}_*_EPR_* P:1457-
1425N:78-43 S:1347-1360A:1027-1311

Fig. 6. FOF_THM_RFO_* P:7204-7202N:
1116-818 S:6086-6235A:696-971

Fig. 7. FOF_{CSA,SAT}_RFO_* P:1329-
1028N:282-256 S:746-753A:481-709

The two figures’ plots dovetail quite well, which gives confidence that they really
are comparable (there are some minor differences caused by the data cleaning
done for this work, and recent refinements to the rating calculations [71,72]).
The older plots show a quite clear downward trend both overall and for the four
types of problems, while the new plots do not. Possible reasons are discussed in
the conclusion (Sect. 6).

Fig. 8. TF0_THM_*_NAR P:400-397N:120-
103 S:277-268A:117-123

Fig. 9. TF0_THM_*_ARI P:1176-1087N:
172-58 S:915-1022A:763-785



Progress in ATP 67

Fig. 10. TH0_THM_*_NAR PA:3189-3183N:461-305 S:2722-2814A:617-1244

Fig. 11. Ratings from v5.0.0 to v6.4.0 Fig. 12. Ratings from v6.3.0 to v8.2.0

6 Conclusion

This paper has presented an empirical assessment of progress in ATP, using
data from the TPTP World in TPTP v6.3.0 in 2015 to v8.2.0 in 2023. The
assessment has been in terms of six measures, divided into nine coherent SPC sets
of problems that are reasonably homogeneous for ATP systems. The assessment
shows that there has been progress in the last eight years, with stronger progress
from v6.3.0 (2015) up to v7.1.0 (2018), but then a period of quiet until some
more signs of progress in v8.2.0 (2023). There have been some first solutions
of problems that are of direct interest to humans, and a quite large number of
first ATP solutions of problems from the TPTP. The coherent SPCs with the
strongest signs of progress were CNF_UNS_RFO_PEQ_UEQ and TH0_THM_*_NAR.

In addition to overall trends, it is worth noting some of the salient improve-
ments in individual ATP systems, extracted from Sect. 5 . . .

– The development of EQP leading to the solution of the Robbins problem in
1996.

– The release of Waldmeister in 1997 (before the period of analysis), which
dominated UEQ problem solving until the arrival of Twee 2.4 in 2021.

– The release of Satallax 2.8 in 2015 with strong performance on THF problems,
improving up to Satallax 3.2 in 2017.

– The release of Vampire 4.0.5 in 2016, with arithmetic capability included.
– The release of Vampire 4.2 in 2017 with significantly improved performance

on many types of problems, including NUE, EPR, FOF, and TF0_NAR.



68 G. Sutcliffe et al.

– The release of iProver versions 2.5 to 2.8 between 2016 and 2018, with strong
performance on EPR problems.

– the release of Zipperposition 2.0 in 2020, with strong performance on THF
problems.

– The release of the Vampire-based SnakeForV 1.0 in 2022, which outperformed
Vampire on many types of problems.

In terms of problem difficulty ratings, the monotonized ratings necessarily
went down but the trend was not dramatic, and the raw ratings were generally
stable. This is in contrast to the clearly decreasing ratings from 2011 to 2016.
The reasons for that apparent slowing of progress are not definitely known, but
we have thought of the following possible reasons:

– System developers have expended effort adding breadth of capability at the
expense of depth, e.g., E – processed only CNF and FOF up to 2015, added
TF0 in 2017 [59], TX0 and TH0 in 2019 [83]; iProver – processed only CNF
and FOF up to 2015, added TF0 with arithmetic in 2021 (unpublished);
Vampire – processed only CNF, FOF, and TF0 up to 2015, added TX0 in
2016 [40], TF1 and TX1 in 2020 [13], and THF in several incarnations from
2019 to 2023 [10–12].

– The entry barrier to building new high-performance ATP systems is high,
because top systems dominate the field and attract the best developer talent.
In Maria Paola Bonacina’s welcoming address at the Dagstuhl Seminar “The
Next Generation of Deduction Systems: from Composition to Composition-
ality”6 she referred to this as a “crisis of growth”.

