
Find Your Way Back: Mobility Profile Mining
with Constraints

Lars Kotthoff1, Mirco Nanni2, Riccardo Guidotti2, and Barry O’Sullivan3

1 University of British Columbia, Canada
larsko@cs.ubc.ca

2 KDDLab – ISTI-CNR & CS Department, University of Pisa, Italy
{mirco.nanni,riccardo.guidotti}@isti.cnr.it

3 Insight Centre for Data Analytics, University College Cork, Ireland
barry.osullivan@insight-centre.org

Abstract Mobility profile mining is a data mining task that can be for-
mulated as clustering over movement trajectory data. The main challenge
is to separate the signal from the noise, i.e. one-off trips. We show that
standard data mining approaches suffer the important drawback that
they cannot take the symmetry of non-noise trajectories into account.
That is, if a trajectory has a symmetric equivalent that covers the same
trip in the reverse direction, it should become more likely that neither of
them is labelled as noise. We present a constraint model that takes this
knowledge into account to produce better clusters. We show the efficacy
of our approach on real-world data that was previously processed using
standard data mining techniques.

1 Introduction

Clustering is one of the fundamental tasks in data mining whose general aim
is to discover structure hidden in the data, and whose means consist in identi-
fying the homogeneous groups of objects (the clusters) that emerge from the
data [7]. Typically, this translates into putting together objects that are similar
to each other, and keep separated as much as possible those that are different.
The applications of this basic task are many and varied, ranging from customer
segmentation for business intelligence to the analysis of images, time series, web
search results and much more.

This paper focuses on the application domain of mobility data mining, which
is concerned with the study of trajectories of moving objects and other kinds of
mobility-related data [6]. Trajectories are sequences of time-stamped locations
(typically longitude-latitude pairs) that describe the movements of an object. A
most relevant example, which will also be the reference context for this work,
is the sequence of GPS traces of cars collected by on-board devices, such as a
satellite navigation system or an anti-theft platform [5].

In this context, clustering can be used to identify popular paths followed by
several moving objects, such as common routes adopted by car drivers in a city.
A different perspective to the problem was proposed in recent years in [8]: the

objective of the analysis is not directly the collective mobility of a population,
but instead passes through an intermediate phase where the mobility of the
single individual is studied first. Clustering the trajectories of an individual has
the main purpose of highlighting which movements repeat consistently in his/her
life, and therefore can be considered an important and representative part of the
user’s mobility. In the realm of urban traffic and transportation engineering such
movements constitute the systematic component of the mobility of a person –
and then of a city, as a consequence.

Identifying such mobility profiles is an important current research direction
that has many applications, for example in urban planning [4]. If trips that
individuals make frequently in their cars can be identified, the schedule and
routes of the public transport system could be adjusted to provide people with
an incentive to leave the car at home and do something for the environment.

In this paper, we study the problem from a constraint programming point
of view. The trajectories that form part of mobility profiles have to conform
to certain restrictions that are hard to incorporate in traditional data mining
algorithms, but easy to express as constraints. We present a constraint program-
ming model and demonstrate its benefits over previous approaches.

There are a number of approaches that model data mining problems with
constraints (e.g. [1,2,9]), but to the best of our knowledge, this is the first time
that this particular problem is studied in this context.

2 Drawbacks of the Pure Data Mining Approach

Existing data mining approaches to extract mobility profiles are usually cus-
tomised algorithms that have been developed specifically for this purpose. The
approach proposed in [8] (schematically depicted in Figure 1) consists of two
ingredients: a trajectory distance function that encapsulates the context-specific
notion of similar trajectories and a clustering schema that takes care of group-
ing similar trajectories together (center of Figure 1). It also ensures that the
resulting groups have a certain minimum size, e.g. the cluster composed of the
single dashed trajectory is removed (center of Figure 1). Once clusters have been
formed, a representative trajectory for each of them is simply extracted by se-
lecting the most central element of the cluster, i.e. the one that minimizes the
sum of distances from the others (see the selected trajectories on the right of
Figure 1).

We impose the minimum size constraint because we aim to identify the trips
that are made regularly and are not interested in trips that occur regularly, but
infrequently (such as a trip to a holiday home). The clustering procedure yields
a list of trip groups, each of them essentially representing a mobility routine
followed by the user. The set of routines of a user form the mobility profile of
that user.

