
Universität Leipzig
Fakultät für Mathematik und Informatik

Institut für Informatik

U S I N G C O N S T R A I N T S T O
R E N D E R W E B S I T E S

A P P L I C AT I O N S O F A RT I F I C I A L I N T E L L I G E N C E I N
E - C O M M E R C E E N V I R O N M E N T S

Diplomarbeit

Leipzig, August 2007

vorgelegt von:
Lars Kotthoff

geboren am 09.04.1983

Studiengang Informatik



betreuer:
Prof. Dr. Gerhard Brewka



A B S T R A C T

Constraint programming is an area of Artificial Intelligence which has many applica-
tions. This thesis applies its techniques to a new kind of problem – the rendering of
online retailer websites.

First, in-depth introductions to constraint programming and the problem of
rendering a shop website will be given. A prototypical implementation of a constraint
problem solver and a system to solve and illustrate the problem will be described.

The architecture of the prototypical implementation and specific features, algo-
rithms, and design decisions will be detailed, analysed, and illustrated. An overview
of related work both in the fields of constraint programming and website generation
will be presented and existing technologies evaluated.

Features and concepts unique to this thesis, like real-time constraint satisfaction,
will be introduced and discussed.

Finally, a comprehensive example will illustrate the problem, means of modelling
it, and possible solutions. An outlook to future work and a summary conclude the
thesis.

Z U S A M M E N FA S S U N G

Constraint Programming ist ein Teilgebiet der künstlichen Intelligenz mit vielen
praktischen Anwendungen. Diese Diplomarbeit wendet die Techniken auf eine neue
Art von Problem an – das Rendern von Webseiten von Internetshops.

Zuerst wird eine detaillierte Einführung zu Constraint Programming und dem
Problem die Webseite eines Online-Shops zu rendern gegeben werden. Eine Bei-
spielimplementierung eines Constraint Problem Solvers und eines Systems um das
Problem zu lösen und illustrieren werden beschrieben werden.

Die Architektur der Beispielimplementierung und spezielle Eigenschaften, Algo-
rithmen und Implementierungsentscheidungen werden genau beschrieben, analy-
siert und illustriert werden. Ein Überblick von ähnlichen Arbeiten sowohl im Bereich
des Constraint Programming als auch im Bereich des Generierens von Webseiten
wird dargestellt und vorhandene Technologien bewertet werden.

Besonderheiten und Konzepte, die in dieser Diplomarbeit erarbeitet wurden, wie
Echtzeit-Constraint Satisfaction, werden eingeführt und diskutiert werden.

Schließlich wird ein ausführliches Beispiel das Problem, Arten der Modellierung
und mögliche Lösungen veranschaulichen. Ein Ausblick auf zukünftige Forschung
und eine Zusammenfassung beschließen diese Diplomarbeit.

iii



A C K N O W L E D G E M E N T S

I would like to thank Prof. Dr. Gerhard Brewka for supervising this thesis and
providing me with valuable feedback. Many thanks also go to Matthew Round
and Karl McCabe of Amazon.com for reviewing the description of the problem of
rendering a website.

iv



C O N T E N T S

0 introduction 1

0.1 Motivation 2

0.2 Aim and Scope 2

0.3 Related Work 2

part i modelling of the problem 3

1 description of the problem 5

1.1 Personalised Content 5

1.2 Generating Personalised Content 6

1.3 Constraints to consider 7

2 constraints 9

2.1 Introduction 9

2.2 Constraint Satisfaction Problems 9

2.3 Solution Process 11

2.3.1 Arc Consistency 14

2.4 Constrained Optimisation Problems 15

2.4.1 Extended Constrained Optimisation Problems 17

2.5 Soft Constraints 18

2.6 Real-time Constraint Satisfaction 20

2.6.1 Analysis of the Function ψ 22

3 constraint problem model 25

3.1 Slots and Campaigns 25

3.2 Values of Campaigns 25

3.3 Values of Slots 26

3.3.1 Example 26

3.4 Relaxation of Constraints 27

3.5 Duplicate Content 28

3.5.1 Example 29

3.6 Forced Promotions 31

3.6.1 Example 32

3.7 Real-time Problem Solution 32

part ii prototypical implementation 35

4 overview 37

4.1 System Architecture 37

4.1.1 Distributed Approach 37

4.1.2 Web Interface 38

4.1.3 Web Service 38

4.2 Implementation Language 38

4.2.1 Documentation 39

4.2.2 Testing 39

4.2.3 Packaging 40

4.3 Version Control System 40

4.4 Test Machine Setup 40

v



vi CONTENTS

5 constraint problem solver library 43

5.1 Overview of existing Constraint Problem Solvers 43

5.2 Architecture 44

5.2.1 Domain 45

5.2.2 Variable 46

5.2.3 AbstractConstraint 47

5.2.4 BinaryConstraint 47

5.2.5 BinaryRelation 48

5.2.6 AllDifferentConstraint 48

5.2.7 TupleConstraint 49

5.2.8 OneOfEqualsConstraint 49

5.2.9 ConstraintList 49

5.2.10 Problem 50

5.2.11 Solution 50

5.2.12 ConstraintSolver 51

5.2.13 Ruby Extensions 52

5.3 Constraint Problem Solution 52

5.3.1 Solution Process 52

5.3.2 Modifications for Soft Constraints 55

5.3.3 Constraint Satisfaction with Time Limit 56

5.3.4 Variable and Value Ordering 58

5.4 Constraint Revision 58

5.4.1 Binary Constraints 58

5.4.2 All Different Constraints 59

5.4.3 Tuple Constraints 60

5.4.4 One-of-equals Constraint 61

5.5 Tests and Package Management 62

5.6 Limitations 62

6 constraint problem solver soap wrapper 65

6.1 Architecture 65

6.1.1 Library Script 65

6.1.2 WSDL 67

6.1.3 Control Scripts 67

6.2 Tests and Package Management 68

6.3 Limitations 68

6.4 Use of the Interface 68

7 web user interface 69

7.1 Architecture 69

7.1.1 Data Model 69

7.1.2 Controller 70

7.1.3 View 72

7.2 Interface to Amazon.com 73

7.3 Tests and Package Management 74

7.4 Full Example 75

8 summary 79

8.1 Future Work 79

8.1.1 Constraint Model 79

8.1.2 Constraint Solver 80

8.2 Conclusion 80



contents vii

part iii appendix 83

a performance evaluation of consistency algorithms 85

a.1 Binary Constraints 85

a.1.1 Methodology 86

a.1.2 Results 86

a.2 All Different Constraints 89

a.2.1 Methodology 89

a.2.2 Results 89

a.3 The Difference All Different makes 92

b effectiveness of real-time constraint satisfaction 93

b.1 Methodology 93

b.2 Results 94

b.2.1 Time Limit after first Solution 94

b.2.2 Time Limit before first Solution 97

c installation instructions and software versions 103

c.1 General 103

c.2 Constraint Problem Solver Library 103

c.3 Constraint Problem Solver SOAP Wrapper 103

c.4 Web User Interface 103

glossary 105

bibliography 107



L I S T O F F I G U R E S

Figure 1 Non-personalised Website 5

Figure 2 Personalised Website 6

Figure 3 Possible Solution for the N-Queens Problem for n = 4 10

Figure 4 Constraint Network Graph for the 4-Queens Problem 11

Figure 5 Example Search Tree built during the Solving of the 4-Queens
Problem 12

Figure 6 Solution Process for the 4-Queens Problem with Constraint
Propagation 14

Figure 7 Search Tree built during the Solving of the 4-Queens Problem
with Pruning 15

Figure 8 Example Orders for the Steel Mill Slab Problem 17

Figure 9 Solution to the Steel Mill Slab Problem in Figure 8 17

Figure 10 Example Soft Constraint Network Graph for an inconsistent
Problem 19

Figure 11 Example Curve of ψwith tl = 1, > = 1, and a = 100 · tl = 100 23

Figure 12 Constraint Network Graph for Example 3.3.1 27

Figure 13 System Architecture of prototypical Implementation 37

Figure 14 Structure of the Constraint Solver Library 46

Figure 15 Actions performed during the Solving of a Constraint Problem 54

Figure 16 High-Level Actions performed while solving a Soft Constraint
Problem 56

Figure 17 Solving of a Constraint Problem with Time Limit 57

Figure 18 Architecture of SOAP Server 66

Figure 19 Entity-Relationship Diagram [Che76] of the Data Model of the
Web User Interface 70

Figure 20 Form to specify Problem to solve 72

Figure 21 Result Page with rendered Solution for Input in Figure 20 73

Figure 22 Activity Diagram for the Web User Interface 74

Figure 23 Binary Constraint Performance for Solution of “pathological”
Problems 87

Figure 24 Binary Constraint Performance for Solution of Identity Prob-
lems 88

Figure 25 Binary Constraint Performance for Solution of Ordering Prob-
lems 88

Figure 26 All Different Performance for Solution of dense Problems 90

Figure 27 All Different Performance for Solution of random Problems 91

Figure 28 All Different Performance for Solution of “pathological” Prob-
lems 91

Figure 29 All Different and Binary Constraint Consistency Performance
for Solution of “pathological” Problems 92

Figure 30 Deviation from the Time Limit after a Solution has been found
for all different Problems with hard Constraints 94

Figure 31 Deviation from the Time Limit after a Solution has been found
for all different Problems with soft Constraints 95

Figure 32 Deviation from the Time Limit after a Solution has been found
for Identity Problems with hard Constraints 95

viii



Figure 33 Deviation from the Time Limit after a Solution has been found
for Identity Problems with soft Constraints 96

Figure 34 Deviation from the Time Limits before a Solution has been
found for all different Problems with hard Constraints 97

Figure 35 Deviation from the Time Limits before a Solution has been
found for all different Problems with soft Constraints 98

Figure 36 Deviation from the Time Limits before a Solution has been
found for Identity Problems with hard Constraints 100

Figure 37 Deviation from the Time Limits before a Solution has been
found for Identity Problems with soft Constraints 101

L I S T O F TA B L E S

Table 1 Overview of Arc Consistency Algorithms for Binary Con-
straints 16

Table 2 Overview of Consistency Algorithms for the All Different
Constraint 16

Table 3 XML based Web Service Protocols considered for the Web
Service 38

Table 4 Overview of Constraint Problem Solvers 44

L I S T O F D E F I N I T I O N S

Definition 1 Constraint Satisfaction Problem 9

Definition 2 Constraint 10

Definition 3 Partial Assignment 10

Definition 4 Complete Assignment 10

Definition 5 Solution to a Constraint Satisfaction Problem 11

Definition 6 Problem Class 11

Definition 7 Problem Instance 11

Definition 8 Constraint Network 11

Definition 9 Search Tree 12

Definition 10 Constraint Propagation 12

Definition 11 Consistency Properties 13

Definition 12 Local Consistency 13

Definition 13 Support 13

Definition 14 Pruning 13

Definition 15 Constraint Revision 13

Definition 16 Global Consistency 13

Definition 17 Constrained Optimisation Problem 15

Definition 18 Solution to a Constrained Optimisation Problem 16

Definition 19 Optimal Solution to a Constrained Optimisation Problem 16

ix



x List of Definitions

Definition 20 Extended Constrained Optimisation Problem 18

Definition 21 Solution to an Extended Constrained Optimisation Problem 18

Definition 22 Soft Constraint 18

Definition 23 Valuation Structure 18

Definition 24 Soft Constraint Network 19

Definition 25 Soft Constraint Problem 19

Definition 26 Solution to a Soft Constraint Problem 19

Definition 27 Constraint Satisfaction Time 21

Definition 28 Real-time Constraint Problem 21

Definition 29 Solution to a Real-time Constraint Problem 22

Definition 30 Campaign 25

Definition 31 Slot 25

Definition 32 Page 25

Definition 33 Problem of Rendering a Page 25

Definition 34 Value of a Page 25

Definition 35 Problem of Rendering a Page with Page Value 26

Definition 36 Value of a Page 26

Definition 37 Relaxed Constraint 27

Definition 38 Problem of Rendering a Page with relaxed Constraints 28

Definition 39 Value of a relaxed Page 28

Definition 40 Places in Slots 28

Definition 41 Allowed Tuples for a Slot - Place Pair Constraint 29

Definition 42 Problem of Rendering a Page with Time Limit 32



0
I N T R O D U C T I O N

In today’s fast-moving society, electronic commerce environments become increas-
ingly popular. The websites of large online retailers serve a vast number of customers
who prefer shopping online from the comfort of their home to traditional shopping.
Every second, thousands of transactions are handled, putting an enormous load on
the backend systems.

At the same time, the requirements increase even further. Stores with personalised
pages for every individual customer and targeted recommendations prove valuable
for both retailers and customers. Supplying these personalisations does not only
demand more from the backend systems, but also from the designers and program-
mers of websites. They have to take more and more factors into account and handle
increasing complexity of the systems and their interaction.

The problem of generating personalised stores is a problem of combining website
components such that a number of constraints are satisfied and the value for the
retailer and customer is maximised. There are a lot of constraints to take into account
and variables to consider. Has the customer visited the store previously, maybe
bought something? Is the content reasonably varied? Has the content been generated
within reasonable time?

There are established methods for solving problems which involve constraints in
the field of Artificial Intelligence. These algorithms can be applied to any problem
which is modelled appropriately, and separate the problem from the process of
solving it. Additional variables, such as the maximisation of a value of “usefulness”,
can be taken into account. Most of the algorithms have been optimised such that
they are able to solve even large problems in acceptable time.

The problem remains to model the generation of a website with constraints such
that it can be solved effectively and efficiently. Most processes cannot directly be
expressed as constraints. Global state cannot easily be expressed. The satisfaction of
some constraints is optional, of others elementary.

This work will investigate the problems and variables to consider when personal-
ising websites. It will use constraints to model the problem and present, investigate,
and evaluate solution procedures. The problem, the modelling, the solution proce-
dures, and their interaction will be researched and explored.

Amazon.com will be used as an example of an online retailer who aims to person-
alise its content.

This document is organised into two parts. In the first part, the problem is
examined, explained and modelled. The first chapter looks at the problem of
rendering a website, explains personalised content and the constraints involved.
The second chapter gives an overview and definitions of constraint satisfaction and
optimisation problems, representations and solution procedures. The third chapter
models the problem described in chapter 1 by means of constraints introduced in
chapter 2.

1



2 introduction

The second part is concerned with a prototypical implementation of the model. It
will explain the approach taken to implement it, details of the implementation, and
how to solve the problem of rendering a website with it.

0.1 Motivation

The main point of motivation for the work carried out in this thesis is to create a
means of tackling the increasing complexity of web site design and explore new
applications of Artificial Intelligence. The specification of constraints to generate a
web site does not require programming or computer science skills, the problem and
means of solving it are cleanly separated.

A useful approach in software design is to separate design and implementation of
the system [Zhu06]. The separation of problem and means of solving it takes this
approach a step further [Fre97]. It enables the expression of hard problems in easy
terms and is a flexible and intuitive way of problem solving.

Currently the constraints involved in web site generation are usually handled
in specialised code. This code becomes more complex and difficult to maintain as
constraints are added and change. Making even minor changes involves redeploying
whole subsystems and increases the risk of outages.

In a constraint-based framework, the constraints can change permanently without
any disruption.

0.2 Aim and Scope

The aim of this work is to provide a proof of concept and prototypical implementation
of a system to generate web sites on the fly using constraint programming. In
particular, the constraints for a site are assembled into a problem to be solved at run
time. The constraints may be different for each problem; the problem and means of
solving it are completely separate.

Providing a system which is ready for deployment in industry is beyond the scope
of this thesis.

0.3 Related Work

Although the design and implementation of web sites and online portals as well as
Artificial Intelligence methods are both areas of very active research, there exists
only very little work relating the two fields.

Among the related work is a study to design websites using analytical approaches
[YHW07], a dynamic programming approach to bandwidth constraints [JLC06],
and several studies investigating the integration of soft constraints with semantic
web approaches [PCM+

06a] [PCM+
06b]. Artificial Intelligence methods have also

been applied in the areas of web security [Hua06] and generic business processes
[LSPG06] [Tsa02].

The specific application of Artificial Intelligence techniques which is subject to this
thesis has never been investigated before.



Part I

M O D E L L I N G O F T H E P R O B L E M





1
D E S C R I P T I O N O F T H E P R O B L E M

1.1 Personalised Content

Nowadays, online retailers aim to provide personalised content to their customers
to maximise their profits and improve the shopping experience. Personalisation
uses data which is known about the customer to make recommendations. Previous
purchases, items the customer has looked at before, and searches can be compiled
into a customer profile.

Figure 1. Non-personalised Website

Figure 1 shows an example of generic content on the Amazon.com gateway page.
The promotions are unrelated and offer shoes, popular electronics and watches. The
content is very easy to generate and can be created offline by a designer. Displaying
it is simply a matter of fetching the stored page fragment.

Figure 2 shows content which takes into account previous activities. It gives an
overview of the user’s history by displaying recently viewed products. There are
also helpful pointers to products the customer did not take a look at but might be
interested in. The interest profile is derived from a search query.

Personalised pages are significantly more useful to customers than unpersonalised

5



6 description of the problem

Figure 2. Personalised Website

ones. They provide a starting point to revisit items one is considering buying,
assist in exploring the store and finding the product one is looking for, discovering
products one did not know about, and omit promotions one is not interested in.

1.2 Generating Personalised Content

Offering personalised content introduces new problems. Designers cannot create
websites offline anymore, because the static content they can provide is not person-
alised. The website needs to be created as it is requested; dynamically. Computers
have to generate content according to the information available. Programmers adopt
the responsibilities of designers and develop systems which present personalised
pages. This complex task requires knowledge of what information is available, how
to use it, and how to show it.

There are more factors to take into account. Dynamic components do not only need
to know what the customer is doing, but also what the other dynamic components
which render the same page are doing. The result needs to be free of duplication
and other bad content. The generator must filter any items which have already been
bought, are unavailable, or are too similar to items the customer already owns, even
if they fit the customer’s profile.

Another issue is how items to promote are chosen. An item which has been
released recently can be promoted as new and interesting, but if the customer has
already taken a look at it, it is no longer new to him. Not all data is equally valuable
when generating personalised content. Considering recent activities may result in
better promotions than considering an item which was viewed a year ago.

Further difficulties arise when products customers bought as presents for relatives
or friends are considered. These purchases should not be used to personalise pages,
as they do not reflect the interests of the customers. On the other hand, the content



1.3 constraints to consider 7

generated from this data will be of interest if they are looking for a present for the
same person again.

Depending on the amount of data available which needs to be considered for each
individual customer and the number of dynamic components which make up the
page, the generation of personalised content becomes almost arbitrarily complex. As
the number of involved constraints increases, errors are more likely to occur in the
model because the number of possible interactions between the constraints increases
exponentially.

1.3 Constraints to consider

The most important constraints are summarised below. Depending on the specific
retailer and web site there might be many more to consider. Not all constraints can
be modelled appropriately within the scope of this thesis. It is meant to be a proof
of concept and general guideline rather than an exhaustive and accurate model.

no duplicate content Any content shown on a page must be free of duplicates.
Not only does this create a bad impression with the customer, but also uses
space which might instead be used to promote different products and increase
the chances of showing something the user is interested in.

no bad recommendations Bad recommendations are promotions for products
the customer has already bought or is not interested in. The chances of selling
the promoted item are very small, and maybe the customer will be annoyed
and lose interest in the page.

maximisation of page value The value of a page is determined by the content
shown and how it is shown. Personalised content is more valuable than non-
personalised content. Showing something valuable on top of the page is better
than showing it at the bottom, such that the customer has to scroll down to
notice it. Further difficulties arise because the value of content is not known or
not known exactly. Different customers prefer different types of content and
therefore the content does not have an intrinsic value.

limited time The page must be presented to the customer before he loses interest
– the time which can be spent generating it is limited. This does not only
include the time to compute what to show where, but also the time the page
fragments need to render themselves.

available data Depending on the data available, the content which can be gener-
ated is different. The value of the page has to be maximised regardless of this.
There always has to be something to display, even if there is no data available
at all.

external events External events, such as the completion of service calls to back-
end systems, must be considered when generating the page. A service call
may not successfully retrieve content and void the current configuration.

forced promotions Sometimes it is desirable not to maximise the value of the
page, but to display fixed content. This might for example be a paid advert or
the promotion of a new product nobody knows about yet.

legal issues In some countries, it might be illegal to promote certain items on
certain pages.



8 description of the problem

retailer policy The online retailer might have a policy which types of products
to promote on which types of pages, at which time, and to which customers.



2
C O N S T R A I N T S

This chapter introduces constraints and constraint problems. It gives definitions
needed to model problems and illustrates the concepts.

2.1 Introduction

Constraints and constraint satisfaction problems occur in many everyday situations.
Scheduling rooms to courses, buses to routes, or workforce to projects are typical
examples [GNT04]. Constraint problems are not limited to scheduling however,
further applications include information retrieval, resource allocation, and even
games such as Sudoku. Constraint programming has a wide range of applications
[Pug95] [Wal96].

Investigating constraints and their properties has long been a part of Artificial
Intelligence research. For more than 30 years, scientists have described and improved
methods to solve constraint problems, model them more effectively, and apply them
to real-world problems, e.g. [GLSS79].

The notion of a constraint is simple and intuitive – something is required to adhere
to external conventions and can therefore not be in arbitrary states. Complex states
are characterised by sets of constraints.

The following sections introduce the concepts of constraint problems by presenting
examples, analysing them, and formalising the informal notion of constraints and
constraint problems through definitions. Most of the definitions follow the standard
conventions [Mig06] [Dec03].

2.2 Constraint Satisfaction Problems

A popular problem to introduce the concepts of constraint programming is the
n-queens problem. The aim is to place n queens on an n×n chessboard such that
no queen is attacking another queen [RN02]. The problem is illustrated in figure 3.

Each queen must be in a different row and column of the board and must not be
diagonally in a line with any other queen. The queens are the variables q1,q2, . . . ,qn
of the problem. The positions on the board each queen may take comprise the set
of values each variable may have, its domain. The domain of each queen is the set
{1, . . . ,n} to designate the position in its row. The problem is modelled with each
queen being in a different row.

The analysis of the n-queens problem leads to the following definition.

Definition 1 (Constraint Satisfaction Problem). A constraint satisfaction problem P is
a tuple 〈X,D,C〉. X = 〈x1, . . . , xn〉 is a tuple of n variables and D = 〈d1, . . . ,dn〉
is a tuple of n domains. Each domain di ∈ D belongs to the variable xi ∈ X.
C = {c1, . . . , cm} is a set of constraints over the variables from X.

9



10 constraints

Q

Q

Q

Q

Figure 3. Possible Solution for the N-Queens Problem for n = 4

This definition is different from the ones usually found. Instead of sets of variables
and domains, the mapping is made explicit by tuples. As sets are not ordered,
it would be unclear which domain belonged to which variable. Furthermore, no
two variables could have a common domain, but this is often the case in constraint
satisfaction problems.

The notions of variables and their domains have already been illustrated in
the previous paragraph. The requirements for the values of the variables can be
formalised as constraints.

Definition 2 (Constraint). A constraint c(xi, . . . , xj) constrains the assignment of
values to the variables xi, . . . , xj ∈ X. The arity of a constraint is the number of
variables it constrains. The constraint specifies a subset of the Cartesian product
di × . . .× dj of the domains of the variables xi, . . . , xj that constitutes an allowed
assignment.

Constraints can be represented extensionally and intensionally. The extensional
representation specifies all tuples which are allowed assignments explicitly, the
intensional representation specifies them implicitly. In some cases, the disallowed
assignments are specified instead of allowed assignments.

The n-queens problem requires all queens to be in a different column. This is
achieved by introducing a constraint of arity n over all variables which requires them
to have different values. The extensional representation of this constraint is the set of
all the tuples of allowed values, i.e. {〈1, 2, . . . ,n〉 , 〈1, 3, . . . ,n〉 , . . . }. The intensional
representation AllDifferent(x1, . . . , xn) is much shorter and easier to understand.

The requirement that any queen must not be on a diagonal line with any other
queen is harder to represent. For each variable, 2(n − 1) binary constraints are
introduced which require the value of the first variable to be different from the
value of the other variable plus or minus the difference in rows between the queens;
{q1 6= q2 − 1,q1 6= q2 + 1,q1 6= q3 − 2,q1 6= q3 + 2, . . .}.

To solve the n-queens problem, the queens are placed on the board one at a time.
When a queen is positioned on the board, a value is assigned to the variable which
describes the queen.

Definition 3 (Partial Assignment). A partial assignment assigns a value to one or
more xi ∈ X from their respective domains di ∈ D.

Positioning the first queen on the leftmost field of the board is an example of a
partial assignment for the n-queens problem.

Definition 4 (Complete Assignment). A complete assignment assigns a value to every
xi ∈ X from their respective domains di ∈ D.



2.3 solution process 11

In a complete assignment for the n-queens problem, all queens are positioned
somewhere on the board. The positions do not necessarily fulfil the constraints. If
they do, a solution has been found.

Definition 5 (Solution to a Constraint Satisfaction Problem). A solution to a constraint
satisfaction problem P is a complete assignment that satisfies all constraints c ∈ C.

Constraint problems can be organised into problem classes and problem instances.

Definition 6 (Problem Class). A problem class is a problem specified with one or
more parameters.