– New systems that take new approaches that solve different subsets of SPCs
have an impact on problem difficulty ratings. For examples: CSE_E [88] was
new in 2018, combining the S-CS calculus with E; Zipperposition [7] was new
in 2019, extending superposition to higher-order logic; Twee [62] was new in
2018, solving CNF and FOF problems by transformation to UEQ.

– Time spent on machine learning based techniques, for axiom selection, e.g.,
[42,80], given clause selection, e.g., [1,21,34,49]), learning for large problem
corpora, e.g., [3,35,43], and use of large language models to improve ATP
performance [2,84], is focussed largely on sets of many quite similar problems
over one fixed signature. The progress made in that usage does not contribute
directly to general progress in solving individual problems with different sig-
natures, as measured in this work.

– SMT solvers have been in existence since the late 1970s [51], blossomed fully
in the early 2000s, and has attracted ever-increasing interest since then. Some
ATP systems have been adapted to solving SMT problems, e.g., Vampire has
been entered into SMT-COMP since 2016, and iProver since 2021. This is all
good work, but has possibly diverted developer energy from ATP to SMT.

– The divisions of CASC cause developers to put extra effort into solving the
types of problems in the division. For examples, the Effectively Propositional
(EPR) division was run from CASC-JC in 2001 to CASC-27 in 2019, and

6 www.dagstuhl.de/23471.

https://www.dagstuhl.de/23471


Progress in ATP 69

during those years several ATP systems were optimized for EPR problems,
most notably iProver. Putting a division on hiatus leads to less development
in that aspect of ATP.

– In [72] it was noted that CASC might be causing incremental development
of ATP systems. This concern has been expressed as far back as CASC-JC
in 2001 [54]. In response to this concern CASC-J12 will have a new ICU (I
Challenge yoU) division that focusses on solving hard problems rather than
solving more problems, hoping to stimulate new developments and progress.

This assessment of progress is based on ATP systems’ abilities to solve prob-
lems. Evaluation of other performance measures would be interesting, e.g., sta-
bility of proof search modulo perturbations of the input, and some have been
done in other evaluations of logic-based systems. These include measures such as
resource usage and verifiability of proofs/models. Evaluation of non-performance
measures is often ignored, but for users might be just as necessary. These include
measures such as the range of logics covered, ease of building and deploying,
portability to different hardware and operating system environments, availabil-
ity of source code, quality of source code and its documentation, licensing that
permits a required level of use or modification, availability of user documenta-
tion, and (maybe most importantly!) developer support. These are topics for
future assessments.

References

1. Aygün, E., et al.: Proving theorems using incremental learning and hindsight expe-
rience replay. In: Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G.,
Sabato, S. (eds.) Proceedings of the 39th International Conference on Machine
Learning, pp. 1198–1210. No. 162 in Proceedings of Machine Learning Research
(2022)

2. Azerbayev, Z., et al.: Llemma: An Open Language Model For Mathematics (2023).
arXiv:2310.10631

3. Bansal, K., Loos, S., Szegedy, C., Wilcox, S.: HOList: an environment for machine
learning of higher-order theorem proving. In: Chaudhuri, K., Salakhutdinov, R.
(eds.) Proceedings of the 36th International Conference on Machine Learning, pp.
454–463 (2019)

4. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1_14

5. Barrett, C., de Moura, L., Stump, A.: SMT-COMP: satisfiability modulo theories
competition. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576,
pp. 20–23. Springer, Heidelberg (2005). https://doi.org/10.1007/11513988_4

6. Bartocci, E., et al.: TOOLympics 2019: an overview of competitions in formal
methods. In: Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) TACAS 2019.
LNCS, vol. 11429, pp. 3–24. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-17502-3_1

7. Bentkamp, A., Blanchette, J., Tourret, S., Vukmirović, P.: Superposition for full
higher-order logic. In: Platzer, A., Sutcliffe, G. (eds.) CADE 2021. LNCS (LNAI),
vol. 12699, pp. 396–412. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-79876-5_23

http://arxiv.org/abs/2310.10631
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/11513988_4
https://doi.org/10.1007/978-3-030-17502-3_1
https://doi.org/10.1007/978-3-030-17502-3_1
https://doi.org/10.1007/978-3-030-79876-5_23
https://doi.org/10.1007/978-3-030-79876-5_23