A very typical (and expected) result is that an individual’s mobility contains
at least two routines, one for the home-to-work systematic trips and one for
the symmetric work-to-home return journey. Indeed, symmetric routines (the

Figure 1. The three steps of profile extraction: identify the trajectories (single trips)
from the GPS data, discover clusters by grouping trajectories that are close, refine the
clusters to remove the noise and extract representative routines.

home-work-home cycle being the most typical example) appear very naturally
in real life, and they are a very important component of an individual’s mobility.
Therefore, while it is simply important to discover all the routines hidden in an
individual’s mobility data, it is crucial to discover symmetric routines if they
exist.

From the viewpoint of a traffic management application for example, sym-
metric routines represent simple and regular mobility cycles that might neatly
fit a public transportation offer. Asymmetric routines on the other hand are
generally a symptom of a more complex daily mobility, for instance involving
bring-and-get activities interleaved within a home-work-home cycle, which are
much more difficult to serve by a public transportation service.

These observations lead to conclude that it would be advisable to equip
the routine extraction procedure with mechanisms that boost the discovery of
symmetric routines. Unfortunately, the plain clustering-based approach provided
so far in [8] follows a local perspective, focused on guaranteeing properties of
each single cluster – namely, mutual similarities of its members and a certain
minimum size of the cluster – without considering the relation between different
clusters or trajectories in different clusters.

Therefore, symmetric routines, which correspond to separate clusters even
though they are connected by this particular property, are treated in isolation.
What we would need to stimulate the discovery of symmetric routines, is a
way to link such separate clusters, and change the cluster construction criteria
accordingly. The purpose of this paper is to explore this way by exploiting a con-
straint formulation of the clustering problem, which can then be easily enriched
and customized to include the application-specific requirements we mentioned
above.

Setting the Minimum Cluster Size

Being able to take the symmetry of trajectories into account provides an ad-
ditional benefit when clustering. The minimum size of a cluster is currently
enforced by providing a static value to the algorithm that applies to all clusters.
This value needs to be chosen carefully – if it is too high, no clusters at all
may be identified and if it is too low, too many clusters will be identified. In
particular, the value should be set such that trajectories that are noise as far as
a mobility profile is concerned are not identified as clusters.

In practice, symmetric trajectories are often part of clusters of different sizes.
There are many reasons for this. Consider for example the home-to-work routine,
where an individual drives straight from home to work every day, but on the way
back goes to the gym on certain days and shopping on others. Therefore, the
size of the home-to-work cluster will be larger than that of the symmetric work-
to-home cluster.

If the threshold for the minimum size of a cluster is set higher than the size
of the work-to-home cluster, it will be categorized as noise even though there is a
symmetric equivalent that supports it. Indeed, there could be cases like this with
symmetric clusters of different sizes where no fixed value for the minimum size
threshold will ensure that all symmetric clusters are identified while the noise
trajectories are not.

In a constraint model, this can be taken into account easily. Instead of con-
sidering only the size of a cluster to justify its existence, we can explicitly model
symmetric clusters as supports as well.

3 Constraint Model

We present the constraint model that takes all the considerations mentioned
above into account. The constraints encode when two trajectories should be in
the same cluster, when they should be in different clusters, when they are noise
and the conditions that apply when there are symmetric trajectories.

For the sake of simplicity, trajectories are represented by a start and an end
point. For our purposes, the route taken to get from the start to the end point
is secondary, as we are interested in the extraction of mobility profiles that do
not contain this information. For example, the way from home to work could be
different from the way from work to home because of traffic conditions, one-way
streets, or similar, but both are still part of the same routine. If the user stops,
e.g. to do some shopping, the trajectory is split into two parts with two separate
start and end points.

The model itself is general enough to accommodate routes represented by
more than two points as well, but would likely reduce the number of symmetric
trajectories as pairs would look less similar because of additional (irrelevant)
information. Overall, the model would become larger and more complex.

Individual trajectories x ∈ X are modelled as variables whose domains con-
sist of the clusters they can be assigned to. That is, each trajectory can be as-
signed a cluster ID, including a special value which denotes that the trajectory
is noise. We use dist(x, y) to denote the distance (both spatial and temporal)
between two trajectories x and y. Note that for the temporal distance, only
the time of day is relevant, not the date. The reason for this is that we want
to cluster trips that occur regularly, e.g. the daily commute to work. The dis-
tance of two trajectories is defined as the spatial and temporal distance between
their start points and their end points, so dist(x, y) < A is short hand for
dist(xstart, ystart) < A ∧ dist(xend, yend) < A. T denotes the distance above
which two trajectories are considered to be not close and R the distance above

which they are considered far, T < R. If a trajectory is noise and should not be
part of any cluster, it is denoted x = noise.