The n-queens problem constitutes a problem class. It has one parameter, the
number of queens.

Definition 7 (Problem Instance). A problem instance is an instance of a problem class
where all parameters of the problem class have concrete values assigned.

The 4-queens problem illustrated in figure 3 is a problem instance of the n-queens
problem class. The parameter n = 4 and determines the number of queens and the
size of the board.

Constraint problems can be represented graphically as constraint networks.

Definition 8 (Constraint Network). The nodes in a constraint network represent
variables, edges represent constraints over the variables they are connecting. Edges
can be directed or undirected. They are also referred to as arcs.

An example network for the 4-queens problem is depicted in figure 4. The 4-ary
constraint which requires the assignments to all variables to be different has been
decomposed into binary constraints because four-dimensional hyper arcs are hard
to draw on two-dimensional paper. Likewise, the constraints that no queen must be
on a diagonal line with any other queen has been omitted.

q1

q2 q3

q4

6= 6=

6=

6=

6= 6=

Figure 4. Constraint Network Graph for the 4-Queens Problem

2.3 Solution Process

There are several approaches to solving constraint problems. The most established
and wide-spread algorithm is branch-and-bound search [LW66]. The variables are



12 constraints

successively assigned values until a solution is found or it becomes clear that no
solution is possible with the current partial assignment. This process builds up a
search tree which explores the space of possible solutions.

Definition 9 (Search Tree). Each node except the root in a search tree corresponds
to an assignment of a value to a variable. The instantiation order is the order in
which assignments are made. The level in a search tree corresponds to the number
of assignments made; it is also known as the search depth. A branch of the search
tree represents a partial assignment, a branch of depth n represents a complete
assignment.

An example search tree for the 4-queens problem is depicted in figure 5. Dashed
circles represent violated constraints and double circles solutions. The descent into
the search tree stops when a constraint is violated or a solution found. The diagram
shows only the exploration until the first solution is found.

q1

q2

q3

q4

1

1 2 3

1 2 3 4

4

1 2

1 2 3 4

3 4

2

1 2 3 4

1

1 2 3

Figure 5. Example Search Tree built during the Solving of the 4-Queens Problem

Algorithms which check constraints after each assignment until a constraint is
violated or a solution found are usually referred to as backtracking algorithms [DF97].
To speed up the solution process, techniques to reduce the size of the search tree can
be applied.

Definition 10 (Constraint Propagation). Constraint propagation is deduction via a
subset of the set of constraints. The deduced information is recorded as changes
to the problem and usually simplifies the problem by reducing the search space of
possible solutions. The new problem is equivalent to the old problem, i.e. both have
the same set of solutions.

Constraint propagation becomes intuitively clear when looking at the search tree
in figure 5. After 1 has been assigned to q1, it is not necessary to assign 1 to q2 and
check the constraints because this assignment cannot be part of a solution.



2.3 solution process 13

The notion of consistency is introduced to formalise the process of constraint
propagation [Mac75].

Definition 11 (Consistency Properties). A consistency property holds when constraint
propagation of a certain kind reaches a fixed point, i.e. no new information can be
deduced from the subset of constraints.

The assignment of 1 to q1 allows not only the deduction that q2 6= 1, but also
that q3 6= 1 and q4 6= 1. Even more information can be deduced from the other
constraints that no two queens must be on a diagonal line. Only after all these
restrictions have been deduced, the problem is consistent again.

Definition 12 (Local Consistency). A unary constraint c(xi) is locally consistent if and
only if for every value of the variable xi from its domain dj ∈ Di, c(xi) is satisfied if
xi = dj.

A constraint of arity n+ 1, c(xa, . . . , xb), is locally consistent if and only if all
n-ary constraints over the variables xa, . . . , xb are locally consistent and for every
domain value of xi, dj ∈ Di, there is at least one tuple of assignments 〈dc, . . . ,dd〉
to the variables 〈xa, . . . , xb〉 \ xi such that c(xa, . . . , xb) is satisfied if xi = dj.

The constraint that all queens must be in different columns is locally consistent
if after the assignment of a position to a queen this horizontal position has been
excluded from the domains of all other queens.

Definition 13 (Support). A value dj in a domain Di is supported if and only if all
constraints over the variable xi are locally consistent. The set of assignments which
support dj for a constraint c contains all tuples of values which can be assigned to
the other variables constrained by c such that c holds if xi = dj.

Support is bi-directional, i.e. if value di of a variable supports the value dj of
another variable for a constraint c, then dj also supports di for c.

The value 3 in the domain of the second queen is supported after the first queen
has been placed in the leftmost upper corner of the board, because only 1 and 2 are
forbidden by constraints.

The following definitions formalise the notions of excluding values from a domain
after an assignment and consistency of a problem.

Definition 14 (Pruning). The pruning of a set of values S from a domain D denoted
by Dp = D \ S is the removal of all s ∈ S from D such that Dp ∩ S = ∅. If Dp = ∅
after the pruning, a domain wipe out has occurred.

Definition 15 (Constraint Revision). Constraint revision is the process of enforcing
local consistency for a constraint.

Definition 16 (Global Consistency). A problem is globally consistent if and only if all
constraints are locally consistent.

The definitions are illustrated in figures 6 and 7 which show the allowed positions
on the board and the search tree for the solution of the 4-queens problem, respectively.
Dashed fields on the board designate forbidden positions.

Search algorithms which enforce consistency after an assignment to reduce the
size of the search tree are usually referred to as forward checking algorithms [HE80].
They are extended backtracking algorithms which only backtrack when the domain
of a variable is wiped out after enforcing consistency.

Both search algorithms are complete, i.e. if a solution to the problem exists, it will
be found.



14 constraints

Q Q

Q

Q

Q

Q

Q

Q

Q

Q

Figure 6. Solution Process for the 4-Queens Problem with Constraint Propagation

2.3.1 arc consistency

Local consistency or arc consistency for binary constraints is the best studied area of
constraint revision and propagation. There are many different algorithms to achieve
arc consistency on networks of binary constraints.

The algorithms can be separated into two basic classes – coarse grained and fine
grained algorithms. Fine grained algorithms keep track of the support for every
domain element of every variable and enforce consistency when individual domain
values are removed or added, while coarse grained algorithms do not keep track of
individual values and enforce consistency on arcs if the domains of the involved
constraints change.

Coarse grained algorithms are generally preferred because they are easier to
implement and often exhibit a better run-time behaviour than fine grained algorithms
with a lower complexity due to fewer data structures and hence less overhead.

Table 1 presents an overview of algorithms to enforce arc consistency. It is not
meant to be complete or exhaustive, but to show the most important algorithms and
their characteristics.

Arc consistency algorithms are often integrated with forward checking algorithms
and referred to as maintaining arc consistency (MAC) algorithms [SF94].

There are also arc consistency algorithms for constraints of higher arity. The all
different constraint is the most popular and best studied non-binary constraint and
several algorithms have been developed to enforce different levels of consistency
on it. Table 2 shows an overview of some algorithms [vH01]. Several studies have
extended the classic notion of the all different constraint to more sophisticated
filtering algorithms [KH06] or different kinds of domains [QW05].

Recent research has focused on generalised or hyper arc consistency for higher
arity constraints [Rég96] [Rég02] [KT05] [KT03] [QGLOB05].



2.4 constrained optimisation problems 15

q1

q2

q3

q4

1

3

domain wipe out

4

2

domain wipe out

2

4

1

3

Figure 7. Search Tree built during the Solving of the 4-Queens Problem with Pruning

2.4 Constrained Optimisation Problems

Constraint satisfaction problems are a kind of constraint problems where a solution
which satisfies all of the constraints needs to be found. Another kind of constraint
problems, constrained optimisation problems, requires not only a solution, but assigns a
value of “goodness” to every solution, and seeks to find the best one.

The steel mill slab problem is an example for a constrained optimisation problem
[FMW01]. A simplified version will be presented here to illustrate the concepts of
constrained optimisation problems.

The steel mill slab problem class consists of n orders, each of a particular size. The
steel mill is able to produce m different sizes of slabs. The objective is to assign the n
orders to slabs such that the total waste is minimised. The problem can be modelled
with n variables designating the maximum number of slabs to be produced. The
domain of each variable consists of the sizes the steel mill is able to produce and 0,
designating that the slab is not needed to fulfil the order. Additionally, one variable
for each order is required. The domain consists of the identifiers of the slabs the
order may be assigned to. The constraints require each order to be assigned to a slab
and the sizes of the slabs to be at least as big as the sum of the sizes of the orders
assigned to it. The “goodness” of a solution is the sum of the sizes of the produced
slabs minus the sum of the sizes of the orders.

An example is given in figure 8. The steel mill can produce slabs of size 5, 4, and
2.

Definition 17 (Constrained Optimisation Problem). A constrained optimisation problem
P = 〈X,D,C, f〉 is a constraint satisfaction problem with an objective function f which
determines the “goodness” of a solution.

The solution to the example pictured in figure 8 is given in figure 9. The orders



16 constraints

time space

complexity complexity reference

fine AC 4 O(em2) O(em2) [MH86]
grained AC 5 O(em) O(em2) [HDT92]

AC 6 O(em2) O(em) [BC94]
AC 7 O(em2) O(em) [BFR99]
AC 8 O(em3) O(n) [CJ98]

coarse AC 3 O(em3) O(e+nm) [Mac75]
grained AC 3.1/2001 O(em2) O(em) [BR01] [YY01]

AC 3.2 O(em2) O(em) [LBH03]
AC 3.3 O(em2) O(em) [LBH03]

e is the number of edges in the constraint graph, m is the maximum domain size,
and n is the number of variables.

Table 1. Overview of Arc Consistency Algorithms for Binary Constraints

type of consistency time complexity reference

arc consistency of binary
decomposition

O(n2) [Hen89]

bounds consistency O(n logn), O(n) in spe-
cial cases

[Pug98] [MT00]
[LOQTvB03]

range consistency O(n2) [Lec96]
hyper-arc consistency O(m

√
n) [Rég94]

n is the number of variables involved in the all different constraint and m is the
maximum of the cardinalities of the domains.

Table 2. Overview of Consistency Algorithms for the All Different Constraint

are packed onto two slabs of size 4 each.

Definition 18 (Solution to a Constrained Optimisation Problem). A solution to
a constrained optimisation problem P is a solution to the contained constraint
satisfaction problem which maximises or minimises the objective function f.

The solution to the example problem does not produce any waste, therefore, it is
optimal.

Definition 19 (Optimal Solution to a Constrained Optimisation Problem). An optimal
solution to a constrained optimisation problem P is a solution to the constrained
optimisation problem for which the objective function f takes a global extremum.

Solving constrained optimisation problems is much more difficult than solving
constraint satisfaction problems – not only a solution, but the optimal solution, or at
least a solution which is good enough, has to be found. To reduce the size of the
search tree, the notion of a lower bound is introduced. If a subtree can not contain any
solution which is better than the current best one, it can be skipped [IMMH83]. The
lower bound specifies the “goodness” a partial assignment must have for the subtree
to be explored. Existing algorithms to solve constraint problems can be extended to



2.4 constrained optimisation problems 17

0

1

2

3

4

Orders

S
iz

e

Figure 8. Example Orders for the Steel Mill Slab Problem

0

1

2

3

4

Slabs

S
iz

e

Figure 9. Solution to the Steel Mill Slab Problem in Figure 8

provide such bounds [SFV95] [DKL01], but the quality of the bounds is often poor
and leads to a lot of unnecessary work [BO03].

There are more sophisticated algorithms to determine better bounds, e.g. Russian
Doll Search [VLS96], which solves increasingly large subproblems starting with a
problem containing only the last variable.

The definitions given so far provide sufficient means to represent and solve
numerous problems as constraint satisfaction or constrained optimisation problems.
In some cases however, the definitions are too limited to support the appropriate
representation of a problem.

2.4.1 extended constrained optimisation problems

Constrained optimisation problems allow to specify a function which determines the
“goodness” of a solution (cf. definition 17). The function is limited to giving static
values for assignments though; it cannot return different values depending on which
variable xi has been assigned which value dj ∈ Di.

The definition of an extended constrained optimisation problem addresses this
issue by retaining the objective function, but introducing an additional function g



18 constraints

which determines the “goodness” of variables.

Definition 20 (Extended Constrained Optimisation Problem). An extended constrai-
ned optimisation problem P = 〈X,D,C, f,g〉 is a constrained optimisation problem with
a function g which maps each variable xi ∈ X to a merit. The objective function f is
modified to take the merit of each individual variable into account.

Definition 21 (Solution to an Extended Constrained Optimisation Problem). A
solution to an extended constrained optimisation problem P is a solution to the
contained constraint satisfaction problem which maximises the objective function f.

2.5 Soft Constraints

Constraint satisfaction and constrained optimisation problems require a solution to
satisfy all constraints. Many real-life problems however are over-constrained, some
constraints are more important than others, or the solution has to be computed in
real-time and does not need to be perfect, but good enough. These kinds of problems
can be modelled with soft constraints.

Definition 22 (Soft Constraint). A soft constraint is a constraint which does not
necessarily need to be satisfied in a solution.

Soft constraints are a recent development in the constraint programming commu-
nity and not as well researched as hard constraints. One of the first studies on soft
constraints is [Fre89]. Usually, the theoretical framework for soft constraint problems
is the Maximal Constraint Satisfaction Problem framework introduced in this study,
which attempts to maximise the Where the simple approach of minimising constraint
violations is not sufficient, other frameworks have been derived from it. There are
also completely different paradigms, such as the introduction of meta constraints to
model violation [PRB00].

For a very in-depth overview of soft constraints, see [Sch05].
There are several different ways to model soft constraints. These approaches

include [Bar03]

• hierarchical models [BDFB+
87] [BMMW89],

• partial models [Fre89],

• models which introduce additional variables and hard constraints to model
soft constraints [RPP02],

• fuzzy, preference, possibilistic, weighted, or valued models [Rut94] [Sch92]
[FL93] [DFP94], and

• semiring-based models [BFM+
96] [BMR+

99] [BMR97].

In this work, a weighted approach has been chosen. The weights are applied
to constraints however, not to allowed tuples as usually assumed. This change
allows constraints to be represented intensionally, but restricts the conversion into
a semiring-based approach and application of consistency properties [BFM+

96]. A
valuation structure is introduced to model the cost of violating constraints.

Definition 23 (Valuation Structure). A valuation structure V is a tuple 〈E,⊕, 4,⊥,>〉.
E is the set of valuations which describe the cost of violating constraints. The
valuations are totally ordered by the relation 4, the minimum element is ⊥, and



2.5 soft constraints 19

the maximum element is >. E is closed over the binary operation ⊕ which is
commutative, associative, monotone, and has the neutral element property.

Informally, the basic elements of E are the costs of violation for individual con-
straints. They can be combined to calculate costs for violations of more than one
constraint using the ⊕ operator. The minimum element ⊥ denotes no constraint
violations and the maximum element > denotes that all constraints are violated. The
relation 4 orders the costs of violations, i.e. A 4 B iff the sum of violation costs in A
is less than or equal to the sum of violation costs in B.

Definition 24 (Soft Constraint Network). A constraint network with a valuation
structure V is called a soft constraint network. The set E of V is the set of levels of the
network.

An example of a soft constraint network is given in figure 10. The edges are
annotated with the relation that constrains assignments to the connected vertices
and the cost of violating the constraint.

x

y z

<, 5

<, 1

>, 10

Figure 10. Example Soft Constraint Network Graph for an inconsistent Problem

The basic idea for incorporating soft constraints is to extend constraint problems
with a cost of violation for every constraint and a maximum violation for the problem
[SFV95]. In the approach chosen in this work, the valuation structure is defined on
the system of positive real numbers R+. The minimum element is 0, the maximum
element is a value k specific to the particular problem. The ordering relation is the
less-than-or-equal-to 6 relation and the binary operator to combine numbers is the
+ operator.

Definition 25 (Soft Constraint Problem). A soft constraint problem P is denoted by
the tuple 〈X,D,C,V ,ϕ, v, f〉. X is a tuple 〈x1, . . . , xn〉 of n variables and D is a tuple
〈d1, . . . ,dn〉 of n domains. Each domain di ∈ D belongs to the variable xi ∈ X. C
is a set {c1, . . . , cm} of m constraints over the variables from X. V is a valuation
structure 〈E ⊂ R+, +, 6, 0,k〉. The function ϕ is a projection from C to E ⊂ R+, i.e.
∀c ∈ C : ϕ(c) ∈ E is the valuation of c. The maximum allowed cost of violation for
solutions to P is denoted by v. The function f assesses the “goodness” of a solution.

The definition of a solution to a soft constraint problem follows the paradigm of
maximal satisfaction of constraints [Fre89].

Definition 26 (Solution to a Soft Constraint Problem). A solution to a soft constraint
problem P is a complete assignment such that

∑
ci is unsatisfiedϕ(ci) 6 v, i.e. the sum

of the costs of violation for all unsatisfied constraints ci ∈ C is at most as big as the
maximum allowed cost of violation v.

The usual definition of weighted soft constraint problems is extended with a limit
for the cost of violation any solution may have, v. While soft constraints express
preferences and do not necessarily have to be satisfied, solutions may be required



20 constraints

to be of a certain “minimum quality”. Furthermore, there are fewer solutions to a
problem and the search space is reduced.

Another difference to the usual definition of soft constraint problems is that a
valuation, or cost of violation, is associated with a constraint, not with an allowed
tuple of variable assignments.

Soft constraint problems are inherently constrained optimisation problems, as
each solution has a cost of violation. The optimisation is split into satisfaction of
constraints and optimisation of the solution [SW05].

The notions of local consistency and arc consistency can be extended to soft
constraint problems [BMR95] [SFV95] [Sch00]. In most cases, the algorithms to
enforce and maintain arc consistency on problems with hard constraints can not
be applied without modification to soft constraint problems. There are approaches
to modify soft constraint problems to be able to apply arc consistency algorithms
for constraint satisfaction problems however [RPBP01] [RPP02]. As weighted soft
constraint problems are equivalent to constrained optimisation problems, the search
techniques which use lower bounds can be applied as well (cf. section 2.4).

Several algorithms have been developed to use the specific properties of soft
constraints to filter domain values. These include the ones described in [PRB01]
[CS04] [CdGS07] [vH04].

2.6 Real-time Constraint Satisfaction

In some applications of constraint programming, the time available to find a solution
to a problem is limited. Such applications include interactive configurations, moni-
toring systems, and autonomous devices. The availability of a solution after the time
limit elapsed is crucial, sometimes more crucial than satisfying all of the constraints.

Although modern constraint problem solvers are fast and scalable, e.g. Minion
[GJM06], and able to deliver solutions quickly, real-time constraint satisfaction is an
area of constraint programming where very little research has been done.

The approaches found in the literature add a preprocessing step to the solving of
a constraint problem. This usually involves finding a solution to the problem and
compiling it into a form which can be used to quickly find the other solutions to
the problem in real time [WF99]. Other algorithms prune values from the domains
of the variables such that no backtracking is required [BCFR04]. Heuristics can be
applied to speed up the solution process [SW98].

All these approaches share a common pattern – in a preprocessing step, which is
not limited in time, the problem is “presolved” by removing domain values, adding
constraints, computing a seed solution, or similar. Usually, a trade-off between space
complexity of the intermediate representation and loss of solutions is involved. In
most cases, it is not necessary to find all solutions to a problem, the first one is
enough.

In this work, a different and new approach has been chosen. The problem is not
known a priori, but generated when a solution is needed. Preprocessing the problem
is as difficult as solving it; therefore the preprocessing step is omitted completely.
Instead, the real-time requirement is integrated with soft constraints (cf. section 2.5).

Soft constraints are represented in this thesis with a weighted approach. The
weights encode preferences. To integrate this with real-time constraint satisfaction,
constraints are dropped as time runs out. The constraints with the lowest preference
are dropped first. With fewer constraints, there are more solutions, so the time to
find a solution decreases. Furthermore, less work has to be done revising constraints.
When the time available to solve the problem has elapsed, all the constraints are



2.6 real-time constraint satisfaction 21

dropped and the solver generates a solution by just assigning the first domain value
to every unassigned variable.

Dropping constraints to enable real-time solving of constraint problems represents
a trade-off between time required to solve a problem and quality of the solution. If
the problem is complex and only very little time is available, most of the constraints
might be dropped and the quality of the solution might be very poor. If on the
other hand the time limit is just below what would be needed to solve the problem
without dropping any constraints, this approach provides a solution which is not
significantly worse than a solution obtained without time limit instead of no solution
at all. The key point is that the solver will always provide a solution within the
time bounds. For many applications, this is more crucial than satisfaction of all
constraints.

Another important observation about the proposed algorithm is that constraints
are dropped while the problem is solved. This means that the constraints which
will not be considered in the future have been considered in the past, i.e. they have
been revised and domain values have potentially been pruned because of them. The
quality of the resulting solution to the problem will therefore be between the quality
of a solution which does not consider any of the dropped constraints and a solution
which considers all constraints. In some cases, the quality of a solution will not be
affected at all when a constraint is dropped because all the values which can be
pruned because of it are pruned already.

Before real-time constraint satisfaction problems can be defined, the notions of
time and time limit have to be formalised.

Definition 27 (Constraint Satisfaction Time). Let P be a constraint problem and M a
machine which is able to solve P. The time M takes to solve P is denoted by ts. The
current time t is the run time of M since the start of the computation. The time limit
tl is an upper bound for ts on M.

The notion of a machine includes both the implementation of a constraint solver
and the hardware the solver is running on. It also incorporates all environment
conditions which might have an impact on the run time, e.g. operating system and
other programs running at the same time. The constraint solver machine abstracts
from specific implementations and computers; all parameters which influence the
run must be the same to be able to compare two different machines.

The integration of soft constraint problems and real-time constraint satisfaction is
formalised in the following definition.

Definition 28 (Real-time Constraint Problem). A real-time constraint problem P is a
tuple 〈X,D,C,V ,ϕ,ψ, v, tl, f〉. X is a tuple 〈x1, . . . , xn〉 of n variables and D is a
tuple 〈d1, . . . ,dn〉 of n domains. Each domain di ∈ D belongs to the variable xi ∈ X.
C is a set {c1, . . . , cm} of m constraints over the variables from X. V is a valuation
structure 〈E ⊂ R+, +, 6, 0,k〉. The function ϕ is a projection from C to E ⊂ R+, i.e.
∀c ∈ C : ϕ(c) ∈ E is the valuation of c. The maximum allowed cost of violation for
solutions to P is denoted by v. ψ is a projection from E ⊂ R+ to a number from the
interval [0..tl] and denotes the time when a constraint of a certain valuation should
be dropped, i.e. a constraint c is valid and will be considered iff the current time
t < ψ(ϕ(c)). The symbol tl denotes the time available for finding a solution to the
problem. The function f assesses the “goodness” of a solution to P.

The definition of a soft constraint problem (cf. definition 25) is extended with the
projection ψ and the time limit tl. ψ is used to determine which constraints need
to be considered at time ti ∈ [0..tl] by mapping valuations to points in the interval
[0..tl].



22 constraints

No distinction can be made between different constraints with the same cost of
violation and therefore the same validity interval. The constraints are grouped
into preference classes, constraints in the same class are not distinguishable in this
framework. This is a drawback of the model, but simplifies the handling of the
constraints, because apart from the function ψ no extra structures are required and
it builds on the soft constraint framework. In most practical applications, constraints
with the same cost of violation will be equal to some extent, e.g. expressing a
preference for the same property for different sets of variables. Therefore the current
model is reasonable despite its simplicity.

The definition of the solution to a real-time constraint problem extends the defini-
tion of the solution of a soft constraint problem (cf. definition 26) as well.

Definition 29 (Solution to a Real-time Constraint Problem). A solution to a real-time
constraint problem P is an assignment S to the variables in X which satisfies the
following conditions,

• S is a complete assignment,

• the time ts required to find S is less than or equal to the time limit tl, and

•
∑
ci is unsatisfiedϕ(ci) 6 v+

∑
cj:ψ(ϕ(cj))6ts

ϕ(cj), i.e. the sum of the costs of
violation for all unsatisfied constraints ci ∈ C is at most as big as the maximum
allowed cost of violation v plus the costs of violation of the constraints dropped
during the solution process.

In other words, the third condition requires a solution to fulfil all constraints which
are valid at ts to be satisfied except the ones violated in the framework of soft
constraint problems. The maximum allowed cost of violation v is augmented by the
cost of violating the invalid constraints cj : ψ(ϕ(cj)) 6 ts. Thus a solution S may
have a total cost of violation higher than v after constraints have been dropped.

2.6.1 analysis of the function ψ

The function ψ is crucial to the definition of real-time constraint problems. It deter-
mines when a constraint will be dropped. ψ should have the following properties,

1. injective, i.e. every valuation is mapped to a time,

2. monotonically increasing, i.e. the constraints with a low valuation are dropped
first and the constraints with a high valuation last,

3. ψ(0) = 0 and ψ(>) = tl, i.e. at the beginning only constraints with the
valuation 0 are dropped and when the time limit is reached all constraints are
dropped, and

4. non-linear, i.e. the constraints with a high valuation are dropped when there is
only very little time left.

The last property might be optional depending on the problem, the other properties
must be satisfied by all functions used in this framework however.

Property 3 assumes that the valuations are positive numbers. The minimum value
was specifically chosen to be returned for 0 and not for ⊥. If all constraints have a
level of preference greater than zero, they should all be considered in the beginning.
Furthermore, if ⊥ = >, all constraints would be dropped before the solving of the
problem started.