70 G. Sutcliffe et al.

8. Bentkamp, A., Blanchette, J., Tourret, S., Vukmirović, P., Waldmann, U.: Superpo-
sition with lambdas. In: Fontaine, P. (ed.) CADE 2019. LNCS (LNAI), vol. 11716,
pp. 55–73. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29436-6_4

9. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: requirements and solu-
tions. Int. J. Softw. Tools Technol. Transfer 21, 1–29 (2019)

10. Bhayat, A.: Automated theorem proving in higher-order logic. Ph.D. thesis, Fac-
ulty of Science and Engineering, University of Manchester, Manchester, United
Kingdom (2020)

11. Bhayat, A., Rawson, M., Schoisswohl, J.: Superposition with delayed unification.
In: Pientka, B., Tinelli, C. (eds.) CADE 2023. LNCS, vol. 14132, pp. 23–40.
Springer, Cham (2023). https://doi.org/10.1007/978-3-031-38499-8_2

12. Bhayat, A., Reger, G.: Restricted combinatory unification. In: Fontaine, P. (ed.)
CADE 2019. LNCS (LNAI), vol. 11716, pp. 74–93. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-29436-6_5

13. Bhayat, A., Reger, G.: A polymorphic vampire. In: Peltier, N., Sofronie-
Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI), vol. 12167, pp. 361–368.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51054-1_21

14. Blagec, K., Barbosa-Silva, A., Ott, S., Samwald, M.: A curated, ontology-based,
large-scale knowledge graph of artificial intelligence tasks and benchmarks. Sci.
Data 9(322), 1–10 (2022)

15. Blanchette, J., Kaliszyk, C., Paulson, L., Urban, J.: Hammering towards QED. J.
Formaliz. Reason. 9(1), 101–148 (2016)

16. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Let’s verify this with why3.
Int. J. Softw. Tools Technol. Transfer 17(6), 709–727 (2015)

17. Brown, C.E.: Satallax: an automatic higher-order prover. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 111–117. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3_11

18. Calimeri, F., Ianni, G., Krennwallner, T., Ricca, F.: The answer set programming
competition. AI Mag. 33(4), 114 (2012)

19. Chaudri, V., Dinesh, N., Inclezan, D.: Three lessons in creating a knowledge base
to enable explanation, reasoning and dialog. In: Klenk, M., Laird, J. (eds.) Pro-
ceedings of the 2nd Annual Conference on Advances in Cognitive Systems, pp.
187–203 (2013)

20. Cok, D., Stump, A., Weber, T.: The 2013 evaluation of SMT-COMP and SMT-LIB.
J. Autom. Reason. 55(1), 61–90 (2015)

21. Crouse, M., et al.: A deep reinforcement learning approach to first-order logic
theorem proving. In: Leyton-Brown, K., Mausam (eds.) Proceedings of the 35th
AAAI Conference on Artificial Intelligence, vol. 35, no. 7, pp. 6279–6287. AAAI
Press (2021)

22. D’Silva, V., Kroening, D., Weissenbacher, G.: A survey of automated techniques
for formal software verification. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 27(7), 1165–1178 (2008)

23. Duarte, A., Korovin, K.: Implementing superposition in iprover (system descrip-
tion). In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI),
vol. 12167, pp. 388–397. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-51054-1_24

24. Fichte, J.K., Hecher, M., Szeider, S.: A time leap challenge for SAT-solving. In:
Simonis, H. (ed.) CP 2020. LNCS, vol. 12333, pp. 267–285. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-58475-7_16

https://doi.org/10.1007/978-3-030-29436-6_4
https://doi.org/10.1007/978-3-031-38499-8_2
https://doi.org/10.1007/978-3-030-29436-6_5
https://doi.org/10.1007/978-3-030-29436-6_5
https://doi.org/10.1007/978-3-030-51054-1_21
https://doi.org/10.1007/978-3-642-31365-3_11
https://doi.org/10.1007/978-3-030-51054-1_24
https://doi.org/10.1007/978-3-030-51054-1_24
https://doi.org/10.1007/978-3-030-58475-7_16