Our formulation consists of two complementary parts. The first part is a set
of constraints that specify under which conditions two trajectories should belong
to different clusters or be labelled as noise. The second one is a multi-objective
optimization function that requires to cluster as many trajectories as possible
and to fit them into as few clusters as possible. This requires the identified
clusters to be as large as possible.

Our optimization function can be formulated as follows, where we use ∥X∥
to denote the cardinality of the set X:

minimize ∥unique({x | x ∈ X})∥ (no. distinct clusters)

minimize ∥{x | x ∈ X,x = noise}∥ (no. noise trajectories)
(1)

Our constraint model includes three kinds of constraints. First we specify
when two trajectories should not be in the same cluster:

∀x, y ∈ X : dist(x, y) > R → x ̸= y ∨ x = noise ∨ y = noise (2)

If two trajectories are far apart, they should be in different clusters or at
least one of them should be noise. In our application, we are trying to identify
mobility patterns which are defined by clusters of trajectories that are all close
together. We therefore want to avoid clustering trajectories that are close to a
set of intermediate trajectories, but far apart themselves.

Symmetric trajectories x and y are denoted as symm(x, y) and defined as
follows:

∀x, y ∈ X : symm(x, y) ≡ dist(xstart, yend) ≤ T ∧
dist(xend, ystart) ≤ T

(3)

We now introduce the symmetry constraints that represent the main advant-
age of the constraint model over existing data mining algorithms. We denote
the threshold for the minimum number of trajectories in a cluster S. This is
a fixed value specified by the user and potentially prevents identifying clusters
that are small, but supported by a symmetric cluster. We therefore introduce the
threshold size for a pair of symmetric clusters S′, where S′ > S. If a trajectory
x is symmetric to another trajectory y, they should belong to different clusters
if they are not noise and the sum of the sizes of the clusters they belong to must
be greater than S′.

∀x, y ∈ X : symm(x, y) ∧ x ̸= noise ∧ y ̸= noise

∧ (∥{z | z ∈ X, z = x}∥+ ∥{z | z ∈ X, z = y}∥ > S′) → x ̸= y
(4)

This set of constraints encodes most of the background knowledge on symmetric
trajectories. We both take symmetry into account explicitly and mitigate the

drawbacks of having a fixed minimum cluster size. The fixed threshold S is the
only means of separating signal from noise in the data mining application. In the
constraint model, we can relax this requirement in the presence of symmetric
clusters – if a symmetric pattern is identified, we require the sum of the cluster
sizes to be greater than the threshold for a pair of symmetric clusters, which is
greater than the threshold for a single cluster.

If, on the other hand, there is no trajectory that is symmetric to x, then x
is either noise or the size of the cluster that it is assigned to is greater than the
threshold S for the size of a single cluster.

∀x ∈ X : ∥{y | y ∈ X, symm(x, y)}∥ = 0 →
x = noise ∨ (x ̸= noise ∧ ∥{z | z ∈ X, z = x}∥ > S)

(5)

These constraints describe the requirements we place on trajectories to be
part of clusters as well as considering the relation between clusters by taking the
symmetry into account. We do not rely on any special constraints or esoteric
constructs – our model is generic and can be implemented and solved with
almost any constraint solver. In contrast, the data mining algorithm requires
a specialised implementation that, while being able to leverage existing work,
needs considerable efforts.

4 Model Implementation

We implemented the constraint model described above in the Minion constraint
solver [3]. Minion is a general-purpose constraint solver. Our choice of solver was
motivated by nothing but the authors’ familiarity with this particular solver and
its free availability.

4.1 Minion Model

Our Minion model is an almost direct translation of the model presented in the
previous section. For each trajectory, we add one variable whose domain values
represent the clusters the trajectory can be assigned to. We also add the dual
representation where each cluster is represented by an array of Booleans, one for
each trajectory. If a particular trajectory is in a particular cluster, the corres-
ponding Boolean value is set to 1, else 0. We also add the channelling constraints
between the one-variable-per-trajectory and the one-array-per-cluster represent-
ations. We require the dual representation to be able to post constraints on
cluster sizes.

The noise trajectories are assigned to a special cluster that is represented by
the value 0 in the domains of the trajectory variables. Modelling noise this way
allows us to treat it in the same way as other clusters.

The Minion input language is flat and does not support quantifications over
the variables. We therefore instantiate the free variables in Equations 2 to 5
and add constraints for each grounding. Note that the left hand side (before the

implication) in all of these equations except 4 can be computed statically before
solving the problem as it only depends on the trajectory data. We add constraints
corresponding to the right hand side of the implications to the Minion model
only if the left hand side is true. This preprocessing step helps to reduce the
size of the Minion model, which is potentially very large because of the nested
quantifications.