2.6 real-time constraint satisfaction 23

The function ψ(x) =
lna · xtl + 1

b
satisfies above properties. The parameters a and

b are problem-specific and ensure properties 4 and 3, respectively. The value of b
can be computed, the value of a must be estimated. a controls the steepness of the
function curve for a particular time limit tl; a good rule of thumb is a = 100 · tl.

Given property 3, b can be computed as b =
lna · >tl + 1

tl
. An example is shown in

figure 11.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

T
im

e

ϕ(c)

ψ(⊥)

ψ(⊤)

⊥ ⊤

a = 10

a = 1000

b = 4.6151205168 computed with previous parameters. The dashed curves show
different values of a.

Figure 11. Example Curve of ψ with tl = 1, > = 1, and a = 100 · tl = 100

Until half the time available to solve the problem has passed, only the constraints
up to a tenth of the valuation of the most important constraint are dropped. The
more important constraints are only dropped when more than 90% of the available
time has elapsed.

Increasing a leads to a more conservative behaviour, i.e. constraints are dropped
later, while decreasing a leads to constraints being dropped earlier.

The model also extends to hard constraint problems. All constraints have the
maximum valuation and are dropped when the time to solve the problem is up. The
solver proceeds normally until the time limit is reached and then assigns the first
value in the respective domain to all unassigned variables.

Real-time constraint satisfaction introduces an important aspect into constraint
programming – Quality of Service. The framework guarantees that a complete
assignment will be computed within the specified time. It is possible that the time
limit is big enough to solve the problem without dropping any constraints. Still the
specification of the limit guarantees that, even if the conditions change and more
time is required to find a solution, the limit will not be exceeded.



24 constraints



3
C O N S T R A I N T P R O B L E M M O D E L

This chapter introduces ways to model the problems described in chapter 1 with
constraints. The first simple models will be improved, refined and extended in later
sections.

3.1 Slots and Campaigns

To model a problem as a constraint satisfaction problem, the variables, their domains,
and the constraints have to be specified (cf. chapter 2).

Definition 30 (Campaign). A campaign c is a component which returns content. The
content can be personalised and dynamic or non-personalised and static. A set of
campaigns is a domain d.

Definition 31 (Slot). A slot x is a part of a page which can hold exactly one campaign.
A slot is a decision variable.

Definition 32 (Page). A page p contains a tuple X of n slots.

Definition 33 (Problem of Rendering a Page). The problem of rendering a page p is
the constraint satisfaction problem P = 〈X,D,C〉, where X is the tuple of slots which
make up p and D is the tuple of domains. The number of slots and domains is equal.
The domain di for slot xi is the set {c1, . . . , cm} of campaigns which are scheduled
in the slot. C is the set of constraints.

The only constraint in this model is the AllDifferent constraint which ensures
that there are no duplicate campaigns on the page. Thus, C = {AllDifferent(x ∈ X)}.

A solution (cf. definition 5) to P is an assignment of campaigns to slots such that
no campaigns shows up twice.

3.2 Values of Campaigns

Each campaign has a number associated with it which determines how valuable the
campaign is. Introducing this parameter requires only slight modifications of the
model, but turns the constraint satisfaction problem into a constrained optimisation
problem.

Definition 34 (Value of a Page). The value of a page p is determined by the function
v;

v(p) =
∑
xi∈X

value(assignment(xi)).

25



26 constraint problem model

Definition 35 (Problem of Rendering a Page with Page Value). The problem P

of rendering a page can be redefined as P = 〈X,D,C, v〉, where v is the objective
function to maximise. The set of constraints C and the set of domains D remain the
same.

The extension of the existing model with the introduction of values has changed
the type of the problem. It is no longer enough to find campaigns for all slots which
satisfy the constraint, the value of the page has to be optimised. Therefore, finding
one solution to the problem does not mean that it can be returned. There may
be a better solution. The best solution remains unknown until the search space is
exhausted, which adds significantly to the required resources.

The search for solutions can not terminate before every possible solution has been
explored because the value of the objective function has to be maximised and there
is no upper bound. If the maximum value was known, the search could terminate as
soon as this value was reached because any other solution could not be better, only
as good. Determining the maximum value of a page is as difficult as solving the
problem of assigning campaigns to slots however.

3.3 Values of Slots

The association of values with slots can not be adequately represented by classical
constraint optimisation problems. They do not allow values which determine the
importance or usefulness of uninstantiated decision variables. The model has to be
changed to extended constrained optimisation problems (cf. definition 20).

Definition 36 (Value of a Page). The value of a page p is determined by the function
v;

v(p) =
∑
xi∈X

value(assignment(xi)) · value(xi).

Definition 34 has been changed to include the value of the slot xi, value(xi), in the
calculation of the value of the page.

The definition of the problem p remains unchanged. The addition affects only the
function v.

3.3.1 example

Let p be a page consisting of three slots;

X = 〈left, center, right〉 .

Let there be three campaigns;

d = {recentlyViewed, recommendations, cerealPromotion}.

All three campaigns are scheduled in each of the three slots;

D = 〈d,d,d〉 .

Let the value of the slots be

value(left) = 0.2
value(center) = 1.0
value(right) = 0.5.



3.4 relaxation of constraints 27

and the value of the campaigns

value(recentlyViewed) = 1.0
value(recommendations) = 0.5
value(cerealPromotion) = 0.2.

The set of constraints is

C = {AllDifferent(left, center, right)}.

Figure 12 shows the constraint network graph for this problem.

d

center

left right

d d

6= 6=

6=

Figure 12. Constraint Network Graph for Example 3.3.1

A complete assignment of campaigns to slots which satisfies C is

assignment(left) = cerealPromotion

assignment(center) = recentlyViewed

assignment(right) = recommendations.

Then the value of the page is

v(p) = (0.2 · 0.2) + (1.0 · 1.0) + (0.5 · 0.5) = 1.29.

No combination of slots and campaigns will give a greater value, therefore this
solution is optimal.

3.4 Relaxation of Constraints

The model requires the campaigns which are shown in each slot to be different from
all other displayed campaigns. There might still be duplicate products in different
campaigns, e.g. in personal recommendations and bestsellers if the customer is
interested in bestsellers. On the other hand, there might be enough products to
promote for one campaign to display it in more than one slot without duplicate
products. The resulting page might even have a higher value than a page where all
campaigns are different.

The following section relaxes the constraint of difference for slots and campaigns.

Definition 37 (Relaxed Constraint). A relaxed constraint is a soft constraint (cf. def-
inition 22). The relaxation or importance of the constraint is defined through a
valuation structure V (cf. definition 23) and a function ϕ which maps the constraint
to a valuation in E ∈ V .



28 constraint problem model

Introducing relaxed constraints changes the type of problem to be solved into a
valued soft constraint problem (cf. definition 25).

Definition 38 (Problem of Rendering a Page with relaxed Constraints). The problem
P of rendering a page is redefined as P = 〈X,D,C,V ,ϕ, f, v〉, where V is the valuation
structure, ϕ the function which maps constraints to their valuation, and f the
maximum cost of constraint violations allowed for a solution.

The value of the page is redefined to account for violations of constraints.

Definition 39 (Value of a relaxed Page). The value of a relaxed page p is determined
by the function v;

v(p) =
∑
xi∈X

value(assignment(xi)) · value(xi) −
∑

ci is unsatisfied

ϕ(ci).

In other words, the value of the page determined by the assignment of campaigns to
slots is reduced by the sum of the cost of all constraint violations.

The constraint AllDifferent(x ∈ X) is relaxed and transformed into a soft con-
straint.

The transformation from a constrained optimisation problem into a valued soft
constraint problem increases the complexity of the model further, but also its ex-
pressiveness. It is now possible to provide a solution to over-constrained problems,
i.e. there are fewer campaigns than slots and the constraint of difference can not
be satisfied. The improved model also enables to express preferences if there are
many constraints involved. The uniqueness of campaigns is not as important as the
uniqueness of the promoted products, for example.

With the current model, soft constraints are of limited use because there is only
one constraint. The following sections introduce new constraints and make use of
the features of the extended model.

3.5 Duplicate Content

The main constraint when generating a page is that all displayed products should be
different. Duplicate promotions impair the user experience and waste space which
could be used to promote other products. The approach taken in the model so far
was to require the difference of all campaigns displayed on the page. The following
section extends this model to take product uniqueness into account.

Definition 40 (Places in Slots). The places in a slot xi are defined by the tuple
hi =

〈
k1i , . . . ,kni

〉
of n places for products. For each slot xi, n new decision variables

x1i , . . . , xni are introduced, one for each place. The assignment to a place xji is a
product oi, which is displayed at that place. The domain of each place xji is the set
S = {o1, . . . ,om} of the products which can be promoted by any campaign.

The function to assess the value of a page remains unchanged. The value of
promoting different products will be different, but quantifying this is very difficult.
The assessment through the campaign value provides a good approximation and
does not complicate the model further.

Using the definition of campaign contents, the constraint of difference for all
products displayed can be formalised.



3.5 duplicate content 29

In addition to the soft constraint AllDifferent(xi ∈ X, xi is a slot variable), the
hard constraint AllDifferent(xj ∈ X, xj is a place variable) is introduced. Hard
constraints are modelled in the framework of valued soft constraints by assigning
a valuation ϕ(c) to them which is above the maximum allowed cost of constraint
violations f for the problem P. In other terms, the model expresses the preference to
have a different campaign displayed in each slot and the requirement to have distinct
products promoted on all places of a page.

The current model misses the relation between the products promoted in a slot
and the campaign scheduled in it. The two constraints of difference do not ensure
that a product is promoted in a slot where a campaign which promotes the product
is displayed.

To establish the missing link, binary constraints for every slot - place (xi, x
j
i) pair

are introduced. For every campaign ci there exists a set Si = {o1, . . . ,on} of n
products which the campaign may promote. The new constraints limit the domains
of the places depending on the campaign which has been assigned to the slot.

Definition 41 (Allowed Tuples for a Slot - Place Pair Constraint). The set of allowed
tuples T for the binary constraint on the pair of slot xi and place xji is defined as

T = {〈ck,o〉 ‖ ck ∈ di, o ∈ Sk}.

In other words, the set of allowed tuples is constituted by every possible campaign
- product combination for the slot, i.e. for all campaigns scheduled in the slot, all the
products which may be promoted by the particular campaign are allowed.

When a campaign is assigned to a slot, the domain of the places in that slot is
reduced to the products which may be promoted through the assigned campaign.

3.5.1 example

Let p be a page consisting of three slots;

Xs = 〈left, center, right〉 .

Each slot has three different places for product displays. The variables are

X =〈left, center, right,
left1, left2, left3,
center1, center2, center3,
right1, right2, right3〉.

Let there be three campaigns;

dc = {recentlyViewed, recommendations, cerealPromotion}.

All three campaigns are scheduled in each of the three slots. The sets of the products
which each campaign may promote is

SrecentlyViewed = {book1,book2,book3,book4,book5,book6}
Srecommendations = {dvd1,dvd2,dvd3}
ScerealPromotion = {cereal1, cereal2, cereal3}.

The set of all products which may be promoted is

ds = SrecentlyViewed ∪ Srecommendations ∪ ScerealPromotion



30 constraint problem model

The domains of the variables are

D = 〈dc,dc,dc,ds,ds,ds,ds,ds,ds,ds,ds,ds〉

Let the value of the slots be

value(left) = 0.2
value(center) = 1.0
value(right) = 0.5.

and the value of the campaigns

value(recentlyViewed) = 1.0
value(recommendations) = 0.5
value(cerealPromotion) = 0.2.

The constraints which link displayed products to assigned campaigns are specified
by the allowed tuples;

Csp = {〈left, left1, {〈recentlyViewed,book1〉,
〈recentlyViewed,book2〉,
〈recentlyViewed,book3〉,
〈recentlyViewed,book4〉,
〈recentlyViewed,book5〉,
〈recentlyViewed,book6〉,
〈recommendations,dvd1〉,
〈recommendations,dvd2〉,
〈recommendations,dvd3〉,
〈cerealPromotion, cereal1〉,
〈cerealPromotion, cereal2〉,
〈cerealPromotion, cereal3〉}〉,

. . .}.

The set of constraints is

C ={AllDifferent(left, center, right),
AllDifferent(left1, left2, left3, center1, center2, center3,
right1, right2, right3)}∪Csp.

The valuation of the first constraint is ϕ(AllDifferent(left, center, right)) = 0.2
and the maximum cost of constraint violations allowed is f = 0.5.



3.6 forced promotions 31

A complete assignment which satisfies C is

assignment(left) = cerealPromotion

assignment(center) = recentlyViewed

assignment(right) = recommendations

assignment(left1) = cereal1

assignment(left2) = cereal2

assignment(left3) = cereal3

assignment(center1) = book1

assignment(center2) = book2

assignment(center3) = book3

assignment(right1) = dvd1

assignment(right2) = dvd2

assignment(right3) = dvd3.

There are no constraint violations. The value of the page is

v(p) = (0.2 · 0.2) + (1.0 · 1.0) + (0.5 · 0.5) − 0 = 1.29.

A solution to the problem which involves constraint violations is

assignment(left) = recommendations

assignment(center) = recentlyViewed

assignment(right) = recentlyViewed

assignment(left1) = dvd1

assignment(left2) = dvd2

assignment(left3) = dvd3

assignment(center1) = book1

assignment(center2) = book2

assignment(center3) = book3

assignment(right1) = book4

assignment(right2) = book5

assignment(right3) = book6.

The value of the page is

v(p) = (0.5 · 0.2) + (1.0 · 1.0) + (1.0 · 0.5) − 0.2 = 1.4.

Despite the violation of one constraint, the value of this page is larger than the value
of the page with no constraint violations. The most valuable campaign is displayed
twice and the least valuable campaign is not displayed at all.

3.6 Forced Promotions

In some situations an online retailer might wish to promote a specific set of products
regardless of the value of the campaign. This is especially useful for new products for
which no value is known. The requirement can be modelled with the one-of-equals
constraint, which requires at least one of a set of variables to be assigned a specific
value.



32 constraint problem model

3.6.1 example

Let p be a page consisting of three slots;

X = 〈left, center, right〉 .

Let there be four campaigns;

d = {recentlyViewed, recommendations,wishlist, cerealPromotion}.

All four campaigns are scheduled in each of the three slots;

D = 〈d,d,d〉 .

Let the value of the slots be

value(left) = 0.2
value(center) = 1.0
value(right) = 0.5.

and the value of the campaigns

value(recentlyViewed) = 1.0
value(recommendations) = 0.5

value(wishlist) = 0.7
value(cerealPromotion) = 0.2.

The retailer wishes to promote the new cereal section of the shop, therefore the set
of constraints is

C = {AllDifferent(left, center, right),
OneOfEquals({left, center, right}, cerealPromotion)}.

An assignment of campaigns to slots that satisfies C is

assignment(left) = cerealPromotion

assignment(center) = recentlyViewed

assignment(right) = wishlist.

The value of the page is

v(p) = (0.2 · 0.2) + (1.0 · 1.0) + (0.5 · 0.7) = 1.39.

If recommendations was shown instead of cerealPromotion, the value of the
page would be higher. The one-of-equals constraint however requires the campaign
cerealPromotion to be part of any solution.

3.7 Real-time Problem Solution

The model so far takes various functional constraints into account. There are non-
functional constraints on the generation of a page as well. The time required to
compute a solution to the problem is limited, for example. The attention span of
the customer is short, so a page has to be generated almost instantly. This section
extends the model with a limit on the time taken to solve the problem P.

Real-time constraint satisfaction is considered in the framework described in
section 2.6.



3.7 real-time problem solution 33

Definition 42 (Problem of Rendering a Page with Time Limit). The problem P of
rendering a page is redefined as P = 〈X,D,C,V ,ϕ,ψ, f, tl, v〉 (cf. definition 28). The
function ψ maps each constraint c ∈ C to a time when it is dropped. tl denotes the
time limit.

The introduction of real-time constraint satisfaction to the model extends the
expressiveness to non-functional constraints which are ubiquitous and important in
numerous industry applications. The current model is complete enough to mirror
real applications accurately.



34 constraint problem model



Part II

P R O T O T Y P I C A L I M P L E M E N TAT I O N





4
O V E RV I E W

In this chapter, the implementation of a system to render websites using constraint
programming techniques is introduced. A high-level overview of the system archi-
tecture will be given, the interfaces between the parts will be explained, and the
main implementation decisions discussed. The following chapters will describe each
component in detail.

4.1 System Architecture

The system consists of the following parts:

• the constraint problem solver library (see chapter 5),

• the SOAP Web Service which provides an interface to the library (see chapter 6),
and

• the web user interface to the service (see chapter 7).

Constraint Prob-

lem Solver Library

SOAP Web

Service

Wrapper
Web User In-

terface

SOAP calls

Figure 13. System Architecture of prototypical Implementation

4.1.1 distributed approach

The distributed approach is considered best because it reflects real systems in
industry and supports Service-oriented Architecture designs. The main advantage
over a monolithic implementation is that the components can easily be substituted
with components of similar functionality and the system can be distributed across a
network to provide high performance, reliability and availability.

Distributed systems avoid single points of failure and make better use of heteroge-
neous resources scattered over different locations. The individual components are
used as building blocks of the system. Each module can be a part of several systems.
The resulting structures are easier to manage and more flexible than traditional
monolithic systems.

37



38 overview

4.1.2 web interface

The choice of a web interface to the system seemed natural because its intention is to
render websites. A high-level demonstration of the workings is the purpose of the
user interface. It is not an integral part of the system, but an addition to present the
results and aid understanding.

Web interfaces have the additional advantage that no special software is required
to interact with them; every modern operating system comes with a web browser.
Nothing needs to be installed to make it work and the ubiquitousness of the World
Wide Web has produced many frameworks for web user interfaces which save
developer work.

Although there are a number of drawbacks for web interfaces, they do not impact
the purpose of this system and are not considered further.

4.1.3 web service

The building blocks of the system – constraint problem solver library and user
interface – are tied together by a web service. This choice reflects the earlier choice
to implement a distributed system. There is no single standard for web services, but
a number of different approaches. XML based protocols are most widely used and
supported.

soap rest xml-rpc

query structure complex simple complex
implementation complexity high low low
infrastructure integration mechanisms WSDL - -

Table 3. XML based Web Service Protocols considered for the Web Service

Several different protocols were considered for the implementation of the web
service. SOAP was chosen because the queries to the service – i.e. the problem
definitions – can become arbitrarily complex, and Representational State Transfer
(REST) only provides facilities for relatively simple queries. Related technologies
such as XML-RPC do not provide comparable means for integration with existing
infrastructures.

SOAP allows to publish a Web Services Description Language (WSDL) document
containing service definitions. It enables clients to use the service with only minimal
setup costs as well as being aware of changes to the interface.

Implementation complexity was not considered at all, because such an imple-
mentation would be beyond the scope of this thesis. Instead, existing libraries are
used.

4.2 Implementation Language

The whole system is implemented in Ruby1.

“Ruby is a dynamic, open source programming language with a focus
on simplicity and productivity. It has an elegant syntax that is natural to
read and easy to write.”

1 http://www.ruby-lang.org/

http://www.ruby-lang.org/


4.2 implementation language 39

Ruby combines features from different programming paradigms, such as func-
tional programming elements, object orientation, and domain specific languages.
The wide range of libraries and frameworks available makes it especially easy to
develop web-based and service-oriented applications. Therefore Ruby is an excellent
choice for all parts of the system.

It was chosen because it enabled to develop a homogeneous system without much
implementation-specific overhead or setup costs. Furthermore, there are facilities for
packaging, code distribution, and dependency management.

Another reason for choosing Ruby was the ability to extend the language at
runtime. Existing classes can be modified, features added, and behaviour modified
in place without the need to implement the changes in new classes which inherit
from the base classes. This is especially important for the handling of lists – the
existing Ruby classes could be used and required additional functionality added
with minimal effort (cf. section 5.2.13).

Ruby focuses on speed of implementation, not on runtime speed. Therefore,
similar applications implemented in other programming languages often run faster.
As the purpose of this thesis is to provide a prototypical implementation for further
evaluation and not a production-ready system, this drawback is not considered to
be a disadvantage.

The decision to implement all the parts of the system in the same programming
language was due to simplicity reasons. Systems deployed in industry are often
written by different teams in different programming languages, so this decision may
impair the comparability to real-life applications, but the benefits for the speed of
implementation are not negligible.

4.2.1 documentation

To keep documentation concise and up-to-date, Ruby’s in line documentation format,
RDoc2, is used. Classes and methods are documented in the source code, no separate
files are required. The adjacency of code and documentation makes it easy to keep
both synchronised, document the important aspects, and aids understanding of the
code by others.

All of the most important methods are documented. Documentation is omitted
where the purpose of the method is clear, e.g. an overwritten inherited method such
as the iterator each, or the method is trivial.

The tools that come with RDoc provide means to extract the documentation from
the source files, organise it, and add navigation elements. Output to a variety
of formats, including HTML, XML, and Ruby’s own documentation format, is
supported.

4.2.2 testing

For testing, Ruby’s Test::Unit unit-test framework is used. The tests can be run as
regression tests to ensure integrity after code modifications, to specify desired and
undesired behaviour, and determine the functional interface. Tests assure the correct
implementation of algorithms as well as proper error handling and other robustness
measures.

2 http://rdoc.sourceforge.net/

http://rdoc.sourceforge.net/


40 overview

4.2.3 packaging

RubyGems3 is used to package the components into distributable files and manage
dependencies of parts on libraries and between them. This package management
system is widely used by Ruby developers and many libraries are available as gems.
The use of a standard system eliminates the need to do explicit dependency checking
in the code and makes installation easier for the end-user.

To manage the creation of gems, tests, and documentation, Rake4 is used. Rake is
a system similar to UNIX make, but implemented in Ruby and for Ruby applications.
Similar to Makefiles, Rakefiles define tasks which can be run with Rake. For example,
the information needed to create a gem can be specified in a Rakefile, and the gem
is created by calling the corresponding Rake task.

The constraint solver library gem additionally provides a script which can be run
stand-alone on problem descriptions. The script does not provide any facilities to
the library, it simply evaluates the problem description which must be given in Ruby
code. It is only provided for completeness and not as a substitute for a user interface.

Example input files with problem descriptions are also included in the constraint
solver gem.

4.3 Version Control System

Subversion5 is used as revision control system. A revision control system provides
code repository management facilities, enables developers to revert to previous
versions of the code if changes break it, and compare different revisions of files.
Subversion was chosen because it is widely used and stable, but provides more
features than older systems.

The revision control system is not only used for the source code, but for all parts
of the thesis, including this document. It serves as a single point of reference for the
whole project. All the files required to build each part of the system are put under
revision control.

Subversion provides facilities for actions to run at various stages of a commit. For
this project, a post-commit hook for the code part is implemented.

Every time a code change is committed to the repository, all the tests are run on
the changed code. If no errors occur, the latest version of the software is built and
deployed to the test machine. If one or more tests fail, the new version will not
be deployed but a transcript of the failed tests will be sent to the developer. This
assured that the latest stable version of the software is always available for testing
and defects are noticed immediately.

4.4 Test Machine Setup

In addition to the machine the project is developed on, another machine is set up
for testing purposes. This assures that the system is easily deployable to a target
machine. As the test machine is connected to the internet, testing by more people is
made possible.

The SOAP web service wraps around the constraint problem solver library and
runs as a standalone server. Both the solver library and the web service are installed
as Ruby gems.

3 http://www.rubygems.org/
4 http://rake.rubyforge.org/
5 http://subversion.tigris.org/

http://www.rubygems.org/
http://rake.rubyforge.org/
http://subversion.tigris.org/


4.4 test machine setup 41

The web user interface is integrated with the Apache webserver6 and runs as
FastCGI processes. It communicates with the SOAP web service through SOAP
service calls.

The test machine is a standard PC with an Intel Pentium II CPU running at 400

MHz and 512 MB memory. It is running Gentoo Linux and also hosts the code
repository.

6 http://httpd.apache.org/

http://httpd.apache.org/


42 overview



5
C O N S T R A I N T P R O B L E M S O LV E R L I B R A RY

This chapter introduces the implementation of the constraint problem solver. An
overview of the architecture will be given and the parts described and explained.
The algorithms and concepts behind the solver will be described and discussed.

The solver library constitutes the main part of the prototypical implementation.
No existing libraries were used, the whole system was implemented from scratch.
An overview of existing constraint problem solvers and reasons for the decision not
to use any of them but to implement a new solver will be given in the next section.

The implementation mirrors the definitions from chapter 2. It is intended to be as
general as possible to support the solution of a wide range of constraint problems.
The description of the implementation concludes with a list of limitations.

5.1 Overview of existing Constraint Problem Solvers

The constraint problem solving library used in the prototypical implementation
is not an adaption or extension of an existing solver, but an entirely new project.
Various reasons led to the decision to implement a new constraint programming
system.

An overview of existing solvers is given in table 4. It is not meant to be exhaustive;
there are many more solvers available. A more elaborate comparison of some solvers
is given in [Dun93]. The study [Bar99] presents an overview of limitations and
shortcomings of existing systems. A list of constraint problem languages and solvers
can be found at http://4c.ucc.ie./web/archive/solver.jsp.