Progress in ATP 71

25. Fréchette, A., Kotthoff, L., Michalak, T., Rahwan, T., Hoos, H., Leyton-Brown, K.:
Using the shapley value to analyze algorithm portfolios. In: Schuurmans, D., Well-
man, M. (eds.) Proceedings of the 30th AAAI Conference on Artificial Intelligence,
pp. 3397–3403. AAAI Press (2016)

26. Fuchs, M., Sutcliffe, G.: Homogeneous sets of ATP problems. In: Haller, S., Sim-
mons, G. (eds.) Proceedings of the 15th International FLAIRS Conference, pp.
57–61. AAAI Press (2002)

27. Gleiss, B., Suda, M.: Layered clause selection for theory reasoning. In: Peltier,
N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI), vol. 12166, pp.
402–409. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51074-9_23

28. Gleiss, B., Kovács, L., Rath, J.: Subsumption demodulation in first-order theo-
rem proving. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS
(LNAI), vol. 12166, pp. 297–315. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-51074-9_17

29. Henkin, L., Monk, J., Tarski, A.: Cylindrical Algebras, vol. Part 1. North-Holland
(1971)

30. Hernandez, J., Korovin, K.: Towards an abstraction-refinement framework for rea-
soning with large theories. In: Eiter, T., Sands, D., Schulz, S., Urban, J., Sutcliffe,
G., Voronkov, A. (eds.) Proceedings of the IWIL Workshop and LPAR Short Pre-
sentations. No. 1 in Kalpa Publications in Computing (2017)

31. Hoder, K., Voronkov, A.: Sine qua non for large theory reasoning. In: Bjørner, N.,
Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 299–
314. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22438-6_23

32. Jakubův, J., Chvalovský, K., Olšák, M., Piotrowski, B., Suda, M., Urban, J.:
ENIGMA anonymous: symbol-independent inference guiding machine (system
description). In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS
(LNAI), vol. 12167, pp. 448–463. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-51054-1_29

33. Jakubuv, J., Urban, J.: BliStrTune: hierarchical invention of theorem proving
strategies. In: Bertot, Y., Vafeiadis, V. (eds.) Proceedings of Certified Programs
and Proofs 2017, pp. 43–52. ACM (2017)

34. Jakubův, J., Urban, J.: ENIGMA: efficient learning-based inference guiding
machine. In: Geuvers, H., England, M., Hasan, O., Rabe, F., Teschke, O. (eds.)
CICM 2017. LNCS (LNAI), vol. 10383, pp. 292–302. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-62075-6_20

35. Jakubuv, J., Urban, J.: Hammering mizar by learning clause guidance. In: Proceed-
ings of the 10th International Conference on Interactive Theorem Proving. Leibniz
International Proceedings in Informatics, Dagstuhl Publishing (2019)

36. Järvisalo, M., Le Berre, D., Roussel, O., Simon, L.: The international SAT solver
competitions. AI Mag. 33(1), 89–92 (2012)

37. Kaliszyk, C., Schulz, S., Urban, J., Vyskočil, J.: System description: E.T. 0.1. In:
Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 389–
398. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21401-6_27

38. Korovin, K.: iProver – an instantiation-based theorem prover for first-order logic
(system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 292–298. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-71070-7_24

39. Korovin, K., Kovac, L., Reger, G., J., S., Voronkov, A.: ALASCA: Reasoning in
Quantified Linear Arithmetic (Extended Version) (2023). https://easychair.org/
publications/preprint/KJX2

https://doi.org/10.1007/978-3-030-51074-9_23
https://doi.org/10.1007/978-3-030-51074-9_17
https://doi.org/10.1007/978-3-030-51074-9_17
https://doi.org/10.1007/978-3-642-22438-6_23
https://doi.org/10.1007/978-3-030-51054-1_29
https://doi.org/10.1007/978-3-030-51054-1_29
https://doi.org/10.1007/978-3-319-62075-6_20
https://doi.org/10.1007/978-3-319-21401-6_27
https://doi.org/10.1007/978-3-540-71070-7_24
https://doi.org/10.1007/978-3-540-71070-7_24
https://easychair.org/publications/preprint/KJX2
https://easychair.org/publications/preprint/KJX2