The implication on the right hand side of Equation 4 is modelled with the
help of auxiliary variables that represent the left hand side of the implication
being true. We need auxiliary variables here because Minion does not support
implications between constraints, but only between a constraint and a variable.
All variables and constraints are treated the same way by Minion and arc con-
sistency is enforced during search. We use Minion’s default parameters.

The thresholds T , R, S and S′ are specified by the user. In the experiments
section we will see the effect of these parameters on the results.

4.2 Optimising the Clustering

The optimisation objective of mobility profile mining is to cluster as many tra-
jectories as possible, subject to the constraints, while minimising the overall
number of clusters. We cannot easily express this multi-objective optimisation
in our Minion model, but it turns out that we do not have to. We instead solve
the simpler satisfaction problem that is defined as follows. Given a number of
clusters, we assign values to trajectory variables in a descending manner. That
is, we start with the highest cluster and assign a trajectory to the noise cluster
(value 0) only if all other possibilities have been exhausted. This ensures that as
many trajectories as possible are clustered as non-noise. In Minion, we simply
specify a descending value ordering for the search.

We now minimise the number of clusters as follows. We start by specifying
only two clusters in addition to the noise cluster. If the constraint satisfaction
problem (CSP) has a solution, we have found our clustering. If there are more
symmetric trajectories that need to be in different non-noise clusters however,
this first CSP will have no solution. In this case, we increase the number of
clusters by one, generate a new CSP and try to solve it. This way, we identify
the solution with minimum number of clusters.

In practice, the number of clusters is usually small. The number of routine
trips an individual makes that we have observed empirically was fewer than five
in most cases, such that our method is likely to find the solution after only a
few iterations.

4.3 Scalability

The main reason why data mining and machine learning applications use spe-
cialised approximate algorithms instead of complete optimisation approaches
such as constraint programming is the scalability of such methods. Approxim-
ate methods are almost always orders of magnitude faster than corresponding
complete methods while delivering solutions of similar quality.

While scalability is a concern for our application as well, it is not an issue in
practice, due to the high modularity of the problem: indeed, each user can be
analyzed separately, making the complexity of the problem linear in the number
of users. The critical factor is, instead, the number of trajectories of a single user.
However, the vast majority of individuals have a relatively low number of trips
(in the dataset used for our experiments, which covers a time span of 5 weeks,
most users have fewer than 100 trajectories), and therefore the constraint models
can be solved in reasonable time. Our application is not time-critical, but puts
the main emphasis on the quality of the solutions. We are happy to spend more
time solving the problem as long as we get a better quality result.

The main factor that contributes to the size of the CSP apart from the
number of trajectories is the number of clusters. Each additional cluster increases
the size of the domains of the trajectory variables, requires an additional array
of Boolean values and additional constraints to account for the possibility of a
trajectory being assigned to that cluster. The iterative approach for setting the
number of clusters described above keeps the size of the CSP as small as possible
while not compromising on the quality of the solution.

We have found that this approach has a very significant impact on the ef-
ficiency with which we can solve this clustering problem. Often, increasing the
number of clusters beyond the optimal number increases the solve time of the
model by orders of magnitude.

5 Experimental Evaluation

We evaluated the quality of the clusters that the constraint model finds on
real-world trajectories collected in Italy. We will show how our constraint model
improves on the existing solution for extracting mobility profiles, thus evaluating
the impact of taking symmetric clusters into account on the results. We briefly
describe the dataset used in the experiments, then summarize the results, and
finally show an example of profiles found on a single user with the different
approaches.

5.1 Dataset

Our dataset contains the trajectories of the cars of 150 users living around
the city of Pisa, Italy, collected over a period of 5 weeks (Figure 2). We can-
not make the actual data available because of privacy reasons; an anonymized
version is available at http://www.cs.ubc.ca/~larsko/downloads/cp2015_

anonymized_dataset.tar.gz.
The users were selected in such a way to have a good representation of differ-

ent mobility complexities, i.e. different numbers of trajectories. In our stratified
sample, the number of trajectories per user roughly follows a uniform distribu-
tion that ranges from 1 to 100 (see Figure 3).