The only systems to provide support for soft constraints are Michel Lemaitre’s
Library and Choco. Lemaitre’s Library does not support constrained optimisation
problems though and limits the arity of constraints. Choco provides only rudimen-
tary support for weighted soft constraint problems. All other solvers only support
hard constraint problems. Soft constraints have to be supported by the solver of
the prototypical implementation. None of the solvers supports real-time constraint
satisfaction, which is also an important part of the solver library. Therefore, any
solver would have to be modified.

Modification of the existing code is only possible for the constraint problem solvers
with an open source license, i.e. the ones in the first part of table 4. Most of those are
very complex systems with large amounts of code and features which are not relevant
to the requirements of the prototypical implementation. To modify the code, one
needs to be familiar with it. Gaining familiarity with the code of any of the existing
implementations would be a huge and difficult task. Most of the surveyed solvers
do not have comprehensive documentation of the employed concepts, algorithms,
and implementation details. Often unit tests, which aid understanding and enable
regression testing, do not exist. Sometimes, the documentation is outdated and the
solver not actively maintained anymore.

43

http://4c.ucc.ie./web/archive/solver.jsp


44 constraint problem solver library

name license language focus reference

Choco BSD Java all-purpose system,
explanation-based
solving

[Cho]

Comet GPL C++ visualisations, domain
specific language

[HM05]
[Com]

FaCiLe GPL OCaml functional constraint
problem solving

[BB01]
[BB04]

Gecode BSD C++,
Java and
Ruby
bind-
ings

modular structure [Gec]

Michel
Lemaitre’s
Library

- LISP valued constraint satis-
faction problems

[Lem]

Minion GPL C++ fast, scalable solving [GJM06]
[GJM+

07]
python-
constraint

GPL Python constraint satisfaction
problems

[Pyc]

CHIP commercial C, C++,
Prolog

industry applications [BSKC97]

Disolver commercial C++ distributed constraint
solving

[Ham06]

ILOG
Solver

commercial C++,
Java,
.NET

industry applications [Ilo]

Koalog commercial Java industry applications [Koa]

Table 4. Overview of Constraint Problem Solvers

Choosing a solver to extend to fulfil the requirements at hand is not a trivial task as
well. This decision can only be made after evaluating the code of the implementations
and estimating the effort of implementing the additional features. Gathering all the
required information is a very labour-intensive and time-consuming task.

The reasons stated above had the biggest influence on the decision to implement
a new solver from scratch. The basic data structures and algorithms are easy to
implement and not all of the sophisticated and difficult algorithms are required. The
extensions described in chapter 2 can be considered when designing the solver archi-
tecture. A custom implementation can furthermore be integrated into the overall
system architecture described in the previous chapter more easily. Different algo-
rithms can be evaluated and new concepts explored without needing to investigate
possible hidden effects of local changes on the solver as a whole.

5.2 Architecture

The library is implemented as an object-oriented system, with classes representing
the core entities and concepts. Only the methods which are directly needed to



5.2 architecture 45

interact are exposed, everything else is kept private to the class. Where possible,
interfaces are implemented to abstract concepts from particular instantiations of them.
The complexity of performing a particular task is hidden in the implementation of
the class performing it, other classes which need it done do not need to worry about
how it gets done.

The object-oriented nature of Ruby makes it possible to take advantage of all the
points mentioned above. Another one of Ruby’s features, the ability to extend the
language at run time, is used, too (cf. section 5.2.13). During the implementation, it
became apparent that choosing Ruby as implementation language was a very good
decision. The conciseness of the syntax makes the code easy to read and understand,
the flexibility enables to solve problems with less code than other programming
languages, and excellent support for tests and debugging supports early and efficient
finding of bugs.

Some classes are derived from standard Ruby classes to avoid reimplementation
of existing functionality. Other parts use reflection to delegate method calls. For
some classes, operators are overloaded.

The structure of the library is illustrated in figure 14. The diagram represents
the most important classes of the implementation. It is not intended to give an
exhaustive overview of the classes or their methods, but rather to illustrate the
explanation of the parts of the system. The associations between the classes are
annotated and quantified. They are not meant to show all associations but to identify
the most important relationships between the entities and concepts. The semantics
of the diagram is similar to UML class diagrams [UML].

The following sections will explain each of the parts depicted in the diagram. First,
the most basic parts of the system are dealt with. They will be gradually assembled
into the more complex components. At the end, the high-level algorithms used to
solve constraint problems will be discussed.

5.2.1 domain

The class Domain represents a domain which consists of a set of values. It provides
methods to

• add and remove values from the set,

• test for inclusion of values, and

• test how many and whether there are any values at all in it.

During the process of solving a constraint problem, values are by and by removed
from the domain – the domain is pruned. When a dead-end is spotted, the values
have to be reinserted to be able to attempt to solve the problem again. Therefore, a
stack which saves the state of the domain when it is pruned and a method to undo
the pruning are implemented.

Duplicate values in a domain are avoided by using the Ruby class Set, which
ensures that every single value occurs at most once.

Several other methods are implemented to allow interaction with the underlying
set of values. All these methods implement the proxy pattern [GHJV94]. They hide
the internal implementation of the domain values by providing methods to directly
interact with them, regardless of the representation.



46 constraint problem solver library

Array

AbstractConstraint
holds?
allAssigned?
include?(variable)
revise
violationCost

AllDifferentConstraint
variables

BinaryConstraint
lhs
rhs
relation

TupleConstraint
variables
tuples
allowedTuples

OneOfEqualsConstraint
variables
value

BinaryRelation
string
call(a, b)
arity

ConstraintList

notAllAssignedWithVariable(variable)
allWithVariable(variable)

ConstraintSolver
log
problem
solutions
limit
constraintChecks
nodeChecks
solve(problem)
assignNextVariable(variables)
reviseConstraints(variable)

Domain
values
undoStack
«(value)
delete(value)
sort
empty?
size
prune(values)
undoPruning
include?(value)

Problem
variables
constraints
meritMap
firstSolution
maxViolation

Solution
variables
merit
violation

Variable
name
domain
value
merit
value=(value)
values
assigned?
reset

has
1

has

1..n

has

1

has

0..n

has

1

has
1..n

has

1

Figure 14. Structure of the Constraint Solver Library

5.2.2 variable

The class Variable represents a variable. It has

• a name,

• a domain,

• a value which is currently assigned to it, and

• a merit towards the solution of a problem.

The implementation provides methods to

• retrieve the set of values which can be assigned to the variable from its domain,

• assign a value to it,



5.2 architecture 47

• check whether the variable has a value assigned to it, and

• reset the assignment to a null value.

The operator which assigns a value to the variable checks whether its domain
contains the value. If the value is not in the domain, an error is raised.

5.2.3 abstractconstraint

The class AbstractConstraint defines the interface to a constraint. The specific
constraints which derive from it will be explained in the following sections.

The methods required for the rest of the library to interface with a constraint are

• a method to check whether the constraint holds,

• a method to check whether all the variables which are involved in the constraint
have values assigned to them,

• a method to check whether a given variable is involved in the constraint,

• a method to revise the constraint, and

• a method to retrieve the cost of violating the constraint.

Revising a constraint usually means that for all the variables involved in the
constraint all values from their respective domains are checked for whether they can
be assigned to the variable such that when all variables have values assigned to them
the constraint holds. In other words, all values which are not supported are removed
from the domains of their respective variables – local consistency is enforced (cf.
definition 12). The strong form of consistency is not always implemented because
the process can be very expensive compared to its benefit. Sometimes it is better to
enforce a weaker form of consistency where not all the values which could potentially
be pruned are pruned. The process of constraint revision is detailed in section 5.4.
The revise method is expected to return a list of the variables whose domains have
been revised and the number of times it was checked whether the constraint holds
during the revision process.

The cost of violating a constraint is implemented as an attribute to the class. It
represents the mapping to the valuation structure as defined in definition 25. The
default value for the cost of violating a constraint is 1.

Ruby has no support for interfaces or abstract classes; every class can be instanti-
ated. Therefore, AbstractConstraint is implemented as a regular class. The method
stubs raise errors when they are called to ensure that every class which inherits
from AbstractConstraint – i.e. implements the interface – provides its own proper
implementation of the required methods.

5.2.4 binaryconstraint

BinaryConstraint implements the type of constraint which relates two variables
with a binary relation. The relation must return true for the constraint to be satisfied.
The members of a binary constraint are

• the variable on the left hand side of the relation,

• the variable on the right hand side of the relation, and

• the binary relation which relates the two variables.



48 constraint problem solver library

The class BinaryConstraint derives from AbstractConstraint and implements
all methods defined in it. The particulars of the revision of the constraint will be
explained in section 5.4.1.

The holds? method always returns true when not all variables have values as-
signed to them; it is assumed that the constraint potentially holds. The arity of the
relation which relates the two variables is checked when a new binary constraint is
created and an error raised if it is different from two.

5.2.5 binaryrelation

The class BinaryRelation represents a binary relation which is used to relate two
variables in binary constraints. It provides a string representation of the relation, a
method to return its arity, and a method to call itself, i.e. compute the result of the
application of the relation to the two variables it relates.

The arity method always returns two and is used during the construction of
binary constraints to check that the relation has the correct arity.

The implementation of the call method uses the command pattern [GHJV94].
The relation is represented as a string which doubles as a Ruby operator or method,
such as <, >, or ==. Reflection is used to call the appropriate Ruby method when
the relation is called. The use of the command pattern enables the implementation
to provide all operators which Ruby supports without specifying them explicitly. All
methods the two objects which are related implement may be specified as relation.

Ruby provides a send method for all objects, which can be used to send arbitrary
messages to the object. In this case, send is used to send the name of the method
to call and the argument – the second object in the relation – to the first object.
This is semantically equivalent to calling the method name on the first object with
the second object as an argument, but enables the use of the command pattern by
specifying the name of the method at run time. Passing messages which request
information or actions to be performed between objects is one of the fundamental
principles of object-oriented programming [Boo93].

5.2.6 alldifferentconstraint

AllDifferentConstraint is the class which implements a constraint that requires
all variables involved in it to have different values. The only member of the class is a
list of those variables.

At least two variables need to be involved in the constraint. If the construction of
a new AllDifferentConstraint object is attempted with no or just one variable, an
error is raised.

The holds? method checks whether all assigned variables have different values.
The unassigned variables are not considered; if no variable has a value assigned, it is
assumed that the constraint potentially holds and true is returned.

An all different constraint with n variables can be specified as n(n−1)
2 binary

constraints which require that the values of the variables are not equal. The all
different constraint provides “syntactic sugar” and dramatically reduces the number
of constraints the user needs to specify. Furthermore, the revision of the constraint
can be optimised, because instead of n(n−1)

2 independent pieces of information
about n variables, one large piece of information which relates all of those variables
is available [SW99]. For detailed information on the revision of the all different
constraint, see section 5.4.2.



5.2 architecture 49

5.2.7 tupleconstraint

The class TupleConstraint implements a constraint of arbitrary arity which is
specified by the tuples of allowed or disallowed assignments. The members of the
class are

• the list of variables involved in the constraint,

• the list of tuples, and

• a boolean specifying whether the list of tuples constitutes the allowed or
disallowed assignments.

The constructor of the class checks that every tuple specified has exactly one value
for every variable involved in the constraint. An error is raised if this requirement is
not met.

The holds? method returns false if at least one variable has a value which is not
in the list of allowed tuples. If disallowed tuples have been specified, the method
will only return false if all variables have values assigned to them and the tuple of
their assignments is contained in the list of disallowed tuples.

The details of the revision of the constraint are explained in section 5.4.3.

5.2.8 oneofequalsconstraint

The class OneOfEqualsConstraint implements a constraint which requires at least
one of the variables involved in it to be assigned a particular value. The members of
the class are the list of variables and the value.

At least one variable needs to be involved in the constraint. If the construction
of a new OneOfEqualsConstraint object is attempted with an empty list, an error is
raised.

The holds? method only returns false if all variables have values assigned to
them and none of the values is equal to the value specified during the instantiation
of the constraint. If not all variables have values assigned to them or at least one
variable has the value requested assigned to it, true is returned.

For detailed information on the revision of the one-of-equals constraint, see
section 5.4.4.

5.2.9 constraintlist

The class ConstraintList inherits from the Ruby base class Array. It represents a
list of constraints. Ruby does not support static typing, therefore any object may be
inserted into the list; there are no measures to prevent this. The list is intended to
hold objects which implement AbstractConstraint, adding any other object to it
will result in run time errors.

Most of the functionality is not implemented in the class itself, but inherited from
Array. All the methods for list management are available without specifying them
explicitly.
ConstraintList extends the Array base class with methods specific to lists of

constraints.
The method notAllAssignedWithVariable takes a variable as an argument and

returns a ConstraintList of those constraints which involve the variable and have at
least one unassigned variable involved. In other words, all constraints with a certain
variable which need to be revised are returned to the caller. A constraint where all



50 constraint problem solver library

involved variables have values assigned to them does not need to be revised, even if
there are unsupported values left in the domains of the variables. Further revision
would be unnecessary work, because the purpose of revision and value pruning is
to shrink the set of values which can be assigned to a variable to reduce the search
space. Once a particular value has been assigned to a variable, there is no need
to search for an assignment anymore and the size of the potential search space is
irrelevant.

The method allWithVariable takes a variable as an argument and returns a
ConstraintList with all constraints which involve the variable. No check for as-
signed and unassigned variables is performed.

The class furthermore implements methods to sort the list of constraints and
remove a single constraint from it.

5.2.10 problem

The class Problem represents a constraint problem. It consists of

• a list of variables,

• a list of constraints,

• a mapping from domain elements to their merit towards a solution,

• a boolean indicating whether all solutions or just the first solution to the
problem should be determined, and

• a number designating the maximum allowed cost of constraint violations for
any solution to the problem.

The implementation follows the definition of a constrained optimisation prob-
lem with a set of “goodness” values for domain elements (cf. definition 20) and
the definition of a soft constraint problem with a maximum cost of violation (cf.
definition 25). The mapping from constraint to cost of violation is encapsulated in
the implementation of the specific constraint. The objective function is not specified
explicitly; the merit of a solution is always the sum of the merit of the individual
variable - assignment pairs (cf. definition 39).

The list of variables must not be empty. Each variable may already have a value
assigned to it. The list of constraints is expected to be a non-empty ConstraintList.
If either the list of variables or constraints is empty, an error is raised.

The map of domain elements to merit is optional. If it is specified, the values are
used during the construction of a solution, as detailed in the next section.

The boolean indicating the required number of solutions is optional, too. If it is
omitted, all solutions to the problem are computed.

The default value for the maximum cost of constraint violations is 0. If no value is
specified when constructing a problem, no constraint violations are allowed.
Problems are the high-level objects which can be passed to the constraint problem

solver. They contain all the information needed to specify and solve a problem.

5.2.11 solution

The class Solution represents a solution to a constraint problem, i.e. a complete
assignment which has a lower cost of constraint violations than the allowed limit.

A solution consists of a list of all variables specified in the problem description.
Each one has a value assigned to it. When a new solution is constructed, all variables



5.2 architecture 51

are checked for assigned values. If not all of them have values assigned to them, an
error is raised.

The merit of a solution specifies its “goodness”. The value is computed from the
merit of the variables which are part of the solution and, if specified, the mapping
from domain element to merit. The total merit of a solution is the sum of the merits
of all variable - assignment pairs. The merit of a variable - assignment pair is the
product of the merit of the variable and the merit of its assignment. If the merit
of the assignment is not specified, only the merit of the variable contributes to the
merit of the pair (cf. definition 36).

The total cost of constraint violations is another member of the class (cf. defini-
tion 26). It influences the merit of the solution – the cost of constraint violations is
subtracted from the merit of the solution calculated as outlined above.

5.2.12 constraintsolver

The class ConstraintSolver represents the high-level concept of a constraint problem
solver. The input to the solver is a problem definition and the output is a – possibly
empty – list of solutions to the problem.

The most important member variables of ConstraintSolver are

• a log to provide feedback on the solution process,

• a problem definition,

• a list of solutions,

• the time limit for solving,

• the number of constraint checks performed, and

• the number of node checks performed.

The log uses the Log4r library1. Several different levels of logging are used to
provide the operator of the solver with granular feedback, depending on whether
general information about a run or detailed debugging data is required.

The problem definition is expected to be a Problem class and the list of solutions
contains Solution classes. The time limit for solving the problem is either a real
number designating the time available in seconds, or the boolean false designating
that there is unlimited time available. Auxiliary member variables keep track of the
elapsed time and determine when to drop constraints because time is running out.
The number of constraint checks is the total number of times the holds? method was
called on any constraint in the problem specification. The number of node checks
designates how many times a variable was assigned a value from its domain. A
node is a vertex in the search tree (cf. figure 5). Vertices represent assignments to
variables, edges link subsequent assignments.

ConstraintSolver provides methods to

• solve a given problem,

• attempt an assignment to the next variable in a list of unassigned variables,
and

• revise the constraints which involve a certain variable.

1 http://log4r.sourceforge.net/

http://log4r.sourceforge.net/


52 constraint problem solver library

Only the first method is public and meant to be called by users of the constraint
problem solver library, the latter two methods are used internally to solve a problem.
The actions performed during the process of solving a problem and the specifics of
this implementation are beyond the scope of the description of the class and detailed
in section 5.3.

5.2.13 ruby extensions

For some of the base classes provided by Ruby, additional functionality is required.
The class Array is extended with the following methods,

rest This method returns a new array which contains all elements but the first of
the original array.

eachafter This method requires an element of the array and a block of code as
arguments. The block of code will be executed for each element of the sub
array starting with the first element after the specified element of the current
array.

eachstartwith This method requires an element of the array and a block of code
as arguments. The block of code will be executed for each element of the sub
array starting with the element specified.

The class Fixnum is extended with the not_equal? method. This method checks
whether a specified argument is not equal to the number. The method addition
is required because of the string representation for inequality binary relations (cf.
section 5.2.5). The intuitive representation ! = can not be used as a Ruby method
name.

The class Set is extended with the include_any? method. It checks whether any
value contained in the list passed as an argument is also contained in the set. As
soon as such a value is found, the method terminates.

The class Hash is extended with a method to check if another hash is contained
in it, include_hash?. The method returns true iff the hash contains all the keys and
maps them to the same values as the hash given as an argument.

5.3 Constraint Problem Solution

This section explains the algorithms employed to solve a constraint problem. A
detailed overview of the process will be given and its parts will be illustrated. First,
the general algorithm will be explained. Then, the modifications of the algorithm to
incorporate soft constraints and real-time constraint satisfaction will be detailed.

5.3.1 solution process

To solve a constraint problem, successive assignments to all the variables are at-
tempted, verifying that the constraints hold and revising them after each assignment.
The top-level solver procedure operates on a list of variables which are ordered by
their merit, highest merit first. The variables may have values assigned to them.

During an assignment step, the following actions are performed,

• the first variable is removed from the list of pending variables,

– if the variable has a value assigned to it, it is checked whether all con-
straints hold



5.3 constraint problem solution 53

– else the domain of the variable is sorted according to the merit of each
element if a corresponding mapping has been provided, and all domain
values are successively assigned to it

• for each assignment, all constraints which involve the variable are revised,

• if no domain was wiped out and

• there are no pending variables left, the solution is recorded, or

• the next pending variable is handled,

• else nothing is done.

After these steps, the constraint revision is reverted by undoing the pruning of
all pruned domains and the current variable is reset to be unassigned. This ensures
that the state from before the execution of the assignment step is recreated and
subsequent attempts to solve the problem have the same starting point. Then the
method returns, stepping one level back in the search tree.

If a solution is found and the solver is only required to find the first solution to a
problem, the solver breaks and returns the solution. No further exploration of the
search tree or constraint revision is performed.

The basic algorithm implemented is Forward Checking [HE80]. Other approaches
to solving constraint problems include Backtracking, where after each assignment
the satisfaction of the constraints is checked and the search aborts if all variables have
values assigned to them or a constraint is violated. In the latter case, the algorithm
“backtracks” by removing the most recent assignment and trying another one. The
advantage of Forward Checking over Backtracking is that the size of the search tree
is reduced by enforcing consistency.

The type of consistency enforced after each assignment is arc consistency [SF94]
[Fre78]. It ensures that the domains of the unassigned variables remain consistent
with the new assignment. Values which can not be part of a solution are removed
from their domains and do not contribute to the size of the search space anymore.

To revise all the constraints a variable is involved in, the following steps are taken,

• all constraints which involve the variable and at least one variable which has
no value assigned to it are assembled into a queue,

• for each constraint in the queue, the revise method is called (cf. section 5.4),

• for all the variables whose domains have been revised,

– their domain is recorded to be able to undo the pruning later and

– all constraints which involve the variable and at least one variable which
has no value assigned to it are added to the queue of constraints to be
revised, unless they are in the queue already or have just been revised.

If during the revision of a constraint the domain of a variable is wiped out, i.e.
all the values which have been in the domain are pruned because they are not
supported, the wipe out is signalled to the calling method. No further constraint
revisions are performed. The current set of assignments can not be part of a solution
because there is at least one variable for which no valid assignment exists.

The solution process builds up a search tree which explores the space of possible
solutions (cf. definition 9).



54 constraint problem solver library

The actions performed during the solution process are summarised in figure 15.
The details of constraint revision and the reversion of pruning are omitted for
simplicity reasons. The figure shows the solution process for a list of unassigned
variables.

assemble list of variables

process next variable

assemble list of domain values

assign next value

assemble list of constraints to revise

revise next constraint

add affected constraints to queue

abort constraint revision

return list of revised domains

record solution

fail

domain wipe out

all variables assigned

v
a
lu

es
ex

h
a
u
st

ed

q
u
eu

e
n
o
t

em
p
ty

n
o
t

a
ll

v
a
ri

a
b
le

s
a
ss

ig
n
ed

m
o
re

v
a
lu

es
a
v
a
il
a
b
le

Figure 15. Actions performed during the Solving of a Constraint Problem



5.3 constraint problem solution 55

5.3.2 modifications for soft constraints

The implementation of soft constraints does not employ any specific algorithms to
filter values for soft constraints; all constraints are handled uniformly. For every
soft constraint violated, a relaxed problem is defined and solved. This approach is
similar to modelling soft constraints as hard constraints and managing violations as
proposed in [RPP02].

The main method of the solver is modified to operate on a queue of problems
instead on a single one. When the solver starts, the problem which was passed
to it is the only problem in the queue. During the solution process, an additional
variable maintains the current cost of constraint violations. If a constraint is violated
or the domain of a variable is wiped out during constraint revision, the cost of
violation is checked. If the current cost of violation plus the cost of violating the
constraint which caused the wipe out or is not satisfied is at most as big as the
maximum allowed cost of constraint violation, a relaxed problem is defined without
the offending constraint and added to the queue of problems to solve with the
updated current cost of violation. The solver then continues to solve the current
problem with updated cost of violation and the offending constraint removed. Only
the values pruned immediately before the wipe out occurred are restored. This
means that the solver will not find all solutions to the relaxed problem, as the values
which have been pruned because of the removed constraint before the current step
are not restored. The remaining solutions will be found when the solver processes
the relaxed problem.

This approach will find certain solutions to relaxed problems twice and represents
a compromise between time to find a solution and completeness. When a soft
constraint is dropped, the solver continues to search for a solution without time-
consuming restoration of all values pruned because of the removed constraint, but
hence does not find all solutions. After the exploration of the search tree is complete,
the solver is restarted with the relaxed problem to find the remaining solutions.
Duplicate solutions are avoided by checking whether a solution exists already before
adding it to the list of solutions.

Constructing relaxed problems eliminates the need to prune solutions to the prob-
lem which are not good enough, i.e. violate too many or too expensive constraints –
such solutions will not be computed at all.

This method is less efficient than employing specialised algorithms for soft con-
straints, but is easier to implement and enables a uniform handling of hard and soft
constraints. The solutions with least constraint violations will be computed first,
therefore, if only the first solution to the problem is required, there is potentially
very little overhead. For the specific class of problems considered in this thesis, only
one solution is required and the best solution is the most relevant.

The high-level actions of the modified solver are illustrated in figure 16.

The addition of soft constraints is unobtrusive to both users of the constraint solver
library and developers. The arguments specifying the cost of constraint violations
are optional, the default values specify hard constraint problems. New algorithms
for constraint revision can exploit the specific properties of soft constraints, but they
are not required to. Arc consistency algorithms for hard constraints can be applied
without modification.



56 constraint problem solver library

add problem to queue

process next problem

all solutions found solve problem

constraint violated

or domain wiped out

backtrack
relax problem and

enqueue new problem

queue empty

violation

acceptable

se
a
rc

h
sp

a
ce

ex
h
a
u
st

ed

m
o
re

v
a
ri

a
b
le

s
to

p
ro

ce
ss

Figure 16. High-Level Actions performed while solving a Soft Constraint Problem

5.3.3 constraint satisfaction with time limit

The constraint solver implements the approach to real-time constraint satisfaction
described in section 2.6. As the time available to solve the problem runs out,
constraints are dropped according to their cost of violation, cheapest constraint first.
When the time is up, all constraints are dropped. The function which determines
when to drop which constraint is the logarithmic function illustrated in section 2.6.1.

When the solver is invoked, the current wall clock time is recorded. Then a hash
table which maps times to lists of constraints to drop at that particular time is
computed with the logarithmic function. At any given time, the hash can be used
to determine which constraints are still relevant by partitioning the keys into times
before and after the current time.