72 G. Sutcliffe et al.

40. Kotelnikov, E., Kovacs, L., Reger, G., Voronkov, A.: The vampire and the FOOL.
In: Avigad, J., Chlipala, A. (eds.) Proceedings of the 5th ACM SIGPLAN Confer-
ence on Certified Programs and Proofs, pp. 37–48. ACM (2016)

41. Kotthoff, L., Fréchette, A., Michalak, T., Rahwan, T., Hoos, H., Leyton-Brown, K.:
Quantifying algorithmic improvements over time. In: Lang, J. (ed.) Proceedings of
the 27th International Joint Conference on Artificial Intelligence, pp. 5165–5171
(2018)

42. Külwein, D., Blanchette, J.: A survey of axiom selection as a machine learning
problem. In: Geschke, S. (ed.) Computability and Metamathematics: Festschrift
Celebrating the 60th birthdays of Peter Koepke and Philip Welch, pp. 1–15. College
Publications (2014)

43. Kumar, R., Myreen, M., Norrish, M., Owens, S.: CakeML: a verified implementa-
tion of ML. In: Sewell, P. (ed.) Proceedings of the 41st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pp. 179–191. ACM Press
(2014)

44. Loechner, B., Hillenbrand, T.: A phytography of waldmeister. AI Commun.
15(2/3), 127–133 (2002)

45. Maslej, N., et al.: The AI Index 2023 Annual Report. Institute for Human-Centered
AI, Stanford University (2023)

46. McCune, W.: Prover9. http://www.cs.unm.edu/~mccune/prover9/
47. McCune, W.: Solution of the robbins problem. J. Autom. Reason. 19(3), 263–276

(1997)
48. McCune, W.: Otter 3.3 reference manual. Technical report, ANL/MSC-TM-263,

Argonne National Laboratory, Argonne, USA (2003)
49. McKeown, J., Sutcliffe, G.: Reinforcement learning for guiding the e theorem

prover. In: Ae Chun, A., Franklin, M. (eds.) Proceedings of the 36th International
FLAIRS Conference (2023). https://doi.org/10.32473/flairs.36.133334

50. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

51. Nelson, G., Oppen, D.: Simplification by cooperating decision procedures. ACM
Trans. Program. Lang. Syst. 1(2), 245–257 (1979)

52. Ott, S., Barbosa-Silva, A., Blagec, K., Brauner, J., Samwald, M.: Mapping global
dynamics of benchmark creation and saturation in artificial intelligence. Nat. Com-
mun. 13(6793), 1–11 (2022)

53. Paulson, L., Blanchette, J.: Three years of experience with sledgehammer, a prac-
tical link between automatic and interactive theorem provers. In: Sutcliffe, G.,
Ternovska, E., Schulz, S. (eds.) Proceedings of the 8th International Workshop
on the Implementation of Logics, pp. 1–11. No. 2 in EPiC Series in Computing,
EasyChair Publications (2010)

54. Pelletier, F., Sutcliffe, G., Suttner, C.: The development of CASC. AI Commun.
15(2–3), 79–90 (2002)

55. Peter, L., Hull, R.: The Peter Principle. Souvenir Press (1969)
56. Quaife, A.: Automated development of Tarski’s geometry. J. Autom. Reason. 5(1),

97–118 (1989)
57. Rümmer, P.: A constraint sequent calculus for first-order logic with linear integer

arithmetic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS
(LNAI), vol. 5330, pp. 274–289. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-89439-1_20

http://www.cs.unm.edu/~mccune/prover9/
https://doi.org/10.32473/flairs.36.133334
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-89439-1_20
https://doi.org/10.1007/978-3-540-89439-1_20