While solving the problem, the time is checked at the beginning of each assignment
step. For problems with a very small time limit, the granularity of the checks might
be too coarse to meet the limit, but the overhead of checking the time after e.g. every
constraint revision would increase the run time significantly. The list of constraints
which can be dropped at the current time is assembled using the auxiliary hash
computed at the beginning. The constraints in the list which have not been dropped
already are discarded and added to a list. If the time to solve the problem has elapsed
and at least one solution has been found already, the solver simply terminates and
returns the solutions found so far. Otherwise, all constraints are dropped and the
unassigned variables are assigned the first value from their respective domains.

When a solution has been found, the total cost of constraint violations is deter-
mined by iterating over the list of constraints which were dropped because time was
running out and checking whether each one holds. This is the only way to accu-
rately account for the cost of violating constraints dropped because of limited time.



5.3 constraint problem solution 57

When a constraint is dropped, it will not necessarily be violated. All the domain
values which would cause a violation might have been pruned before. Therefore a
solution to the problem needs to be checked whether it violates any of the dropped
constraints.

The high-level actions which result from the addition of constraint solving with
time limit are illustrated in figure 17.

check time

drop constraints check for solution

process next variable

revise constraints

assign remaining

variables

compute cost of con-

straint violations

constraints

to drop

time elapsed

continue or record solution

no solution found beforem
o
re

v
a
ri

a
b
le

s
to

a
ss

ig
n

m
o
re

se
a
rc

h
sp

a
ce

to
ex

p
lo

re

search space exhausted

Figure 17. Solving of a Constraint Problem with Time Limit

Like all the other extensions of the solver, the addition of real-time constraint
solving has been implemented as transparently as possible. The specification of a
time limit is optional and if it is not specified, the default behaviour does not impose
any restrictions on the time to solve. The algorithms for constraint revision are not
affected in any way by time limits.

The effectiveness of the implementation with regards to returning a solution within
the time limit is evaluated in appendix B.



58 constraint problem solver library

5.3.4 variable and value ordering

The solution process starts with the variables sorted by their merit, i.e. the variable
with the highest merit will be processed first. This ensures that the total merit of a
solution is maximised, as the first variable has the broadest choice of values. The
values are ordered by their merit, too, such that the value with the highest merit is
assigned first to a variable. If no mapping of value to merit is provided, the values
are assigned in the order they were specified in.

The variable and value ordering facilitates that the first solution found is the
solution with the highest merit. It ensures that the variable with the highest merit
is assigned the value with the highest possible merit, as restricted by the set of
constraints. This mechanism reduces the effort needed to find the best solution to a
constrained optimisation problem to the effort needed to solve the problem at all,
i.e. solve a constraint satisfaction problem. Instead of having to find all solutions
to determine the one with the highest merit, the solver is guaranteed to return the
solution with the highest merit first. The additional time required compared to a
constraint satisfaction problem is the up-front sorting of variables and values.

The addition of the ordering mechanism greatly improves the efficiency of the
solver for constrained optimisation problems. In contrast to the usual approach taken
with constraint satisfaction problems – processing the variable with the smallest
domain first [CN88] – the objective is not to reduce the size of the search tree, but
to determine the solution with the highest merit first. Decreasing the width of the
search tree by ordering variables by the size of their domains might speed up the
solution process, but having to find all solutions instead of one is likely to be slower
in general.

5.4 Constraint Revision

This section explains the particulars of the implementation of constraint revision.
The concept is related to constraint networks [Mac75], but the nodes are implic-
itly specified. Each constraint represents an arc or edge in the network, binary
constraints two-dimensional arcs, all different, tuple, and one-of-equals constraints
n-dimensional hyper arcs.

Standard algorithms to enforce and maintain arc consistency are employed to
ensure the consistency of the domains of all variables.

The object-oriented architecture of the solver separates traditional arc consistency
algorithms into two parts. One part maintains the list of arcs to revise and is
implemented in the solver, the other part revises individual arcs and is encapsulated
in the revise method of the constraint classes.

This adaption enables the part which maintains the list of arcs to revise to handle
constraints uniformly, regardless of whether they represents a two-dimensional arc,
or an n-dimensional hyper arc.

5.4.1 binary constraints

The algorithm for binary constraint revision differentiates between three cases.
If both variables have values assigned to them, no revision is necessary and the
algorithm terminates immediately. If one of the variables has a value assigned to
it, every value in the domain of the unassigned variable is checked whether it is
supported by the assignment. The values which are not supported can be pruned. If
none of the variables has a value assigned to it, support is checked for every pair of



5.4 constraint revision 59

values. The values in the domain of one variable which are not supported by any of
the values in the domain of the other variable can be pruned.

The revision of binary constraints uses the AC 3 algorithm [Mac75] to find support
for a value. AC 3 is a coarse grained algorithm with good time and space complexity.
It was chosen because it is easier to implement than fine grained algorithms and
does not require the domain elements to be sorted as the more sophisticated AC 3.x
algorithms (cf. section 2.3.1 and appendix A.1).

A list of the variables with domains which were pruned is returned along with
the total number of times the constraint was checked to hold during revision.

The implemented algorithm is compared to other approaches to binary constraint
consistency in appendix A.1.

5.4.2 all different constraints

During the revision of all different constraints, local consistency of the binary decom-
position of the constraint is enforced [GSW99]. The original algorithm described in
[vH01] has been slightly modified. Additionally, a satisfiability check is performed
after constraint revision. This check does not increase the run time complexity of
the algorithm, but enables to determine inconsistency even if no variable is assigned
and all domains contain more than one element.

Constraint revision of all different constraints assembles a list of all assignments
to variables involved in the constraint and prunes these values from the domains of
all unassigned variables involved in the constraint. Values which have been assigned
to a variable can not be assigned to any other variable involved in the constraint
because that would violate the requirement that all assignments have to be different.
Therefore, all assigned values can be pruned from the domains of all unassigned
variables. Similarly, all values contained in domains of size one of unassigned
variables can be pruned from the domains of the other unassigned variables.

The domains of assigned variables could potentially be pruned as well, but since
the purpose of pruning is to reduce the search space and no search is performed
with assigned variables, this would be wasted effort.

An additional check ensures that only the domains of variables which contain
at least one of the values to prune are processed and added to the list of revised
variables.

After pruning is complete, the satisfiability of the constraint is checked. If there
exists an assignment to all variables such that the constraint holds, the cardinality
of the union of the domains of all unassigned variables must be at least as big as
the number of unassigned variables. In other words, for each unassigned variable
there must be at least one distinct value. If there are fewer values than unassigned
variables, a domain wipe out is signalled to the calling function. The algorithm uses
Hall’s Matching Theorem [Hal35].

The revise method requires O(n) time to partition the list of involved variables
in assigned and unassigned variables, where n is the number of variables involved
in the constraint.

It takes O(n) time to assemble the list of assigned values. This is achieved by
collecting all assigned values and merging them with an initially empty set. Ruby
implements sets with hash tables; therefore merging one value into the set is O(1).
At most n values are added to the set, so the run time is O(n).

Filtering the unassigned variables which would not have any values pruned from
their domains requires O(n2) time. The number of unassigned variables is bound



60 constraint problem solver library

by O(n), so iterating over them is, too. During each iteration, it is checked whether
any of the values to prune is contained in the domain of the variable. The number
of values to prune is at most n and the method to check for inclusion of any value
iterates over all values passed to it in the worst case. Therefore, for each one of
a maximum of n variables, a maximum of n values is tested for inclusion in the
respective domain.

The pruning process requires O(n2) time. It iterates over the list of unassigned
variables with domains to be pruned; the size of this list is at most n. For each
variable, each value from the list of values to prune is removed from its domain. A
single removal requires O(1) time as domains are implemented as sets. The list of
values to prune contains at most n items.

After the initial pruning, a list of variables with domains of size one is gathered in
O(n). For each of those variables, the value from their domain is removed from the
domains of all other unassigned variables. If the size of the domain of a variable is
one after pruning, it is added to the list of variables to process. This part requires
O(n2) run time – iterating over the list of unassigned variables is O(n); this is done
at most n times, once for every variable with domain size one.

The check for satisfiability assembles the union of the domains of all unassigned
variables in O(n ·m) time, where m is the cardinality of the largest domain of all
unassigned variables. This is done by iterating over the list of unassigned variables
and for each one merging the values from the domain with an initially empty set in
O(m).

Therefore, the time complexity of the revise method is O(max(n2,n ·m)). The
space complexity is O(n+m) because only a list of values to prune, limited by the
cardinality of the largest domain, and lists of assigned and unassigned variables
and variables with domain size one, all limited by the number of variables, are
maintained.

The implemented algorithm is compared to other approaches to consistency of
the all different constraint in appendix A.2.

5.4.3 tuple constraints

The revision of the tuple constraint differentiates between two cases – the list of
allowed or disallowed tuples is known.

First the list of variables involved in the constraint is partitioned into assigned and
unassigned variables. If the list of allowed tuples has been specified, the tuples which
contain the current partial assignment are assembled into a list. If the disallowed
tuples have been given, all the tuples which contain any value from the current
assignment are gathered. More formally, the procedure for allowed tuples computes
the intersection of the sets of tuples which contain the assignment to a variable for
all assigned variables while the procedure for disallowed tuples computes the union
of the same sets.

For every unassigned variable, a list of values which can be pruned from its domain
is gathered. The assignments to the variable from the list of tuples assembled in
the previous step are collected. If disallowed tuples have been specified, this list
is the list of values to prune from the domain. If allowed tuples have been given,
the list constitutes the allowed assignments. The values which can be pruned from
the domain are all values which are not in this list. They are computed with the set
difference between the domain and the list of assignments from the list of tuples.

If there are values to prune from the domain of an unassigned variable, it is added
to the list of revised variables. If a domain wipe out occurs during the pruning



5.4 constraint revision 61

of a variable, constraint revision stops and the wipe out is signalled to the calling
method.

The revise method requires O(n) time to partition the list of involved variables
in assigned and unassigned variables, where n is the number of variables involved
in the constraint.

The list of tuples which contain the current assignment is assembled in O(n · t),
where t is the total number of tuples. For each assigned variable, the list of tuples is
traversed and those which contain the current assignment are collected. The size of
this list is bound by the total number of tuples t.

The prune step iterates over the list of unassigned variables. The size of this list is
bound by n. During each iteration, the assignments from the list of tuples assembled
in the previous step are gathered. The size of the list of tuples to consider is bound
by t. The actual pruning of the values is done in constant time.

Therefore, the time complexity of the revise method for tuple constraints is
O(n · t). The space complexity is O(n+ (t ·m)), where m is the maximum domain
size. The list of variables is partitioned, the new lists require O(n) space. The list of
values to prune is bound by the number of tuples times the maximum domain size,
as each tuple might forbid all values from a domain.

The maximum number of tuples is n ·m. Substituting this expression for t, the time
complexity can be rewritten as O(n2 ·m) and the space complexity as O(n+n ·m2).

The revision of tuple constraints is completely independent from the domain
size, although its complexity can be expressed in terms of the domain size. This is
a notable difference to other implementations of constraint solvers which do not
differentiate between intensional and extensional representation of constraints (cf.
definition 2). The separate treatment yields significant performance improvements
especially for problems with large domains and few allowed or disallowed tuples.
Allowed and disallowed tuples are complementary for finite domains, thus the
representation which specifies fewer tuples can be chosen for every particular
problem.

A similar procedure for handling extensionally specified constraints regardless of
their arity has been proposed in [BR97].

5.4.4 one-of-equals constraint

The revision of the one-of-equals constraint only needs to perform work if exactly one
of the variables involved in it has no value assigned to it and all the other variables
have values different from the value requested assigned to them. If an assigned
variable has the value requested assigned to it, no values can be pruned as the
one-of-equals constraint does not impose any further restrictions on the assignments.
If the value requested has been assigned to no variable and there is more than one
variable unassigned, either of those variables can be assigned the requested value
and therefore no other values can be pruned from their domains.

The revision of the constraint is a straightforward process. If the condition
explained above applies, the unassigned variable is retrieved from the list of variables.
The list of values which can be pruned from its domain are all the values in its
domain except the requested value. If the domain of the unassigned variable contains
only the requested value, the list of values to prune is empty.

If there are values to prune from the domain of the unassigned variable, it is added
to the list of revised variables. If a domain wipe out occurs during the pruning,
constraint revision stops and the wipe out is signalled to the calling method.



62 constraint problem solver library

The time complexity of the revise method is O(n), where n is the number of
variables involved in the constraint. The traversal of the list of variables to look for
unassigned variables and assigned variables with the requested value is linear in
time. All other operations only involve the modifications of sets and can be done in
constant time.

The method requires constant space, as there are no auxiliary data structures
needed to revise the constraint.

5.5 Tests and Package Management

There are tests for all components of the system. The constructors of all the classes are
tested with valid and invalid parameters, the most important methods are invoked
with valid and invalid arguments and their return values checked. Different use
cases are simulated and verified. The tests amount to a comprehensive specification
of desired and undesired behaviour in various situations.

The tested functionality ranges from basic methods, such as the addition of a value
to a domain, to high-level concepts, such as the solution of a constraint problem. The
correctness of the implementation of algorithms is verified and the proper handling
of the data entities ensured.

All tests are grouped together in a test suite. When invoked, it scans the current
directory for all files that follow the naming conventions for test files and runs them.
The advantage over running the tests individually is that the output of test runs is
combined.

A Rakefile provides tasks to run the tests, create the documentation, and assemble
the source files into a Ruby gem.

5.6 Limitations

Although the library is meant to be as unspecific as possible to particular problems,
there are limitations due to architecture and design decisions.

The objective function which assesses the “goodness” of a solution can not be
specified when a problem is created. The merit is always determined by the sum
of the merits of the individual variable - assignment pairs (cf. section 5.2.11). This
follows definition 36.

Domains have been implemented as sets. Most recently developed algorithms to
enforce and maintain arc consistency require the domains of variables to be ordered
[BR01] [YY01] [LBH03]. To use these algorithms, the implementation of domains
needs to be changed to ordered sets or arrays.

The more sophisticated algorithms for revision of the all different constraint require
the domains of the variables to be intervals of numbers [Pug98] [MT00] [LOQTvB03]
[Lec96]. While the current implementation allows intervals to be domain elements,
changes would be required to be able to employ these algorithms properly.

The implementation of soft constraints does not exploit the specific characteristics
of soft constraints to filter domain values but runs the solver on a relaxed version of
the problem with constraints removed.

Real-time constraint problems with a very small time frame might not terminate
in time because of the granularity of the time checks. For soft constraint problems
which require a lot of constraints to be disregarded before any solution at all can
be found, the solver might drop a large number of additional constraints at the
beginning when processing a relaxed problem because only little time remains to
solve the problem.



5.6 limitations 63

The implementation of real-time constraint satisfaction was not thoroughly tested
as the results depend on the particular machine used, the execution environment
and a lot of external influences. The time limits given for finding a solution should
be carefully examined for every problem.



64 constraint problem solver library



6
C O N S T R A I N T P R O B L E M S O LV E R S O A P W R A P P E R

This chapter describes the SOAP Web Service which provides an interface to the
constraint problem solver library. It discusses the architecture of the wrapper and
the limitations of the implementation.

6.1 Architecture

The SOAP server uses the SOAP4R1 library. As the latest version of the library has
stability issues, the version which comes bundled with Ruby is used instead.

SOAP4R implements the SOAP 1.1 standard [SOA].
The wrapper package consists of

• a library script which implements a standalone SOAP server,

• the Web Services Description Language (WSDL) file which describes the inter-
face to the server, and

• two control scripts which allow the server to be run in the foreground and as a
daemon.

The WSDL was not integrated with the SOAP server, but used as a standalone file.
In a production environment, the web service should be integrated with existing
web services infrastructure and the WSDL served the same way the WSDLs for the
existing services are provided.

The structure of the SOAP server is illustrated in figure 18.

6.1.1 library script

The library script uses the constraint problem solver gem to solve constraint satisfac-
tion and constrained optimisation problems. The main class inherits the methods to
set up a server and handle requests from the StandaloneServer class of the SOAP4R
library. On initialisation of the server, a new constraint problem solver object is
created and one method, solve, is added to the server. This method requires the
following arguments,

• a list of domains,

• a list of variables,

• a list of constraints,

• a mapping from domain values to merit for a solution,

1 http://dev.ctor.org/soap4r

65

http://dev.ctor.org/soap4r


66 constraint problem solver soap wrapper

Constraint Prob-
lem Solver Library

SOAP Server
Library

Control Scripts

WSDL

Client

start/stop service definition

problem

solution

Figure 18. Architecture of SOAP Server

• a boolean indicating whether all solutions or only the first solution to the
specified problem should be returned,

• a number specifying the maximum allowed cost of constraint violations,

• the maximum time allowed for finding a solution in seconds, and

• a boolean specifying if debug mode is on.

The implementation of the solve method converts the simple data structures
received from the SOAP client into the classes which the constraint problem solver
requires as input. After a new problem instance has been created, it is processed by
the solver library. The result returned by the library is converted into simple data
structures which can be passed back to the client via SOAP.

SOAP4R uses the Log4r2 library to log the output of the solver. The log is set up
automatically when the server is started. By default, the log messages are discarded.
If debug mode is on, the messages are gathered into an array and included in the
response. Log4r does not support logging messages to arrays; therefore the class
Array has been extended with the write method which Log4r uses to log messages.
The modified Array class is substituted for the default Log4r logger.

Only the lists of domains, variables, and constraints are explicitly checked for
errors. If either of these lists is empty, a SOAP error will be sent back to the client.
Errors in the problem definition will result in wrong solutions to the problem and
should be detected by the client. Structural errors in the request will be detected by
the SOAP library.

The SOAP layer is implemented entirely in SOAP4R. No specification of transport
mechanism, parsing, or serialisation is required in the server. Therefore, no explicit
dependencies on a particular SOAP library exist. Even the exchange of SOAP for
a different protocol would be easily possible, as the main part of the server is
concerned with the conversion of simple data structures which can be serialised by
any web service protocol into more complex data structures.

2 http://log4r.sourceforge.net/

http://log4r.sourceforge.net/


6.1 architecture 67

6.1.2 wsdl

The WSDL which describes the SOAP interface to the server is an XML Schema
document. It defines the data structures and types required in requests and given
in responses. Additionally, the interface methods and the server parameters are
specified.

For each of the lists passed to the service, a special type ArrayOf... is derived
from the SOAP Array type. This ensures that only lists containing the right data type
are passed to the service. The derived types do not allow to specify the minimum
number of elements in the array or non-emptiness, therefore, explicit checking for
the required number of elements is done in the service code.

The abstract constraint type with its four instantiations binary constraint, all
different constraint, tuple constraint, and one-of-equals constraint is mirrored in the
definition of the web service. A constraint must have exactly one of binary constraint,
all different constraint, tuple constraint, or one-of-equals constraint as attribute.
The cost of violation of the constraint is an attribute of the abstract constraint type
and therefore common to all types of actual constraints. The encapsulation of
actual constraints into elements of an abstract constraint type adds overhead to the
description, but also the flexibility to handle the abstract constraint type at higher
levels without knowing about the particulars of an actual constraint.

To map domain value to merit for a solution, a map data type is defined. It is
an XML wrapper around the elements of a map with key and value attributes. A
similar data structure is used to represent solutions as mappings from variable name
to variable value.

Every element in the defined data structures is quantified, i.e. the minimum
and maximum number of times it is expected to occur are specified. This rigid
definition of the service interface enables both client and server to do extensive
structural verification on request and response before processing it. The thorough
error checking reduces the likelihood of wrong solutions to constraint problems
because of syntactical errors in the problem definition.

The SOAP4R library does not enforce the quantifications though.

The SOAP server configuration parameters have to be duplicated in the WSDL
and server scripts because SOAP4R provides no means of retrieving this information
from a WSDL document. The interface of the service is specified in the WSDL only
for both server and client.

The WSDL specification [WSD] does not allow messages to have optional parts.
Therefore, the mapping from domain value to merit for a solution has to be specified.
It may be empty though. Likewise, the booleans indicating the required number of
solutions and if debug mode is on are required. Setting them to false produces the
default behaviour, i.e. all solutions to the given problem are returned and no debug
output is provided.

6.1.3 control scripts

The control scripts provide an interface to the library script which implements the
server. They can be called directly from the command line when the server package
has been installed and will start the SOAP server with the parameters specified in
the WSDL.

The first script, ConstraintSolverServer, creates a new instance of the standalone
SOAP server defined in the library script and starts it. The process runs in the
foreground and can be controlled directly by the user who started it.



68 constraint problem solver soap wrapper

The second script, ConstraintSolverServer-daemons, uses the daemons3 library
to run the first control script in the background. The daemons library offers conve-
nient means to start and stop the server and takes care of logging. The system-wide
temporary directory is used to store the log and accounting information for the
daemonised process.

6.2 Tests and Package Management

The SOAP server comes with a set of functional tests which create a new server, set
up a client to send a problem definition, and verify that the returned solution is
correct. The functional tests are similar to those of the constraint solver library, but
not as extensive. The main goal of the tests is to verify the interface to the solver, not
that the solver itself is functioning correctly.

A Rakefile at the top level provides tasks to run the tests, create the distribution
package and generate the documentation for the code.

6.3 Limitations

A few limitations of the SOAP4R library became apparent while implementing the
server.

The errors caused by faulty WSDLs often give cryptic error messages and do not
provide sufficient information to determine the cause of the problem. A lot of the
current WSDL was verified by trial and error. Some parts of the WSDL, such as the
quantifiers for the elements, are ignored by SOAP4R.

Nested sequences and choices of elements are not allowed, therefore the common
element of constraints, the cost of violation, is included in the choice between binary,
all different, tuple, and one-of-equals constraint. SOAP4R allows more than one of
the elements specified in a choice to appear.

The WSDL specification does not support optional message parts, therefore all the
parameters have to be given when calling the solve method.

6.4 Use of the Interface

The SOAP service is intended to be used by software engineers who do not neces-
sarily have a background in constraint programming or Artificial Intelligence. The
interface deliberately only provides means of defining problems and solving them
and not a lot of parameters to tweak, such as specific algorithms employed to solve
the problem or similar in-depth configuration of the solver.

The user interface follows the “model and run” paradigm proposed in [Pug04]. It
elaborates on the approach by not only offering a standard format for in- and output,
but by integrating it with technologies commonly not found in Artificial Intelligence
programming. Web services are ubiquitous in software engineering however, so a
software engineer will have little trouble using the SOAP interface and integrating
the service with existing applications.

The development of contemporary user interfaces to constraint programming
systems and simplifying their use for non-specialist users will enable the application
of Artificial Intelligence techniques to new problems and facilitate research and
development of new methods for solving hard problems.

3 http://daemons.rubyforge.org/

http://daemons.rubyforge.org/


7
W E B U S E R I N T E R FA C E

This chapter introduces the web user interface to the constraint problem solver. It
will examine this part of the system in detail and discuss the implementation, design
decision and features.

7.1 Architecture

The user interface uses the Camping web framework1. Camping is written in Ruby
and was inspired by Ruby on Rails2. Unlike Rails, there is no need to set up a
specific directory structure and skeletons for the different parts of the application.
The whole application can be implemented in a single file and enables developers to
rapidly prototype web applications. This is why Camping was chosen over Ruby on
Rails.

Camping is a very small and lightweight framework which can be integrated with
a number of popular web servers. It is written entirely in Ruby and makes extensive
use of the features of the language.

Camping uses the Model-View-Controller (MVC) design pattern [Bur92]. The
application is separated into the data model, the controller and the view. There
are specialised classes for each part – the model manages the domain specific data
and the state of the application, the controller responds to user interactions by
sending commands to model and view, and the view manages the HTML output
and presentation.

The advantage of this approach is that the individual components are only loosely
coupled and can easily be exchanged with components which provide a similar
interface – e.g. a model which uses a different database or a view which renders its
output with a window toolkit. There is a strict separation between the functional
modules of a system, making them easier to understand and maintain.

7.1.1 data model

The Camping application uses a SQLite3 database to store the data used to define
constraint satisfaction problems to solve. SQLite is a Structured Query Language
(SQL) database engine which uses in-memory databases and requires no database
server. It was chosen because there are no external dependencies and requirements to
be set up before the application can be run. The expected volume of the data for this
application is very small, as only campaign and slot data for demonstration purposes
is stored. Therefore, the resources the database needs and query performance will
not be issues to consider.

1 http://code.whytheluckystiff.net/camping/
2 http://www.rubyonrails.org/
3 http://www.sqlite.org/

69

http://code.whytheluckystiff.net/camping/
http://www.rubyonrails.org/
http://www.sqlite.org/


70 web user interface

The data model is illustrated in figure 19.

Name

Value Campaign

scheduled

Slot Name

Value

n

m

Figure 19. Entity-Relationship Diagram [Che76] of the Data Model of the Web User Interface

Camping provides facilities for setting up a database when the application is run
for the first time, as well as migrating earlier versions of the data model to the current
one. This feature is used to provide means of creating the database schema and
populating the database with example values. When the application is run for the
first time, this is executed. Most of the installation and setup is done automatically
and very little user intervention is required.

7.1.2 controller

The controller retrieves the campaigns and the slots they are scheduled in from
the database and passes them on to the view component to generate a form if no
problem definition has been posted to the application. Camping provides transparent
access to the database via ActiveRecord4. For each entity in the database, a class
which inherits from the ActiveRecord base class is defined in the model. Data can
be accessed through static methods of these classes. The retrieved data is saved in
variables such that the view component can access it.

After a problem description has been posted, the controller

• retrieves data from Amazon.com for the selected campaigns to determine
which products are available to be promoted,

• collects the input data and assembles it into the data structures needed for the
SOAP call,

• creates a connection to the SOAP server and sends the problem description,
and

• receives and checks the solutions to the problem.

4 http://ar.rubyonrails.com/

http://ar.rubyonrails.com/


7.1 architecture 71

The input data is separated into variables, the slots, and their domains, the
campaigns scheduled in the slot. The domain for each slot variable consists of a
name and an array of values. Each slot variable consists of a name, a reference to a
domain, and a number designating the merit for a solution. The merit is stored in
the database and can not be modified by the user. The slot variables are assembled
into an all different constraint, i.e. no campaign must be shown twice. The cost of
violating this constraint is specified by the user; the default value is 0.2.

If the user specified one or more campaigns to be shown at least once on the
input page, one one-of-equals constraint for each of those campaigns is added.
This constraint requires at least one of the slots to display the campaign. The cost
of violating the constraint is set to be ten times the maximum cost of constraint
violations allowed, i.e. the constraint is modelled as a hard constraint.

The uniqueness of products promoted is requested by introducing additional
variables, domains, and constraints. Each slot has three places for products, therefore
three new variables are added for each slot. The domain of the variables is the list
of products which may be promoted by all campaigns. This list has been retrieved
before by the call to Amazon.com. For each place variable, a binary tuple constraint
with the slot variable the place is contained in is added. This constraint restricts
the domain of the place variable to the products which may be promoted through
the campaign assigned to the slot variable. All these constraints are modelled as
hard constraints by setting the cost of violation to ten times the maximum cost
of constraint violations specified by the user. Finally, a constraint which requires
all place variables to be different is added. The cost of violating this constraint is
specified by the user; the default value is 1.0.

After that a mapping from campaign to merit of the campaign for a solution is
created. The merit is stored in the database and can not be modified by the user. The
boolean specifying that only the first solution should be computed is always set to
true. Requesting only the first solution reduces the time the solver runs significantly
and only one solution is shown anyway.

The maximum allowed cost of constraint violations is retrieved from the input
form; the default value is 0.5. The time limit for finding a solution to the problem is
specified by the user; the default value is 0.5 seconds. This limit only applies for the
run of the solver itself, the SOAP call adds overhead to the operation. The problem
description and solution have to be marshalled into and demarshalled from XML,
the objects converted from and to simple data structures, and the request has to be
transmitted between the frontend and the SOAP server.

The debug argument to the call is set to true if the user selected the debug check
box, false otherwise.

The connection to the SOAP server is established by calling the solve method
which is created automatically by SOAP4R5 upon reading the WSDL of the web
service with the parameters defined in the WSDL. No further specifications of service
or supported methods are necessary. The interface to the SOAP service is updated
automatically as the WSDL is updated. The result of the service call is checked
whether it contains a solution and the time the call took is recorded. This is not only
the time the solver needed to find a solution, but also the overhead introduced by the
SOAP messaging, i.e. XML marshalling and demarshalling. If there is no solution,
the class member variable holding the solution is set to a null value. If there is a
solution to the problem, it is stored in the member variable. The first solution is
guaranteed to be the solution with the highest merit (cf. section 5.3.4). As the goal
is to maximise the value of the page and only one page is displayed, only the first

5 http://dev.ctor.org/soap4r

http://dev.ctor.org/soap4r


72 web user interface

solution is required.
The controller assembles an additional data structure which holds the mappings

from slot to list of products to promote. This mapping is assembled by collecting
the assignments of the auxiliary place variables and grouping them by slot. The
auxiliary variables are removed from the solution before it is forwarded to the view
component.

If the service returned the log of the run of the solver, it is saved in a member
variable for display.

The mechanisms and libraries used to interface with Amazon’s web service will
be explained in detail in section 7.2.

7.1.3 view

The view constitutes the presentation layer of the application and is used to display
the form which allows the user to specify the problem and render the page which
demonstrates the solution to a problem.

The HTML of the web page is generated with Markaby6. It is a domain specific
language (DSL) for writing HTML code in Ruby. The elements of the DSL are HTML
tags. They are assembled into a page by an HTML builder. Markaby acts as an
abstraction layer between the view and the rendered HTML output. It takes care of
most of the details; especially the creation of tables and other nested structures is
simplified. HTML headers and footers are inserted automatically.

Figure 20. Form to specify Problem to solve

6 http://code.whytheluckystiff.net/markaby/

http://code.whytheluckystiff.net/markaby/


7.2 interface to amazon.com 73

Figure 21. Result Page with rendered Solution for Input in Figure 20

7.2 Interface to Amazon.com

For each campaign in the database, the application calls Amazon E-Commerce
Services (ECS)7 to retrieve item data. It uses the Ruby/Amazon8 library to make
the service calls. The library provides a Request class which can be used to perform
various searches for products – similarities, items from people’s wish lists, books
with a specific title, or author. For the returned data, a Product class is implemented.
This class provides access to the attributes of the item. Ruby/Amazon has many
more features, only the ones used are described here.

Amazon E-Commerce Services limit the request rate to one per second. The library
takes care of this and pauses automatically after each request. This limitation does
not affect the development of the user interface, but the result page will be rendered
more slowly.

The interface to Amazon.com has been added to the application to make the
demonstration more realistic. Real products are advertised and the links go to real
product pages on the Amazon.com website.

The following campaigns have been implemented,

wishlist A random selection of three products from a wish list is displayed.

recommendations A random selection of three products which are similar to
one in a set of seed items – which the user is interested in – is displayed.

bestsellers A random selection of three best selling books is displayed.

7 http://www.amazon.com/E-Commerce-Service-AWS-home-page/b?node=12738641
8 http://www.caliban.org/ruby/ruby-amazon.shtml

http://www.amazon.com/E-Commerce-Service-AWS-home-page/b?node=12738641
http://www.caliban.org/ruby/ruby-amazon.shtml


74 web user interface

The addition of further – especially personalised – campaigns would require access
to more of Amazon’s data. The current implementation serves as a prototype to
show what could be done and is not intended to be an accurate, exhaustive, or
promotional successful representation of the real Amazon.com web site.

The activities performed by the application are summarised in figure 22. For
simplicity reasons, it only considers the run of the application with debug mode off.

Get data from database

Call to Amazon.com

Display form

Convert input data

Call to SOAP server

Post process solution

Display result page

solution no solution

Figure 22. Activity Diagram for the Web User Interface

7.3 Tests and Package Management

The web interface has a test to make sure that the WSDL of the constraint solver
service is what it expects. This test safeguards against unnoticed changes in the
interface to the web service and signals the addition of new features.

There are no other tests for the web user interface, as it requires the constraint
solver service for most of its functionality and can not be tested standalone.

A Rakefile at the top level provides tasks to run the tests, create the distribution
package and generate the documentation for the code.

A FastCGI (FCGI) script, dispatch.rb, is included in the distribution for easy
integration with existing web servers.



7.4 full example 75

7.4 Full Example

This section gives a full example for the rendering of a page. The problem and
solution are expressed in terms of the model described in chapter 3, the input data
is illustrated in figure 20 and the result in figure 21. The products are designated by
their Amazon identifier.

The page consists of three slots,

Xs = 〈center− 1, center− 2, center− 3〉 .

Each slot has three different places for product displays. Therefore, the variables are

X = 〈center− 1, center− 1_1, center− 1_2, center− 1_3,
center− 2, center− 2_1, center− 2_2, center− 2_3,
center− 3, center− 3_1, center− 3_2, center− 3_3〉.

There are three campaigns, wishlist, recommendations, and bestsellers. Of the
three campaigns, two have been selected for each slot,

dc = {wishlist, recommendations}.

The sets of the products which each campaign may promote is

Swishlist = {0972466304, 1590593898, 020161622X, 0972466320,
0805078533, 0972466312, 0735619670, 013143635X,
0444875085, 1565927249, 1931836052, 0131103628}

Srecommendations = {0735605351, 0932633439, 1572316217, 0201485672,
020161622X, 1556159005, 0201835959, 0201633612,
0596007124, 0735621632, 0131315099, 0201433079,
013937681X}.

The set of all products which may be promoted is

ds = Swishlist ∪ Srecommendations

The domains of the variables are

D = 〈dc,dc,dc,ds,ds,ds,ds,ds,ds,ds,ds,ds〉

The value of the slots is

value(center− 1) = 3

value(center− 2) = 2

value(center− 3) = 1.

and the value of the campaigns

value(wishlist) = 3

value(recommendations) = 2.



76 web user interface

The constraints which link displayed products to assigned campaigns are specified
by the allowed tuples;

Ccp = {〈center− 1, center− 1_1, {〈wishlist, 0972466304〉,
〈wishlist, 1590593898〉,
〈wishlist, 020161622X〉,
〈wishlist, 0972466320〉,
〈wishlist, 0805078533〉,
〈wishlist, 0972466312〉,
〈wishlist, 0735619670〉,
〈wishlist, 013143635X〉,
〈wishlist, 0444875085〉,
〈wishlist, 1565927249〉,
〈wishlist, 1931836052〉,
〈wishlist, 0131103628〉,
〈recommendations, 0735605351〉,
〈recommendations, 0932633439〉,
〈recommendations, 1572316217〉,
〈recommendations, 0201485672〉,
〈recommendations, 020161622X〉,
〈recommendations, 1556159005〉,
〈recommendations, 0201835959〉,
〈recommendations, 0201633612〉,
〈recommendations, 0596007124〉,
〈recommendations, 0735621632〉,
〈recommendations, 0131315099〉,
〈recommendations, 0201433079〉,
〈recommendations, 013937681X〉}〉,

. . .}.

The set of constraints is

Cdcp = {AllDifferent(center− 1, center− 2, center− 3),
AllDifferent(center− 1_1, center− 1_2, center− 1_3, center− 2_1,
center− 2_2, center− 2_3, center− 3_1, center− 3_2, center− 3_3}
∪Ccp.

The cost of violating the first constraint is ϕ(AllDifferent(center − 1, center −
2, center− 3)) = 0.2. The cost of violating the constraint which requires all products
to be different is 1.0 and the maximum cost of constraint violations allowed is v = 0.5.

An additional constraint requires at least one slot to show the recommendations
campaign,

C = Cdcp∪ {OneOfEquals({center−1, center−2, center−2}, recommendations}.

The time limit for finding a solution is 0.5 seconds.



7.4 full example 77

The constraint which requires all campaigns to be different is dropped early in the
solution process as there are only two campaigns available for three slots. All the
other constraints can be satisfied. The one-of-equals constraint prevents the wishlist
campaign from being shown in all slots; there are enough distinct products available
for wishlist to make showing it everywhere a feasible solution.

A solution to the problem which involves constraint violations is

assignment(center− 1) = wishlist

assignment(center− 2) = wishlist

assignment(center− 3) = recommendations

assignment(center− 1_1) = 013143635X

assignment(center− 1_2) = 0972466320

assignment(center− 1_3) = 1590593898

assignment(center− 2_1) = 0805078533

assignment(center− 2_2) = 0972466304

assignment(center− 2_3) = 020161622X

assignment(center− 3_1) = 0131315099

assignment(center− 3_2) = 0201433079

assignment(center− 3_3) = 013937681X.

The value of the page is

v(p) = (3 · 3) + (3 · 2) + (2 · 1) − 0.2 = 16.8.

The pages in real applications are much larger than the example presented here.
Usually there will be more than 50 variables and dozens of constraints in the
proposed framework. This shows that rendering a website is indeed a problem of
considerable size and constraint programming techniques are adequate.



78 web user interface



8
S U M M A RY

8.1 Future Work

This section gives an overview of directions for future research and further explo-
ration of the methods and concepts introduced in this work.

8.1.1 constraint model

The model which uses constraint programming to generate the web site of an
online retailer as detailed in chapter 3 provides most of the features required in the
description of the problem in chapter 1. Some of the more sophisticated aspects have
not been modelled though.

The model does currently not take external events and availability of data about
a customer into account. It is assumed that all data is known when the solving
starts, i.e. the domains are static sets of values and not dynamically influenced by
completed service calls or similar. If the solution to the constraint problem and the
available data could be determined in parallel, less time would be required to find a
solution.

Limits on available data could be modelled by starting with the largest possible
domains and introducing more constraints into the problem as the available data
becomes known. Problems with this approach are that the initial domain size would
potentially be very large, requiring lots of space and computing time, and that in
some cases no data can be provided before the completion of some service calls,
making this approach infeasible.

Another extension would be to model the values of slots and campaigns more
accurately. Every customer experiences promotions differently and the intrinsic value
of every campaign is different for different customers. There are lots of trade-offs
involved, for example a campaign might sell only few high-value items, e.g. plasma
TVs, but still be more valuable than a campaign which sells something almost every
time it is shown but only low-value items, e.g. discounted DVDs. it might be better
to show the campaign which sells things more often even if it is less valuable.

There are different ways to incorporate issues like this into the model. The values
of slots and campaigns could be modelled as dynamic values which are different for
every customer according to the data available. The framework of soft constraints
could be extended to dynamically adjust the costs of constraint violations or use
fuzzy values instead of fixed ones.

The tuple constraint allows to model many more things specific to the retailer
policy, e.g. not to promote DVDs on pages of the book store, not to promote
more than one article of a certain product category, or to promote certain products
together with matching accessories. The campaigns themselves could be modelled
as constraints.

79



80 summary

8.1.2 constraint solver

The constraint solver library described in chapter 5 introduced a number of new
concepts which provide directions for future research.

The library is able to handle valued soft constraint problems, but does not employ
algorithms specific to soft constraints. Instead, a new, relaxed problem is solved for
each soft constraint violated. Specialised algorithms for enforcing and maintaining
arc consistency would eliminate the need to solve several problems and significantly
increase the performance. Current research has already developed a number of
filtering algorithms for soft constraints [PRB01] [vH04].

The integration of soft constraints with real-time constraint satisfaction is an
entirely new concept. There are many things left to research; the fundamental
concept has only been explained and not proofed, the model only integrates with
valued soft constraints, and the performance of the implementation leaves room for
improvement (cf. appendix B).

An interesting challenge is to integrate the model of real-time constraint satisfac-
tion with distributed constraint satisfaction. Parallelising the search for a solution
should provide better estimates for how long it takes to find a solution, as several
branches of the search tree can be explored at the same time. It should also enable
the solver to determine a solution more accurately within the time limit.

Distributed constraint satisfaction does not only improve the performance of the
solver, but also allows separated agents to collaborate. No aggregation of all the
data required to model the problem is necessary, saving time and work [YDIK98].
Distributed constraint satisfaction is an active area of research itself [CDK91] [YH00]
[HY97] [BS06] [Ham06].

The constraint solver library offers no facility to process textual descriptions of
problems or a user interface. The implementation of these features would signifi-
cantly improve the usability of the solver.

Another issue is the performance of the solution process. Some other solvers (cf.
table 4) provide a significantly better performance. Only few algorithms to enforce
and maintain arc consistency have been implemented. A more comprehensive library
of algorithms would enable the user to choose the algorithm which is best for the
specific problem.

8.2 Conclusion

The aim of this work was to model the problem of generating a web site as a con-
straint problem and provide a prototypical implementation to solve such problems.

The first chapters gave an in-depth description of the problem, the constraints
involved, and the theoretical background. Constraint programming was introduced
and definitions for the most important concepts, including constraint satisfaction
problems, constrained optimisation problems, and soft constraint problems were
given. The definition of constraint satisfaction problems given is different from the
ones usually found and corrects an inaccuracy in other definitions. In addition to
constrained optimisation problems, extended constrained optimisation problems
were introduced and defined. They are a new concept to provide better means of
modelling the problem which was subject to this thesis.

A comprehensive review of literature available on constraint programming facil-
itated a detailed summary of known algorithms, frameworks, and concepts. Ref-
erences to literature which explains techniques only mentioned more in-depth are
found throughout this work.



8.2 conclusion 81

For the first time, the concept of real-time constraint satisfaction with time limit
was introduced. A general framework was provided and integrated with the existing
framework of valued soft constraint satisfaction problems. This work provided defi-
nitions, suggested an instantiation of the framework, and evaluated its performance.
The described algorithms and concepts are unique to this thesis and constitute a
major contribution to the constraint programming research community.

The problem of rendering a web site using constraints was concisely presented,
formal definitions of the involved entities and concepts were given and illustrated
by several examples. An initial simple model was developed into a full-featured one
by successively applying constraint programming techniques to a real-life problem.

The implementation of the constraint solver library uses no existing libraries
but was done from scratch using an own approach to architecture and design.
It is the first implementation of a constraint programming system in Ruby and
provides a feature set which is not even found in most commercial solvers after
considerably more development. The library has been documented comprehensively
and the performance of the implemented algorithms evaluated extensively. It uses
a specialised algorithm of low complexity for constraints which are extensionally
specified.

The constraint problem solver library did not incorporate restrictions usually
found in other solvers, such as that the domains of variables must contain intervals
of enumerable values. The algorithms used do not rely on specific properties of
domains, variables, or constraints.

The SOAP web service interface presents a new and unique approach to integrate
constraint problem solving with contemporary communication technologies and
software engineering techniques. The implementation of the interface as a service
makes distribution and maintenance of the software easier.

The web frontend to the service illustrated the problem of rendering web sites
with constraint programming techniques descriptively and demonstratively. The
interface to a real online retailer shows the feasibility of the approach in industry
and adds to the value of the frontend as a means of demonstrating the problem and
its solution.

The implementation used standard software engineering techniques, there is
detailed documentation both of high-level concepts and implementation details.
There are extensive tests to ensure that the software is working as desired. The code
is concise, special attention has been paid to a clean separation of the interfaces,
functional separation, encapsulation and abstraction, and other principles of object
oriented software design.

The aims of this work as outlined in the first chapter have been realised. Addi-
tionally, several new and unique concepts have been identified and described, flaws
in existing definitions and techniques corrected, and comprehensive reviews and
analyses of existing technologies presented.



82 summary



Part III

A P P E N D I X





A
P E R F O R M A N C E E VA L U AT I O N O F C O N S I S T E N C Y
A L G O R I T H M S

a.1 Binary Constraints

The consistency of binary constraints is one of the best studied topics in constraint
programming. A wide variety of algorithms to enforce and maintain consistency
have been developed and investigated (cf. section 2.3.1). In addition to AC 3

(cf. section 5.4.1), a modified version of the AC 3.3 algorithm [LBH03] has been
implemented to assess the performance.

For every value in the domain of a variable, a set of values from the domain of
the other variable which are supported by this particular assignment and another
set of values which are not supported by it are maintained. These data structures
are high-level caches of constraint checks and do not need to be revised when the
solver backtracks. There is no need to maintain elaborate data structures along with
arc revision [BC94] – once the sets of supported and unsupported values have been
initialised, they never need to be revised. The information gathered during one run
of the arc consistency algorithm is reused during subsequent runs [LZBF04].

The maintained sets of supported and unsupported values enable caching of both
positive and negative checks. Instead of caching the result of a constraint check
as proposed in [LZBF04], the result is cached a layer above in the algorithm that
enforces arc consistency. This eliminates the need for explicit caching of constraint
checks. It furthermore enables the revision algorithm to process a constraint in
constant time after the auxiliary data structures have been filled. The list of values to
prune can be taken directly from the set of unsupported values for the assignment,
no computation is necessary.

The original AC 3.3 algorithm had to be modified because the implementation of
domains uses sets, i.e. there is no order imposed on the elements. The AC 3.x family
of algorithms [BR01] [YY01] [BRYZ05] [LBH03] relies on an auxiliary structure which
saves the last support for a certain value. This requires the elements of a domain to
be ordered. The implementation could be changed to use ordered sets for domains,
but that would restrict the domain elements to things which can be compared.

The modified algorithm maintains the time complexity of AC 3.3, O(ed2), where
e is the number of edges in the constraint network – i.e. the number of constraints –
and d the maximum domain size of all variables. The space complexity increases
from O(ed) to O(ed2), as for every value in every domain sets of supported and
unsupported values are stored.

The number of constraint checks is greatly reduced compared to all other AC
algorithms. Because of the auxiliary data structures, every constraint is at most
checked exactly once for every possible assignment to the variables involved in it.

85



86 performance evaluation of consistency algorithms

The upper bound of constraint checks is

n∑
i=1

xi,yi involved in ci : ‖dom(xi)‖ · ‖dom(yi)‖,

i.e. the sum of the products of the cardinality of the domains of the two variables
which are involved in the binary constraint for all constraints.

The following sections present the methodology and the results of the performance
evaluation of the two algorithms.

a.1.1 methodology

To compare the performance of the implemented algorithms, three types of problems
were examined,

• the decomposition of the all different “pathological problem” [Pug98] into bi-
nary constraints with n variables, n · (n− 1) binary 6= constraints, and domains
ranging from {1} for the first variable to {1, . . . ,n} for the nth variable,

• a problem class with n variables with identical domains of size n and n · (n− 1)
binary = constraints requiring the value of each variable to be identical to the
value of every other variable, and

• a problem class which requires the values of n variables with identical domains
of size n to be ordered ascending, i.e. to fulfil a < constraint between each pair
of consecutive variables.

The time taken to find the first solution to a problem was measured. Additionally,
the number of constraint checks was recorded.

The time required was averaged over 100 runs of the solver for a particular problem
instance. Additionally, the first ten runs were discarded to allow for caching effects
to settle. The maximum and minimum values measured were considered to create
confidence intervals. To minimise disturbance by exterior influences, the CPU time
used was measured instead of the wall clock time.

The experiments were conducted on a 1.4 GHz Intel Pentium M Processor machine
with 1024 MB RAM. The installation of Ruby was custom-compiled with optimised
compiler settings.

a.1.2 results

The measured times and constraint checks taken to solve the problems are depicted
in diagrams 23 to 25.

Figure 23 shows that although the modified AC 3.3 algorithm reduces the number
of constraint checks, the run time performance is approximately equal to that of the
original AC 3 algorithm. The constraint check cache needs to be maintained and
requires its part of the performance.

Surprisingly, figures 24 and 25 show a similar picture although the number of
constraint checks performed by the modified AC 3.3 algorithm is significantly less
than of the other algorithm. The run time performance is actually slightly worse.

In this implementation, the cost of a constraint check is very low, about the same
as a lookup in the cache. Therefore using a cache does not yield any performance
benefits, but increases the run time due to the overhead of maintaining it. Similar
results were observed in [Don04].



A.1 binary constraints 87

0

50

100

150

200

250

300

350

400

450

10 15 20 25 30 35 40 45 50

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

Ti
m

e
[s

]

C
on

st
ra

in
t

C
he

ck
s

Number of Variables

AC 3

b b b b b b
b

b

bb
AC 3.3 cache

e e e e e e
e

e

ee
AC 3 checks

b b b b b
b

b
b

b
b

AC 3.3 cache checks

e e e e e e
e

e
ee

Figure 23. Binary Constraint Performance for Solution of “pathological” Problems

The AC 3 algorithm was chosen for the implementation of the solver because the
modified AC 3.3 algorithm is more complex but does not improve the performance
for this particular implementation.



88 performance evaluation of consistency algorithms

0

5

10

15

20

25

10 15 20 25 30 35 40 45 50

0

1000

2000

3000

4000

5000

6000

7000

8000

Ti
m

e
[s

]

C
on

st
ra

in
t

C
he

ck
s

Number of Variables

AC 3

b b b b b b
b

b

b
b

AC 3.3 cache

e e e e e e
e

e

ee
AC 3 checks

b b b b b
b

b
b

bb
AC 3.3 cache checks

e e e e e e e e
e

e

Figure 24. Binary Constraint Performance for Solution of Identity Problems

0

5

10

15

20

25

30

10 15 20 25 30 35 40 45 50

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

1.8e+06

2e+06

Ti
m

e
[s

]

C
on

st
ra

in
t

C
he

ck
s

Number of Variables

AC 3

b b b b b b
b

b

bb
AC 3.3 cache

e e e e e e
e

e

ee
AC 3 checks

b b b b b b
b

b

b
b

AC 3.3 cache checks

e e e e e e e e e

e

Figure 25. Binary Constraint Performance for Solution of Ordering Problems



A.2 all different constraints 89

a.2 All Different Constraints

There are several algorithms to enforce different levels of consistency of the all
different constraint. Overviews can be found in [vH01] and [Ana04].

Recently developed algorithms achieve range or bounds consistency and assume
that the domains of the variables involved consist of an interval of values [Lec96]
[Pug98] [MT00] [LOQTvB03]. The problem class which is subject to this thesis does
not have intervals as domains, but discrete values. A mapping of these discrete
values to intervals to be able to use algorithms for range or bounds consistency would
be highly artificial and not always possible. Therefore, none of these algorithms has
been implemented.

To assess the performance of the employed algorithm to enforce consistency on the
binary decomposition of the all different constraint (cf. section 5.4.2), the algorithm
developed by Régin to enforce hyper arc consistency has been implemented [Rég94].

More sophisticated approaches to enforcing consistency, such as lazy or ran-
domised filtering [KH06], are not considered, as they would be beyond the scope of
this thesis.