Progress in ATP 73

58. Schulz, S.: System description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov,
A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 735–743. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-45221-5_49

59. Schulz, S., Cruanes, S., Vukmirović, P.: Faster, higher, stronger: E 2.3. In: Fontaine,
P. (ed.) CADE 2019. LNCS (LNAI), vol. 11716, pp. 495–507. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-29436-6_29

60. Schwabbauser, W., Szmielew, W., Tarski, A.: Metamathematische Methoden in
der Geometrie. Springer, Heidelberg (1983)

61. Slaney, J., Fujita, M., Stickel, M.: Automated reasoning and exhaustive search:
quasigroup existence problems. Comput. Math. Appl. 29(2), 115–132 (1995)

62. Smallbone, N.: Twee: an equational theorem prover. In: Platzer, A., Sutcliffe, G.
(eds.) CADE 2021. LNCS (LNAI), vol. 12699, pp. 602–613. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-79876-5_35

63. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: a cross-community infrastructure
for logic solving. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014.
LNCS (LNAI), vol. 8562, pp. 367–373. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-08587-6_28

64. Suda, M.: Vampire getting noisy: will random bits help conquer chaos? (system
description). In: Blanchette, J., Kovacs, L., Pattinson, D. (eds.) IJCAR 2022.
LNCS, vol. 13385, pp. 659–667. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-10769-6_38

65. Sutcliffe, G.: TPTP, TSTP, CASC, etc. In: Diekert, V., Volkov, M.V., Voronkov, A.
(eds.) CSR 2007. LNCS, vol. 4649, pp. 6–22. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-74510-5_4

66. Sutcliffe, G.: The TPTP problem library and associated infrastructure. The FOF
and CNF parts, v3.5.0. J. Autom. Reason. 43(4), 337–362 (2009)

67. Sutcliffe, G.: The TPTP world – infrastructure for automated reasoning. In: Clarke,
E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp. 1–12. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-4_1

68. Sutcliffe, G.: The CADE ATP system competition - CASC. AI Mag. 37(2), 99–101
(2016)

69. Sutcliffe, G.: The TPTP problem library and associated infrastructure. From CNF
to TH0, TPTP v6.4.0. J. Autom. Reason. 59(4), 483–502 (2017)

70. Sutcliffe, G., Benzmüller, C.: Automated reasoning in higher-order logic using the
TPTP THF infrastructure. J. Formaliz. Reason. 3(1), 1–27 (2010)

71. Sutcliffe, G., Desharnais, M.: The 11th IJCAR automated theorem proving system
competition - CASC-J11. AI Commun. 36(2), 73–91 (2023)

72. Sutcliffe, G., Desharnais, M.: The CADE-29 automated theorem proving system
competition - CASC-29. AI Commun. (2024, to appear)

73. Sutcliffe, G., Fuchs, M., Suttner, C.: Progress in automated theorem proving, 1997-
2001. In: Hoos, H., Stützle, T. (eds.) Proceedings of the IJCAI’01 Workshop on
Empirical Methods in Artificial Intelligence, pp. 53–60 (2001)

74. Sutcliffe, G., Schulz, S., Claessen, K., Baumgartner, P.: The TPTP typed first-
order form with arithmetic. In: Bjørner, N., Voronkov, A. (eds.) LPAR 2012. LNCS,
vol. 7180, pp. 406–419. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-28717-6_32

75. Sutcliffe, G., Suttner, C.: The state of CASC. AI Commun. 19(1), 35–48 (2006)
76. Sutcliffe, G., Suttner, C.: Evaluating general purpose automated theorem proving

systems. Artif. Intell. 131(1–2), 39–54 (2001)

https://doi.org/10.1007/978-3-642-45221-5_49
https://doi.org/10.1007/978-3-030-29436-6_29
https://doi.org/10.1007/978-3-030-79876-5_35
https://doi.org/10.1007/978-3-319-08587-6_28
https://doi.org/10.1007/978-3-319-08587-6_28
https://doi.org/10.1007/978-3-031-10769-6_38
https://doi.org/10.1007/978-3-031-10769-6_38
https://doi.org/10.1007/978-3-540-74510-5_4
https://doi.org/10.1007/978-3-540-74510-5_4
https://doi.org/10.1007/978-3-642-17511-4_1
https://doi.org/10.1007/978-3-642-28717-6_32
https://doi.org/10.1007/978-3-642-28717-6_32