The methodology and the results of the comparison are presented below.

a.2.1 methodology

To compare the performance of the implemented algorithms, three types of problems
were examined,

• dense problems with n variables with identical domains of size n,

• random problems with n variables, each with a domain of up to n random
values from the interval 1..n, and

• a variation of the “pathological problem” [Pug98] with n variables and domains
ranging from {1} for the first variable to {1, . . . ,n} for the nth variable.

All the variables were assembled into a single all different constraint and the
time taken to find the first solution to the problem measured. For the random
problems, no distinction between solvable and unsolvable problems was made. A
study [GMP+

98] suggests that although many random problems become insolvable
as the problem size increases, the effect is reduced by reasonably large domains, as
chosen here.

The methodology for conducting the measurements and the machine used were
the same as described before in section A.1.1.

a.2.2 results

The measured times taken to solve the problems are depicted in diagrams 26 to 28.
For dense and random problems (figures 26 and 27 respectively) the simple

approach of enforcing local consistency on the binary decomposition of the all
different constraint clearly outperforms the more complex approach of enforcing
hyper arc consistency. Not only is the constant overhead smaller, but the time taken
to solve a problem grows slower with increasing number of variables. The hyper arc
consistency algorithm does significantly more work during each individual revision,
but is unable to prune significantly more values than the local consistency algorithm
for these classes of problems. In fact, for dense problems, enforcing local and hyper
arc consistency results in the same values being pruned.



90 performance evaluation of consistency algorithms

0

1

2

3

4

5

6

7

10 15 20 25 30 35 40 45 50

Ti
m

e
[s

]

Number of Variables

binary decomposition

b b b b b b b b b

b
hyper arc consistency

e e e e e e
e

e
ee

Figure 26. All Different Performance for Solution of dense Problems

The class of “pathological” problems (figure 28) clearly favours hyper arc consis-
tency. This particular class of problems allows only one solution. All the values
which are not part of the solution can be pruned by enforcing hyper arc consistency
during the first revision of the constraint, i.e. the hyper arc consistency algorithm
does not perform any work after the first revision. For a small number of variables
the overhead of enforcing hyper arc consistency is too large to achieve better perfor-
mance than local consistency, but for larger problem instances local consistency of
the binary decomposition is clearly outperformed.

The nature of the problems which are subject of this thesis is closest to ran-
dom problems, therefore the algorithm to enforce local consistency on the binary
decomposition of the all different constraint was chosen for the solver.



A.2 all different constraints 91

0

0.5

1

1.5

2

2.5

3

3.5

10 15 20 25 30 35 40 45 50

Ti
m

e
[s

]

Number of Variables

binary decomposition

b b b b b b b b b

b
hyper arc consistency

e e e e e e
e

e
ee

Figure 27. All Different Performance for Solution of random Problems

0

0.1

0.2

0.3

0.4

0.5

0.6

10 15 20 25 30 35 40 45 50

Ti
m

e
[s

]

Number of Variables

binary decomposition

b b b b b b
b

b
b

b
hyper arc consistency

e e e e e e e e
e

e

Figure 28. All Different Performance for Solution of “pathological” Problems



92 performance evaluation of consistency algorithms

a.3 The Difference All Different makes

The performance differences between revising an all different constraint as one con-
straint and the binary constraints resulting from the decomposition individually has
been studied in [SW99]. The findings of this performance evaluation are consistent
with [SW99] and presented in diagram 29. It is clearly visible that enforcing and
maintaining consistency on the all different constraint outperforms the algorithms
for enforcing and maintaining consistency on the binary decomposition by several
orders of magnitude.

0.001

0.01

0.1

1

10

100

1000

10 15 20 25 30 35 40 45 50

Ti
m

e
[s

]

Number of Variables

all different hyper arc

e e e e e e e e e

e
binary constraints AC 3.3 cache

u
u u u u u u u uu

Figure 29. All Different and Binary Constraint Consistency Performance for Solution of
“pathological” Problems



B
E F F E C T I V E N E S S O F R E A L - T I M E C O N S T R A I N T S AT I S FA C T I O N

For constraint problems with real-time requirements, it is crucial that the solver
returns a solution within the specified time. The effectiveness of the implementation
of real-time constraints with regards to this quality is evaluated here.

Two classes of time limits have to be distinguished; before a solution has been
found and after a solution has been found. Both cases will be analysed, with
special emphasis on the first case. Furthermore, a distinction between soft constraint
problems and hard constraint problems will be made because of the different times
constraints are dropped.

b.1 Methodology

The performance was evaluated with two different problem classes,

• a class with n variables with identical domains of size n and n · (n− 1) binary
6= constraints requesting that the value of every variable is different from the
values of every other variable and

• a class with n variables with identical domains of size n and n · (n− 1) binary
= constraints requesting that the value of every variable is the same as the
values of every other variable.

For soft constraint problems, every constraint was assigned a random cost of
violation from the interval (1..n).

The two problem classes represent hard and easy problems. The problem class
which requires all variables to have equal values is very easy to solve, as after an
initial assignment all other values can be pruned from all domains and the solver
reaches the solution without any further constraint propagation. When all variables
must have different values, only one value at a time can be pruned. The resulting
search tree is very large and after each assignment step all domains have to be
pruned of the new value.

The time limits were determined by averaging the time required to find the first
solution to a particular problem instance over 100 runs of the solver and multiplying
it by a factor. The factor 1.5 was chosen for the time limit after a solution has been
found, the factors 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8 were chosen to represent time limits
before a solution has been found at different stages of the solution process.

The time the solver returned a solution was averaged over 100 runs for a particular
problem instance. The deviation from the time limit was recorded. Additionally, the
deviation from the time limit was recorded as a percentage of the time limit.

The experiments were conducted on a 1.4 GHz Intel Pentium M Processor machine
with 1024 MB RAM. The installation of Ruby was custom-compiled with optimised
compiler settings.

93



94 effectiveness of real-time constraint satisfaction

b.2 Results

b.2.1 time limit after first solution

The deviations from the time limit for a limit after the first solution has been found
are depicted in diagrams 30 to 33.

0

0.005

0.01

0.015

0.02

0.025

0.03

10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

D
ev

ia
ti

on
[s

]

D
ev

ia
ti

on
[%

]

Number of Variables

absolute

b b b

b

bb
relative

e

e
e e e

e

Figure 30. Deviation from the Time Limit after a Solution has been found for all different
Problems with hard Constraints

As can be seen in figures 30 and 31, the performance for all different problems
is very good. For hard constraints, the accuracy is within less than one percent
deviation from the specified time limit and improves with increasing problem size.
For soft constraints, the deviation is bigger than for hard constraints for small
problems, but still within acceptable limits. As the problem size increases, the
deviation quickly decreases to less than one percent of the specified time limit.

The performance for the identity problem depicted in figures 32 and 33 is not as
good as for the all different problem. Hard and soft constraints show an equally
bad deviation of up to almost 30%. The deviation even increases with increasing
problem size.

The accuracy for time limits after the first solution has been found depends on the
type of the particular problem. The harder the problem and the bigger the search
tree, the better the performance. The identity problem prunes most of the initial
search tree in early stages of the solution process, which appears to have a negative
effect on real-time constraint satisfaction performance.



B.2 results 95

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

10 15 20 25 30

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

D
ev

ia
ti

on
[s

]

D
ev

ia
ti

on
[%

]

Number of Variables

absolute

b b
b

b
bb

relative
e

e e e e

e

Figure 31. Deviation from the Time Limit after a Solution has been found for all different
Problems with soft Constraints

0

0.2

0.4

0.6

0.8

1

1.2

10 15 20 25 30

0

5

10

15

20

25

30

D
ev

ia
ti

on
[s

]

D
ev

ia
ti

on
[%

]

Number of Variables

absolute

b b
b

b

bb
relativee

e

e e ee

Figure 32. Deviation from the Time Limit after a Solution has been found for Identity Problems
with hard Constraints



96 effectiveness of real-time constraint satisfaction

0

0.2

0.4

0.6

0.8

1

1.2

10 15 20 25 30

0

5

10

15

20

25

30

D
ev

ia
ti

on
[s

]

D
ev

ia
ti

on
[%

]
Number of Variables

absolute

b b
b

b

bb
relative

e
e

e e ee

Figure 33. Deviation from the Time Limit after a Solution has been found for Identity Problems
with soft Constraints



B.2 results 97

b.2.2 time limit before first solution

The deviations from the time limits for limits before the first solution has been found
are depicted in diagrams 34 to 37.

10

15

20

25

30
0.3

0.4
0.5

0.6
0.7

0.8

0

0.5
1

1.5
2

2.5
3

Deviation [s]

absolute Deviation

Number of Variables Time Limit Factor

Deviation [s]

10

15

20

25

30
0.3

0.4
0.5

0.6
0.7

0.8

0

5

10

15

20

25

30

35

40

45

50

Deviation [%]

Deviation relative to Time Limit

Number of Variables Time Limit Factor

Deviation [%]

Figure 34. Deviation from the Time Limits before a Solution has been found for all different
Problems with hard Constraints



98 effectiveness of real-time constraint satisfaction

10

15

20

25

30
0.3

0.4
0.5

0.6
0.7

0.8

-3
-2.5

-2
-1.5

-1
-0.5

0

0.5
1

1.5

Deviation [s]

absolute Deviation

Number of Variables Time Limit Factor

Deviation [s]

10

15

20

25

30
0.3

0.4
0.5

0.6
0.7

0.8

-5
0

5

10

15

20

25

30

35

Deviation [%]

Deviation relative to Time Limit

Number of Variables Time Limit Factor

Deviation [%]

Figure 35. Deviation from the Time Limits before a Solution has been found for all different
Problems with soft Constraints

Figures 34 and 35 show that the performance for time limits before the first
solution has been found is comparable to the performance after the first solution
has been found for all different problems. The deviation is high for small problems
and very early termination, but for large problems and termination after half the
time required to solve the problem has passed the solver returns even earlier than
requested with soft constraint problems, denoted by the negative value. It does
not only fulfil the real-time requirements, but adds a safety margin for the calling
application. For hard constraints, the accuracy is not as good but the deviation is
still less than 10% for large problems and late termination.

The results for the identity problem for time limits before the first solution has
been found are even worse than the results for time limits after the first solution



B.2 results 99

has been found. When the solver is terminated early, it takes more than twice as
long as requested, rendering it unusable to fulfil real-time requirements under these
conditions. Even for late termination the deviation from the specified time limit is
significantly more than 10%.

The implementation language of the solver, Ruby, has a significant impact on
the performance. It does not focus on run time efficiency, so the overhead for
dispatching method calls and similar is large. For small and easy problems, it
constitutes a substantial part of the time required to find a solution. The intervals
between the time checks are too small compared to the constant overhead to fulfil
the requirements.

The main application of the real-time constraint satisfaction mechanism is the
solving of large and hard problems. Easy and small problems are often better solved
using application-specific algorithms. The accuracy of the solver for hard problems
is very good, especially because the performance increases with problem size.

Further research is required to improve the performance for small and easy
problems. The current implementation provides a solid base for further investigation
and improvements.



100 effectiveness of real-time constraint satisfaction

10

15

20

25

30
0.3

0.4
0.5

0.6
0.7

0.8

0

0.2
0.4
0.6
0.8

1

1.2
1.4
1.6
1.8

Deviation [s]

absolute Deviation

Number of Variables Time Limit Factor

Deviation [s]

10

15

20

25

30
0.3

0.4
0.5

0.6
0.7

0.8

0

50

100

150

200

250

Deviation [%]

Deviation relative to Time Limit

Number of Variables Time Limit Factor

Deviation [%]

Figure 36. Deviation from the Time Limits before a Solution has been found for Identity
Problems with hard Constraints



B.2 results 101

10

15

20

25

30
0.3

0.4
0.5

0.6
0.7

0.8

0

0.2
0.4
0.6
0.8

1

1.2
1.4
1.6
1.8

Deviation [s]

absolute Deviation

Number of Variables Time Limit Factor

Deviation [s]

10

15

20

25

30
0.3

0.4
0.5

0.6
0.7

0.8

0

50

100

150

200

250

Deviation [%]

Deviation relative to Time Limit

Number of Variables Time Limit Factor

Deviation [%]

Figure 37. Deviation from the Time Limits before a Solution has been found for Identity
Problems with soft Constraints



102 effectiveness of real-time constraint satisfaction



C
I N S TA L L AT I O N I N S T R U C T I O N S A N D S O F T WA R E V E R S I O N S

This appendix describes how to install the parts of the implementation and lists the
versions of the software and libraries used during development.

c.1 General

All the parts of the prototypical implementation were implemented in Ruby. The
version of Ruby used was 1.8.5. There are Ruby gems for all parts which can be
generated using the provided Rakefiles. The version of Rake used was 0.7.3 and the
Gems version was 0.8.11.

The documentation for the source code is generated with diagrams illustrating the
dependencies. The GraphVizR package is required to make this work, the version
used was 0.4.0.

The distribution packages of the implementation parts can be installed through
the Ruby Gems system.

c.2 Constraint Problem Solver Library

The constraint problem solver library uses the log4r library. The version used during
development was 1.0.5.

c.3 Constraint Problem Solver SOAP Wrapper

The SOAP wrapper uses the SOAP4R library included with the standard Ruby
distribution. It furthermore uses the log4r library. The standalone script uses the
daemons library, version 1.0.5.

The SOAP server must be run standalone, either in the foreground with the
script ConstraintSolverServer, or through the daemons library with the script
ConstraintSolverServer-daemons. The server is configured in the first script and
listens on port 3333 for connections from the local host only by default. The port
must also be specified in the WSDL of the service for the client to work.

c.4 Web User Interface

The web user interface was built using the Camping web application framework. The
version of Camping used was 1.5. The HTML is generated with Markaby, version 0.5.
The database backend is a SQLite database, the sqlite3-ruby library, version 1.1.0.1,
was used. The interface to Amazon.com is realised by the ruby-amazon library,
version 0.9.0 was used during development.

The web frontend can either be run standalone by calling the camping binary on
ConstraintSolver.rb or be integrated with a webserver which is able to handle

103



104 installation instructions and software versions

FastCGI scripts. The file dispatch.rb provides the interface to the FastCGI server.
The SOAP server must be running for the frontend to work. The host and port to

connect to are configured in the service WSDL.



G L O S S A RY

c

commit Submission of a set of changed files to a revision control system.

Common Gateway Interface (CGI) Standard protocol for interfacing external ap-
plication software with an information server, commonly a web server.

d

daemon Computer program which runs in the background, rather than under
the direct control of a user.

Design Pattern Template solution for a common problem in software design.

domain speci�c language (DSL) Programming language for a specific set of tasks
within a limited problem domain.

f

FastCGI (FCGI) CGI protocol which instead of spawning a new process for every
request uses persistent processes to handle multiple requests.

g

gem Package of the RubyGems package management system which can
be used to install, update and remove software written in the Ruby
programming language.

h

Hypertext Markup Language (HTML) Markup language most widely used for
the creation of web sites.

Hypertext Transfer Protocol (HTTP) Method used to transfer or convey infor-
mation on the World Wide Web.

m

Model-View-Controller (MVC) Design pattern which separates data access, busi-
ness logic, and data presentation.

r

re�ection Process by which a computer program of the appropriate type can be
modified in the process of being executed, in a manner which depends
on abstract features of its code and its runtime behaviour.

105



106 glossary

Remote Procedure Call (RPC) Technology which allows a computer program to
cause a procedure to execute on another computer on a shared network.

Representational State Transfer (REST) Simple communication interface which
transmits domain-specific data over HTTP without an additional mes-
saging layer such as SOAP.

revision control system Management of multiple revisions of the same unit of
information.

s

Service-oriented Architecture (SOA) Architecture which uses services to support
the requirements of business processes and users.

SOAP Communication protocol for exchanging XML-based messages over
computer networks, normally using HTTP.

Structured Query Language (SQL) Computer language used to create, retrieve,
update and delete data from relational database management systems.

u

Uni�ed Modelling Language (UML) Modelling language used to specify and de-
scribe software systems, user interactions, and business processes.

w

Web Service Software system designed to support interoperable machine to ma-
chine interaction over a network.

Web Services Description Language (WSDL) XML-based language used for the
description of web services.

x

eXtensible Markup Language (XML) General-purpose markup language.

XML-RPC RPC protocol which uses XML and HTTP as a transport mechanism.

XML Schema Set of rules to which an XML document must conform in order to
be considered ’valid’ according to that schema.



B I B L I O G R A P H Y

[AF03] Slim Abdennadher and Thom Frühwirth. Essentials of Constraint Pro-
gramming. Springer, 2003.

[Ana04] Basileios Anastasatos. Propagation algorithms for the alldifferent
constraint. 2004. (Cited on page 89.)

[Apt03] Krzysztof Apt. Principles of Constraint Programming. Cambridge Uni-
versity Press, 2003.

[Bar99] Roman Barták. Constraint programming: In pursuit of the holy grail.
In Proceedings of Workshop of Doctoral Students ’99, 1999. http://kti.ms.
mff.cuni.cz/~bartak/html/publications.html. (Cited on page 43.)

[Bar03] Roman Barták. Modelling soft constraints: A survey. Neural Network
World, 12(5):421–431, 2003. (Cited on page 18.)

[BB01] Nicolas Barnier and Pascal Brisset. FaCiLe: A functional constraint
library. ALP Newsletter, 14(2), May 2001. (Cited on page 44.)

[BB04] Nicolas Barnier and Pascal Brisset. FaCiLe: A Functional Constraint
Library, 1.1 edition, September 2004. http://www.recherche.enac.fr/
opti/facile/doc/. (Cited on page 44.)

[BC94] Christian Bessière and Marie-Odile Cordier. Arc-consistency and arc-
consistency again. Artificial Intelligence, 65(1):179–190, 1994. (Cited on
pages 16 and 85.)

[BCFR04] J. Christopher Beck, Tom Carchrae, Eugene C. Freuder, and Georg
Ringwelski. Backtrack-free search for real-time constraint satisfaction.
In Principles and Practice of Constraint Programming - CP 2004, pages
92–106, 2004. (Cited on page 20.)

[BDFB+
87] Alan Borning, Robert Duisberg, Bjørn N. Freeman-Benson, Axel

Kramer, and Michael Woolf. Constraint hierarchies. In Proceedings of
the Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA), pages 48–60, 1987. (Cited on page 18.)

[BFM+
96] Stefano Bistarelli, Hélène Fargier, Ugo Montanari, Francesca Rossi,

Thomas Schiex, and Gérard Verfaillie. Semiring-based CSPs and valued
CSPs: Basic properties and comparison. In Michael Jampel, Eugene
Freuder, and Michael Maher, editors, Over-Constrained Systems (Selected
papers from the Workshop on Over-Constrained Systems at CP’95, reprints
and background papers), volume 1106, pages 111–150. 1996. (Cited on
page 18.)

[BFR99] Christian Bessière, Eugene C. Freuder, and Jean-Charles Régin. Using
constraint metaknowledge to reduce arc consistency computation.
Artificial Intelligence, 107(1):125–148, 1999. (Cited on page 16.)

107

http://kti.ms.mff.cuni.cz/~bartak/html/publications.html
http://kti.ms.mff.cuni.cz/~bartak/html/publications.html
http://www.recherche.enac.fr/opti/facile/doc/
http://www.recherche.enac.fr/opti/facile/doc/


108 bibliography

[BMMW89] Alan Borning, Michael Maher, Amy Martindale, and Molly Wilson.
Constraint hierarchies and logic programming. In Giorgio Levi and
Maurizio Martelli, editors, Proceedings 6th International Conference on
Logic Programming, Lisbon, Portugal, 19–23 June 1989, pages 149–164.
The MIT Press, Cambridge, MA, 1989. (Cited on page 18.)

[BMR95] Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. Constraint
solving over semirings. In Chris Mellish, editor, IJCAI’95: Proceedings
International Joint Conference on Artificial Intelligence, Montreal, 1995.
(Cited on page 20.)

[BMR97] Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. Semiring-
based constraint satisfaction and optimization. Journal of the ACM,
44(2):201–236, 1997. (Cited on page 18.)

[BMR+
99] Stefano Bistarelli, Ugo Montanari, Francesca Rossi, Thomas Schiex,

Gerard Verfaillie, and Hne Fargier. Semiring-based CSPs and valued
CSPs: Frameworks, properties, and comparison. Constraints, 4(3):199–
240, 1999. (Cited on page 18.)

[BO03] Hachemi Bannaceur and Aomar Osmani. Computing lower bound for
max-csp problems. In IEA/AIE: Proceedings of the 16th International Con-
ference on Industrial and Engineering Applications of Artificial Intelligence
and Expert Systems, pages 614–624, 2003. (Cited on page 17.)

[Boo93] Grady Booch. Object-Oriented Analysis and Design with Applications.
Addison-Wesley, 1993. (Cited on page 48.)

[BR97] Christian Bessière and Jean-Charles Régin. Arc consistency for general
constraint networks: preliminary results. In Proceedings of IJCAI-97,
pages 398–404, 1997. (Cited on page 61.)

[BR01] Christian Bessière and Jean-Charles Régin. Refining the basic constraint
propagation algorithm. In Proceedings of the 14th IJCAI, pages 309–315,
2001. (Cited on pages 16, 62, and 85.)

[BRYZ05] Christian Bessière, Jean-Charles Régin, Roland H. C. Yap, and Yuanlin
Zhang. An optimal coarse-grained arc consistency algorithm. Artificial
Intelligence, 165(2):165–185, 2005. (Cited on page 85.)

[BS06] Michael Benisch and Norman Sadeh. Examining dcsp coordination
tradeoffs. In AAMAS ’06: Proceedings of the fifth international joint
conference on Autonomous agents and multiagent systems, pages 1405–
1412, New York, NY, USA, 2006. ACM Press. (Cited on page 80.)

[BSKC97] Nicolas Beldiceanu, Helmut Simonis, Philip Kay, and Peter
Chan. White paper: The CHIP system. http://www.cosytec.com/
production_scheduling/chip/pdf/the_chip_system.pdf, April 1997.
(Cited on page 44.)

[Bur92] Steve Burbeck. Applications programming in Smalltalk-80(TM): How
to use model-view-controller (MVC). 1992. http://st-www.cs.uiuc.
edu/users/smarch/st-docs/mvc.html. (Cited on page 69.)

[CdGS07] Martin C. Cooper, Simon de Givry, and Thomas Schiex. Optimal
soft arc consistency. In Proceedings of the Twentieth International Joint
Conference on Artificial Intelligence, 2007. (Cited on page 20.)

http://www.cosytec.com/production_scheduling/chip/pdf/the_chip_system.pdf
http://www.cosytec.com/production_scheduling/chip/pdf/the_chip_system.pdf
http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html
http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html


bibliography 109

[CDK91] Zeev Collin, Rina Dechter, and Shmuel Katz. On the feasibility of
distributed constraint satisfaction. In Proceedings of the Twelfth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-91, Sidney, Australia,
pages 318–324, 1991. (Cited on page 80.)

[Che76] Peter Pin-Shan Chen. The entity-relationship model – toward a unified
view of data. ACM Transactions on Database Systems, 1(1):9–36, 1976.
(Cited on pages viii and 70.)

[Cho] Choco User Guide. http://choco-solver.net/index.php?title=User_
guide. (Cited on page 44.)

[CJ98] Assef Chmeiss and Philippe Jégou. Efficient path-consistency propa-
gation. International Journal on Artificial Intelligence Tools, 7(2):121–142,
1998. (Cited on page 16.)

[CN88] Wesley W. Chu and Patrick Ngai. A dynamic constraint-directed
ordered search algorithm for solving constraint satisfaction problems.
In IEA/AIE ’88: Proceedings of the 1st international conference on Industrial
and engineering applications of artificial intelligence and expert systems,
pages 116–125, New York, NY, USA, 1988. ACM Press. (Cited on
page 58.)

[Com] Comet Reference. http://www.cs.brown.edu/people/pvh/comet/
reference.html. (Cited on page 44.)

[CS04] Martin Cooper and Thomas Schiex. Arc consistency for soft constraints.
Artificial Intelligence, 154(1–2):199–227, 2004. (Cited on page 20.)

[DCC06] Douglas Downing, Michael Covington, and Melody Mauldin Coving-
ton. Dictionary of Computer and Internet Terms. Barron’s Educational
Series Inc., Woodbury, NY, USA, 2006.

[Dec03] Rina Dechter. Constraint Processing. Morgan Kaufmann, 2003. (Cited
on page 9.)

[DF97] Rina Dechter and Daniel Frost. Backtracking algorithms for constraint
satisfaction problems: a survey. Technical report, UCI, 1997. (Cited on
page 12.)

[DFP94] Didier Dubois, Hélène Fargier, and Henri Prade. Propagation and
satisfaction of flexible constraints. Fuzzy Sets, Neural Networks and Soft
Computing, pages 166–187, 1994. (Cited on page 18.)

[DKL01] Rina Dechter, Kalev Kask, and Javier Larrosa. A general scheme for
multiple lower bound computation in constraint optimization. Lecture
Notes in Computer Science, 2239:346–361, 2001. (Cited on page 17.)

[Don04] Marc R.C. Van Dongen. Saving support-checks does not always save
time. Artificial Intelligence Review, 21(3–4):317–334, 2004. (Cited on
page 86.)

[Dun93] Tim Duncan. A review of commercially available constraint program-
ming tools. Technical Report AIAI-TR-149, University of Edinburgh,
1993. (Cited on page 43.)

http://choco-solver.net/index.php?title=User_guide
http://choco-solver.net/index.php?title=User_guide
http://www.cs.brown.edu/people/pvh/comet/reference.html
http://www.cs.brown.edu/people/pvh/comet/reference.html


110 bibliography

[FL93] Hélène Fargier and Jérôme Lang. Uncertainty in constraint satisfaction
problems: A probabilistic approach. In Proceedings of the European
Conference on Symbolic and Qualitative Approaches to Reasoning and Un-
certainty (ECSQARU), pages 97–104. Springer-Verlag, 1993. (Cited on
page 18.)

[FM94] Eugene C. Freuder and Alan K. Mackworth, editors. Constraint-based
reasoning. MIT Press, Cambridge, MA, USA, 1994.

[FMW01] Alan M. Frisch, Ian Miguel, and Toby Walsh. Modelling a steel mill slab
design problem. In Proceedings of the IJCAI-01 Workshop on Modelling
and Solving Problems with Constraints, pages 39–45, 2001. (Cited on
page 15.)

[Fre78] Eugene C. Freuder. Synthesizing constraint expressions. Communica-
tions of the ACM, 21(11):958–966, 1978. (Cited on page 53.)

[Fre89] Eugene C. Freuder. Partial constraint satisfaction. In Proceedings of the
Eleventh International Joint Conference on Artificial Intelligence, IJCAI-89,
pages 278–283, 1989. (Cited on pages 18 and 19.)

[Fre97] Eugene C. Freuder. In pursuit of the holy grail. Constraints, 2(1):57–61,
1997. (Cited on page 2.)

[Gec] Gecode Reference Manual. http://www.gecode.org/
gecode-doc-latest/index.html. (Cited on page 44.)

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and Jon Vlissides. Design
Patterns – Elements of Reusable Object-Oriented Software. Addison-Wesley,
1994. (Cited on pages 45 and 48.)

[GJM06] Ian P. Gent, Christopher A. Jefferson, and Ian Miguel. MINION: A fast
scalable constraint solver. In Proceedings of the Seventeenth European Con-
ference on Artificial Intelligence, pages 98–102, 2006. (Cited on pages 20

and 44.)

[GJM+
07] Ian P. Gent, Christopher A. Jefferson, Ian Miguel, Karen E. Petrie, and

Andrea M. Reindl. Getting started with Minion, 0.4 edition, March 2007.
(Cited on page 44.)

[GLSS79] Jr. Guy Lewis Steele and Gerald Jay Sussman. Constraints. In APL ’79:
Proceedings of the international conference on APL: part 1, pages 208–225,
New York, NY, USA, 1979. ACM Press. (Cited on page 9.)

[GMP+
98] Ian P. Gent, Ewan MacIntyre, Patrick Prosser, Barbara M. Smith, and

Toby Walsh. Random constraint satisfaction: Flaws and structure.
Technical report, 1998. (Cited on page 89.)

[GNT04] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning:
Theory & Practice. Morgan Kaufmann, 2004. (Cited on page 9.)

[GSW99] Ian P. Gent, Kostas Stergiou, and Toby Walsh. Decomposable con-
straints. In New Trends in Constraints, pages 134–149, 1999. (Cited on
page 59.)

[Hal35] Philip Hall. On representatives of subsets. Journal of the London Mathe-
matical Society, s1-10(37):26–30, 1935. (Cited on page 59.)

http://www.gecode.org/gecode-doc-latest/index.html
http://www.gecode.org/gecode-doc-latest/index.html


bibliography 111

[Ham06] Youssef Hamadi. Disolver: the Distributed Constraint Solver. Mi-
crosoft Research, 2.44 edition, 2006. http://research.microsoft.com/
~youssefh/DisolverWeb/disolver.pdf. (Cited on pages 44 and 80.)

[HDT92] Pascal Van Hentenryck, Yves Deville, and Choh-Man Teng. A generic
arc-consistency algorithm and its specializations. Artificial Intelligence,
57(2–3):291–321, 1992. (Cited on page 16.)

[HE80] Robert M. Haralick and Gordon L. Elliott. Increasing tree search
efficiency for constraint satisfaction problems. Artificial Intelligence,
14:263–313, 1980. (Cited on pages 13 and 53.)

[Hen89] Pascal Van Hentenryck. Constraint satisfaction in logic programming. MIT
Press, Cambridge, MA, USA, 1989. (Cited on page 16.)

[HM05] Pascal Van Hentenryck and Laurent Michel. Constraint-Based Local
Search. The MIT Press, 2005. (Cited on page 44.)

[Hua06] Dong Huang. Semantic descriptions ofweb services security con-
straints. In SOSE ’06: Proceedings of the Second IEEE International Sym-
posium on Service-Oriented System Engineering (SOSE’06), pages 81–84,
Washington, DC, USA, 2006. IEEE Computer Society. (Cited on page 2.)

[HY97] Katsutoshi Hirayama and Makoto Yokoo. Distributed partial constraint
satisfaction problem. In Principles and Practice of Constraint Programming,
pages 222–236, 1997. (Cited on page 80.)

[Ilo] Ilog constraint solver. http://www.ilog.com/products/cp/. (Cited on
page 44.)

[IMMH83] Toshihide Ibaraki, Shojiro Muro, Takeshi Murakami, and Toshiharu
Hasegawa. Using branch-and-bound algorithms to obtain suboptimal
solutions. Mathematical Methods of Operations Research, 27(1):177–202,
1983. (Cited on page 16.)

[Jea98] Peter Jeavons. Constructing constraints. In CP ’98: Proceedings of
the 4th International Conference on Principles and Practice of Constraint
Programming, pages 2–16, London, UK, 1998. Springer-Verlag.

[JLC06] Rong-Hong Jan, Ching-Peng Lin, and Maw-Sheng Chern. An op-
timization model for web content adaptation. Computer Networks,
50(7):953–965, 2006. (Cited on page 2.)

[KH06] Irit Katriel and Pascal Van Hentenryck. Randomized filtering algo-
rithms. Technical report, Brown University, 2006. (Cited on pages 14

and 89.)

[Koa] Koalog. An overview of Koalog Constraint Solver™. http://www.koalog.
com/resources/doc/jcs-overview.pdf. (Cited on page 44.)

[Kot07] Lars Kotthoff. Ruby Constraint Solver Manual, 2007. http://conssolv.
rubyforge.org/.

[KT03] Irit Katriel and Sven Thiel. Fast bound consistency for the global
cardinality constraint. In CP-03: 9th International Conference on Principles
and Practice of Constraint Programming, pages 437–451, 2003. (Cited on
page 14.)

http://research.microsoft.com/~youssefh/DisolverWeb/disolver.pdf
http://research.microsoft.com/~youssefh/DisolverWeb/disolver.pdf
http://www.ilog.com/products/cp/
http://www.koalog.com/resources/doc/jcs-overview.pdf
http://www.koalog.com/resources/doc/jcs-overview.pdf
http://conssolv.rubyforge.org/
http://conssolv.rubyforge.org/


112 bibliography

[KT05] Irit Katriel and Sven Thiel. Complete bound consistency for the global
cardinality constraint. Constraints, 10(3):191–217, 2005. (Cited on
page 14.)

[LBH03] Christophe Lecoutre, Frederic Boussemart, and Fred Hemery. Exploit-
ing multidirectionality in coarse-grained arc consistency algorithms. In
CP-03: 9th International Conference on Principles and Practice of Constraint
Programming, pages 480–494, 2003. (Cited on pages 16, 62, and 85.)

[Lec96] Michel Leconte. A bounds-based reduction scheme for constraints of
difference. In Constraint-96: Second International Workshop on Constraint-
based Reasoning, 1996. (Cited on pages 16, 62, and 89.)

[Lem] Michel lemaitre’s constraint solver library. ftp://ftp.cert.fr/pub/
lemaitre/LVCSP/. (Cited on page 44.)

[LOQTvB03] Alejandro López-Ortiz, Claude-Guy Quimper, John Tromp, and Peter
van Beek. A fast and simple algorithm for bounds consistency of the
all different constraint. In Proceedings of IJCAI-03, pages 245–250, 2003.
(Cited on pages 16, 62, and 89.)

[LSPG06] Ruopeng Lu, Shazia Sadiq, Vineet Padmanabhan, and Guido Gov-
ernatori. Using a temporal constraint network for business process
execution. In ADC ’06: Proceedings of the 17th Australasian Database
Conference, pages 157–166, Darlinghurst, Australia, Australia, 2006.
Australian Computer Society, Inc. (Cited on page 2.)

[LW66] Eugene L. Lawler and David E. Wood. Branch-and-bound methods: a
survey. Operations Research, 14(4):699–719, 1966. (Cited on page 11.)

[LZBF04] Chavalit Likitvivatanavong, Yuanlin Zhang, James Bowen, and Eu-
gene C. Freuder. Arc consistency in MAC: A new perspective. In
Proceedings of CPAI’04 workshop held with CP’04, pages 93–107, 2004.
(Cited on page 85.)

[Mac75] Alan K. Mackworth. Consistency in networks of relations. Technical
report, University of British Columbia, Vancouver, BC, Canada, 1975.
(Cited on pages 13, 16, 58, and 59.)

[MF85] Alan K. Mackworth and Eugene C. Freuder. The complexity of some
polynomial network consistency algorithms for constraint satisfaction
problems. Artificial Intelligence, 25(1):65–74, 1985.

[MH86] Roger Mohr and Thomas C. Henderson. Arc and path consistency
revisited. Artificial Intelligence, 28:225–233, 1986. (Cited on page 16.)

[Mig06] Ian Miguel. CS4402 Constraint Programming lecture notes. University
of St Andrews, 2006. (Cited on page 9.)

[MS98] Kim Marriott and Peter J. Stuckey. Programming with Constraints: An
Introduction. MIT Press, Cambridge, MA, USA, 1998.

[MT00] Kurt Mehlhorn and Sven Thiel. Faster algorithms for bound-
consistency of the sortedness and the alldifferent constraint. In Princi-
ples and Practice of Constraint Programming, pages 306–319, 2000. (Cited
on pages 16, 62, and 89.)

ftp://ftp.cert.fr/pub/lemaitre/LVCSP/
ftp://ftp.cert.fr/pub/lemaitre/LVCSP/


bibliography 113

[PCM+
06a] Alun Preece, Stuart Chalmers, Craig McKenzie, Jeff Pan, and Peter

Gray. Handling soft constraints in the semantic web architecture. In
Proceedings of WWW 2006 Workshop Reasoning on the Web (Row 2006),
Edinburgh, UK, May 2006. (Cited on page 2.)

[PCM+
06b] Alun Preece, Stuart Chalmers, Craig McKenzie, Jeff Z. Pan, and Peter

Gray. A semantic web approach to handling soft constraints in virtual
organisations. In ICEC ’06: Proceedings of the 8th international conference
on Electronic commerce, pages 151–161, New York, NY, USA, 2006. ACM
Press. (Cited on page 2.)

[Pfa03] Bryan Pfaffenberger. Webster’s New World Dictionary of Computer Terms.
Webster’s New World, 10 edition, 2003.

[PRB00] Thierry Petit, Jean-Charles Régin, and Christian Bessière. Meta-
constraints on violations for over constrained problems. In Proceedings
of The Twelfth IEEE International Conference on Tools with Artificial Intelli-
gence (ICTAI’00), pages 358–365, Vancouver, Canada, November 2000.
(Cited on page 18.)

[PRB01] Thierry Petit, Jean-Charles Régin, and Christian Bessière. Specific filter-
ing algorithms for over-constrained problems. In CP ’01: Proceedings of
the 7th International Conference on Principles and Practice of Constraint Pro-
gramming, pages 451–463, London, UK, 2001. Springer-Verlag. (Cited
on pages 20 and 80.)

[Pug95] Jean-François Puget. Applications of constraint programming. In
CP ’95: Proceedings of the First International Conference on Principles and
Practice of Constraint Programming, pages 647–650, London, UK, 1995.
Springer-Verlag. (Cited on page 9.)

[Pug98] Jean-François Puget. A fast algorithm for the bound consistency of
alldiff constraints. In AAAI ’98/IAAI ’98: Proceedings of the fifteenth
national/tenth conference on Artificial intelligence/Innovative applications
of artificial intelligence, pages 359–366, Menlo Park, CA, USA, 1998.
American Association for Artificial Intelligence. (Cited on pages 16,
62, 86, and 89.)

[Pug04] Jean-François Puget. Constraint programming next challenge: Simplic-
ity of use. In Principles and Practice of Constraint Programming, pages
5–8, 2004. (Cited on page 68.)

[Pyc] Python-constraint constraint solver. http://labix.org/
python-constraint. (Cited on page 44.)

[QGLOB05] Claude-Guy Quimper, Alexander Golynski, Alejandro López-Ortiz,
and Peter Beek. An efficient bounds consistency algorithm for the
global cardinality constraint. Constraints, 10(2):115–135, 2005. (Cited
on page 14.)

[QW05] Claude-Guy Quimper and Toby Walsh. Beyond finite domains: the all
different and global cardinality constraints. In CP-05: 11th International
Conference on Principles and Practice of Constraint Programming, pages
812–816, 2005. (Cited on page 14.)

http://labix.org/python-constraint
http://labix.org/python-constraint


114 bibliography

[Rég94] Jean-Charles Régin. A filtering algorithm for constraints of difference
in CSPs. In AAAI ’94: Proceedings of the twelfth national conference
on Artificial intelligence (Volume 1), pages 362–367, Menlo Park, CA,
USA, 1994. American Association for Artificial Intelligence. (Cited on
pages 16 and 89.)

[Rég96] Jean-Charles Régin. Generalized arc consistency for global cardinality
constraint. In AAAI ’96: Proceedings of the thirteenth national conference
on Artificial intelligence, pages 209–215, Menlo Park, CA, USA, 1996.
American Association for Artificial Intelligence. (Cited on page 14.)

[Rég02] Jean-Charles Régin. Cost-based arc consistency for global cardinality
constraints. Constraints, 7(3–4):387–405, 2002. (Cited on page 14.)

[RN02] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach. Prentice Hall, 2002. (Cited on page 9.)

[RPBP01] Jean-Charles Régin, Thierry Petit, Christian Bessière, and Jean-François
Puget. New lower bounds of constraint violations for over-constrained
problems. In CP ’01: Proceedings of the 7th International Conference
on Principles and Practice of Constraint Programming, pages 332–345,
London, UK, 2001. Springer-Verlag. (Cited on page 20.)

[RPP02] Jean-Charles Régin, Jean-François Puget, and Thierry Petit. Represen-
tation of soft constraints by hard constraints. In Proceedings of Onzièmes
Journées Francophones de Programmation Logique et Programmation par
Contraintes, pages 191–198, 2002. (Cited on pages 18, 20, and 55.)

[Rum] Wheeler Ruml. Real-time heuristic search for combinatorial optimiza-
tion and constraint satisfaction.

[Rut94] Zsofi Ruttkay. Fuzzy constraint satisfaction. In Proceedings 1st IEEE
Conference on Evolutionary Computing, pages 542–547, 1994. (Cited on
page 18.)

[RvBW06] Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint
Programming. Elsevier Science, 2006.

[Sch92] Thomas Schiex. Possibilistic constraint satisfaction problems or “how
to handle soft constraints?”. In Proceedings of the Eight International Con-
ference on Uncertainty in Artificial Intelligence, pages 268–275, Stanford,
CA, 1992. (Cited on page 18.)

[Sch00] Thomas Schiex. Arc consistency for soft constraints. In Principles
and Practice of Constraint Programming, pages 411–424, 2000. (Cited on
page 20.)

[Sch05] Thomas Schiex. Soft constraints and over-constrained problems.
http://www.math.unipd.it/~frossi/cp-school/Ecole.pdf, Septem-
ber 2005. First International Summer School on Constraint Program-
ming. (Cited on page 18.)

[SF94] Daniel Sabin and Eugene C. Freuder. Contradicting conventional
wisdom in constraint satisfaction. In PPCP ’94: Proceedings of the
Second International Workshop on Principles and Practice of Constraint
Programming, pages 10–20, London, UK, 1994. Springer-Verlag. (Cited
on pages 14 and 53.)

http://www.math.unipd.it/~frossi/cp-school/Ecole.pdf


bibliography 115

[SFV95] Thomas Schiex, Hélène Fargier, and Gérard Verfaillie. Valued con-
straint satisfaction problems: Hard and easy problems. In Chris
Mellish, editor, IJCAI’95: Proceedings International Joint Conference on
Artificial Intelligence, 1995. (Cited on pages 17, 19, and 20.)

[Sha92] Stuart C. Shapiro. Encyclopedia of Artificial Intelligence. John Wiley &
Sons, Inc., New York, NY, USA, 1992.

[SOA] SOAP/1.1 note. http://www.w3.org/TR/2000/NOTE-SOAP-20000508/.
(Cited on page 65.)

[SW98] Klaus Schild and Jörg Würtz. Off-line scheduling of a real-time system.
In SAC ’98: Proceedings of the 1998 ACM symposium on Applied Comput-
ing, pages 29–38, New York, NY, USA, 1998. ACM Press. (Cited on
page 20.)

[SW99] Kostas Stergiou and Toby Walsh. The difference all-difference makes.
In IJCAI ’99: Proceedings of the Sixteenth International Joint Conference
on Artificial Intelligence, pages 414–419, San Francisco, CA, USA, 1999.
Morgan Kaufmann Publishers Inc. (Cited on pages 48 and 92.)

[SW05] Martin Sachenbacher and Brian C. Williams. Solving soft constraints
by separating optimization and satisfiability. In Proceedings of the
International Workshop on Preferences and Soft Constraints (SOFT-05),
pages 119–132, 2005. (Cited on page 20.)

[Tsa02] Edward P.K. Tsang. Constraint satisfaction in business process mod-
elling. Technical Report CSM-359, University of Essex, Colchester, UK,
January 2002. (Cited on page 2.)

[UML] Unified modeling language specification. http://www.omg.org/
technology/documents/formal/uml.htm. (Cited on page 45.)

[vH01] Willem-Jan van Hoeve. The alldifferent constraint: A survey.
2001. Extended version from http://www.cs.cornell.edu/~vanhoeve/
papers/alldiff.pdf. (Cited on pages 14, 59, and 89.)

[vH04] Willem-Jan van Hoeve. A hyper-arc consistency algorithm for the
soft alldifferent constraint. In CP-04: 10th International Conference on
Principles and Practice of Constraint Programming, pages 679–689, 2004.
(Cited on pages 20 and 80.)

[vH05] Willem-Jan van Hoeve. Operations research techniques in constraint
programming. 2005. PhD Thesis.

[VLS96] Gerard Verfaillie, Michel Lemaitre, and Thomas Schiex. Russian doll
search for solving constraint optimization problems. In AAAI/IAAI,
Volume 1, pages 181–187, 1996. (Cited on page 17.)

[Wal96] Mark Wallace. Practical applications of constraint programming. Con-
straints Journal, 1(1):139–168, September 1996. (Cited on page 9.)

[WF99] Rainer Weigel and Boi Faltings. Compiling constraint satisfaction
problems. Artificial Intelligence, 115(2):257–287, 1999. (Cited on page 20.)

[WSD] WSDL/1.1 note. http://www.w3.org/TR/2001/NOTE-wsdl-20010315.
(Cited on page 67.)

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.omg.org/technology/documents/formal/uml.htm
http://www.omg.org/technology/documents/formal/uml.htm
http://www.cs.cornell.edu/~vanhoeve/papers/alldiff.pdf
http://www.cs.cornell.edu/~vanhoeve/papers/alldiff.pdf
http://www.w3.org/TR/2001/NOTE-wsdl-20010315


116 bibliography

[YDIK98] Makoto Yokoo, Edmund H. Durfee, Toru Ishida, and Kazuhiro
Kuwabara. The distributed constraint satisfaction problem: Formal-
ization and algorithms. Knowledge and Data Engineering, 10(5):673–685,
1998. (Cited on page 80.)

[YH00] Makoto Yokoo and Katsutoshi Hirayama. Algorithms for distributed
constraint satisfaction: A review. Autonomous Agents and Multi-Agent
Systems, 3(2):185–207, 2000. (Cited on page 80.)

[YHW07] Benjamin Yen, Paul Jen-Hwa Hu, and May Wang. Towards analytical
approach to effective website designs: A framework for modeling, eval-
uation and enhancement. Electronic Commerce Research and Applications,
6:159–170, 2007. (Cited on page 2.)

[YY01] Zhang Yuanlin and Roland H. C. Yap. Making AC-3 an optimal
algorithm. In Proceedings of IJCAI-01, pages 316–321, 2001. (Cited on
pages 16, 62, and 85.)

[Zhu06] Haibin Zhu. Separating design from implementations: Role-based
software development. In Proceedings of the 5th IEEE International
Conference on Cognitive Informatics, pages 141–148, July 2006. (Cited on
page 2.)



Colophon

This thesis was typeset with LATEX 2ε using a custom style based on classicthesis by
André Miede.

The illustrations and diagrams were typeset with PSTricks and PDFTricks, META-
POST, and gnuplottex. The hyperref package was used to create links and cross-
references, bibtex for the bibliography, the tocloft package for the list of figures,
tables, and definitions, and glosstex for the glossary.
Final Version as of 15th August 2007, 14:07.





D E C L A R AT I O N

Ich versichere, daß ich die vorliegende Arbeit selbstständig und nur unter Verwen-
dung der angegebenen Quellen und Hilfsmittel angefertigt habe.

Leipzig, 15. August 2007

Lars Kotthoff


	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Definitions
	0 Introduction
	0.1 Motivation
	0.2 Aim and Scope
	0.3 Related Work

	I Modelling of the Problem
	1 Description of the Problem
	1.1 Personalised Content
	1.2 Generating Personalised Content
	1.3 Constraints to consider

	2 Constraints
	2.1 Introduction
	2.2 Constraint Satisfaction Problems
	2.3 Solution Process
	2.3.1 Arc Consistency

	2.4 Constrained Optimisation Problems
	2.4.1 Extended Constrained Optimisation Problems

	2.5 Soft Constraints
	2.6 Real-time Constraint Satisfaction
	2.6.1 Analysis of the Function 


	3 Constraint Problem Model
	3.1 Slots and Campaigns
	3.2 Values of Campaigns
	3.3 Values of Slots
	3.3.1 Example

	3.4 Relaxation of Constraints
	3.5 Duplicate Content
	3.5.1 Example

	3.6 Forced Promotions
	3.6.1 Example

	3.7 Real-time Problem Solution


	II Prototypical Implementation
	4 Overview
	4.1 System Architecture
	4.1.1 Distributed Approach
	4.1.2 Web Interface
	4.1.3 Web Service

	4.2 Implementation Language
	4.2.1 Documentation
	4.2.2 Testing
	4.2.3 Packaging

	4.3 Version Control System
	4.4 Test Machine Setup

	5 Constraint Problem Solver Library
	5.1 Overview of existing Constraint Problem Solvers
	5.2 Architecture
	5.2.1 Domain
	5.2.2 Variable
	5.2.3 AbstractConstraint
	5.2.4 BinaryConstraint
	5.2.5 BinaryRelation
	5.2.6 AllDifferentConstraint
	5.2.7 TupleConstraint
	5.2.8 OneOfEqualsConstraint
	5.2.9 ConstraintList
	5.2.10 Problem
	5.2.11 Solution
	5.2.12 ConstraintSolver
	5.2.13 Ruby Extensions

	5.3 Constraint Problem Solution
	5.3.1 Solution Process
	5.3.2 Modifications for Soft Constraints
	5.3.3 Constraint Satisfaction with Time Limit
	5.3.4 Variable and Value Ordering

	5.4 Constraint Revision
	5.4.1 Binary Constraints
	5.4.2 All Different Constraints
	5.4.3 Tuple Constraints
	5.4.4 One-of-equals Constraint

	5.5 Tests and Package Management
	5.6 Limitations

	6 Constraint Problem Solver SOAP Wrapper
	6.1 Architecture
	6.1.1 Library Script
	6.1.2 WSDL
	6.1.3 Control Scripts

	6.2 Tests and Package Management
	6.3 Limitations
	6.4 Use of the Interface

	7 Web User Interface
	7.1 Architecture
	7.1.1 Data Model
	7.1.2 Controller
	7.1.3 View

	7.2 Interface to Amazon.com
	7.3 Tests and Package Management
	7.4 Full Example

	8 Summary
	8.1 Future Work
	8.1.1 Constraint Model
	8.1.2 Constraint Solver

	8.2 Conclusion


	III Appendix
	A Performance Evaluation of Consistency Algorithms
	A.1 Binary Constraints
	A.1.1 Methodology
	A.1.2 Results

	A.2 All Different Constraints
	A.2.1 Methodology
	A.2.2 Results

	A.3 The Difference All Different makes

	B Effectiveness of Real-time Constraint Satisfaction
	B.1 Methodology
	B.2 Results
	B.2.1 Time Limit after first Solution
	B.2.2 Time Limit before first Solution


	C Installation Instructions and Software Versions
	C.1 General
	C.2 Constraint Problem Solver Library
	C.3 Constraint Problem Solver SOAP Wrapper
	C.4 Web User Interface

	Glossary
	Bibliography
	Colophon
	Declaration