74 G. Sutcliffe et al.

77. Sutcliffe, G., Zimmer, J., Schulz, S.: Communication formalisms for automated the-
orem proving tools. In: Sorge, V., Colton, S., Fisher, M., Gow, J. (eds.) Proceedings
of the Workshop on Agents and Automated Reasoning, pp. 52–57 (2003)

78. Suttner, C., Sutcliffe, G., Perrault, R.: Technical performance of automated theo-
rem proving (ATP). In: Zhang, D., et al. (eds.) The AI Index 2021 Annual Report,
pp. 34–35. Human-Centered AI Institute, Stanford University (2021)

79. Suttner, C., Schumann, J.: Parallel automated theorem proving. In: Kanal, L.,
Kumar, V., Kitano, H., Suttner, C. (eds.) Parallel Processing for Artificial Intelli-
gence 1, pp. 209–257. Elsevier Science (1994)

80. Urban, J.: MPTP 0.2: design, implementation, and initial experiments. J. Autom.
Reason. 37(1-2), 21–43 (2006)

81. Veroff, R.: A Wos challenge met. J. Autom. Reason. 66, 565–574 (2022)
82. Voronkov, A.: Spider: Learning in the Sea of Options (2023). https://easychair.

org/smart-program/Vampire23/2023-07-05.html
83. Vukmirović, P., Blanchette, J.C., Cruanes, S., Schulz, S.: Extending a brainiac

prover to lambda-free higher-order logic. In: Vojnar, T., Zhang, L. (eds.) TACAS
2019. LNCS, vol. 11427, pp. 192–210. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-17462-0_11

84. Wang, H., et al.: LEGO-Prover: Neural Theorem Proving with Growing Libraries
(2023). arXiv:2310.00656

85. Weidenbach, C., et al.: System description: Spass version 1.0.0. In: Ganzinger,
H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 378–382. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48660-7_34

86. Wos, L.: From the AAR President, Larry Wos. AAR Newsletter 129-2019-10 (2019)
87. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: Evaluating component solver

contributions to portfolio-based algorithm selectors. In: Cimatti, A., Sebastiani,
R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 228–241. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31612-8_18

88. Xu, Y., Liu, J., Chen, S., Zhong, X., He, X.: Contradiction separation based
dynamic multi-clause synergized automated deduction. Inf. Sci. 462, 93–113 (2018)

89. Zheng, K., Han, J., Polu, S.: miniF2F: a cross-system benchmark for formal
olympiad-level mathematics. In: Liu, Y., Finn, C., Choi, Y., Deisenroth, M. (eds.)
Proceedings of the 10th International Conference on Learning Representations
(2022)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://easychair.org/smart-program/Vampire23/2023-07-05.html
https://easychair.org/smart-program/Vampire23/2023-07-05.html
https://doi.org/10.1007/978-3-030-17462-0_11
https://doi.org/10.1007/978-3-030-17462-0_11
http://arxiv.org/abs/2310.00656
https://doi.org/10.1007/3-540-48660-7_34
https://doi.org/10.1007/978-3-642-31612-8_18
http://creativecommons.org/licenses/by/4.0/

	An Empirical Assessment of Progress in Automated Theorem Proving
	1 Introduction
	2 The TPTP Problem Library
	2.1 Specialist Problem Classes
	2.2 TPTP Problem Ratings

	3 The TSTP Solution Library
	3.1 Resource Limits

	4 Analysis Processes
	4.1 Analysis Data
	4.2 Coherent SPC Sets
	4.3 Six Analyses

	5 Evidence of Progress
	5.1 First Solutions
	5.2 Solutions and Ratings

	6 Conclusion
	References