Experiments were carried out adopting a spatio-temporal distance dist(x, y)
between two points that is computed as the standard Euclidean distance between

Figure 2.Dataset of trajectories used in the experiments, containing 150 users centered
around Pisa, Italy.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 0 10
 20

 30
 40

 50
 60

 70
 80

 90
 100

 110
 120

 130
 140

 150
 160

 170

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

us

er
s

trajectories

Pisa Dataset Trajectory - User

test set
data set

Figure 3. Distribution of number of trajectories per user used in the experiments (blue
bars) vs. distribution of original dataset (green line).

the spatial components of x and y if their temporal gap is less than a threshold
τ = 1hr, and ∞ otherwise. Therefore, we used the following ranges of values
for parameters S (the minimum number of trajectories in a cluster) and T (the
distance threshold between trajectories, expressed in meters): S ∈ {3, 4, 5, 6},
T ∈ {100, 200, 300, 400, 500}. Moreover, the parameters S′ (the threshold for
the combined size of two symmetric clusters) and R (the maximum distance
between trajectories in a cluster) are set as functions of S and T , respectively:
S′ = 1.5 · S, R = 3 · T . The coefficients used to compute S′ and R have been
chosen empirically through a set of preliminary experiments over the dataset.
Different datasets may exhibit different properties and a recalibration of these
values may be required.

Computation over a medium-low-end desktop machine (i3 CPU at 3GHz,
with 4GB RAM, running Ubuntu 12) took an overall time below 15 minutes. In
particular, single users with 20 or less trajectories (which are the most common
in the original dataset) are dealt with in less than one second, while those with
50 to 100 trajectories (less common, yet over-represented in our sample set, to
evaluate their impact) took up to 15 seconds each.

5.2 Evaluation of Results

The main advantage of our constraint model over previous approaches is that it
allows to take symmetric clusters into account. Without the constraints that do
this, we should achieve results that are equivalent to the data mining solution
proposed in [8]. However, the constraint model should find an optimal solution
instead of a heuristic one.

In our first set of experiments, we compare both approaches without taking
symmetric clusters into account to get a baseline for the performance of our
new approach. This also allows to evaluate the impact of taking the symmetric
clusters into account later.

Figures 4 and 5 show a comparison of the two approaches for the different
parameter values (S and T) in terms of the number of non-noise trajectories
(Figure 4) and of number of clusters found (Figure 5).

Both the number of non-noise trajectories and clusters increases as we relax
the constraints, i.e. allow fewer trajectories that are further apart in a cluster.
This is true for both the data mining and the CP approach. In general, both the
number of non-noise trajectories and clusters is larger for the CP approach, in
some cases significantly so. For example, the number of clusters for S = 3 that the
CP approach finds is almost twice the number the data mining approach finds. As
S is increased, the difference becomes smaller. The reason for this phenomenon
is that the data mining approach partitions the set of trajectories into clusters
through a heuristics that considers the distribution of data only locally, and
therefore can create small clusters that are later discarded, as shown in the
example of Figure 1. This kind of situations are avoided by the CP approach,
which instead considers the assignment of trajectories to clusters from a global
viewpoint.

 0

 500

 1000

 1500

 2000

 2500

 3000

 100 200 300 400 500

cl
us

te
re

d
tr

aj
ec

to
rie

s

T (ε)

Scpnosym
 3

Scpnosym
 4

Scpnosym
 5

Scpnosym
 6

Sdm(min_size)
 3

Sdm(min_size)
 4

Sdm(min_size)
 5

Sdm(min_size)
 6

Figure 4. Number of clustered trajectories found by the data mining approach (dm)
and the constraint model without symmetry constraints (CPnosym) for different dis-
tance threshold and cluster size values T and S.

In our second set of experiments, we focus on evaluating the impact of taking
symmetric clusters into account. We adopt two measures for comparing the
complete constraint model with all constraints to the one that does not take
symmetric clusters into account as above.

– the trajectory coverage of method A over method B, defined as:

tr cov(A,B) =
∥{x | x ∈ XA, x ̸= noise} ∩ {x | x ∈ XB, x ̸= noise}∥

∥{x | x ∈ XB , x ̸= noise}∥
(6)

where XA (resp. XB) represents the overall set of clustered trajectories ob-
tained with method A (resp. B). When A completely covers B, tr cov(A,B) =
1.

– the cluster coverage of method A over method B, defined as:

cl cov(A,B) =

∑
u∈U (Cu · cl covu(A,B))∑

u∈U Cu
(7)

where U is the set of users and Cu the number of clusters found by A for
user u. Function cl covu(A,B), in turn, is computed over each user u as the
average trajectory coverage of each cluster of u found by A w.r.t. those found
by B. The matching between clusters is performed by taking the best match,
i.e. maximizing the trajectory coverage limited to the two clusters compared.

 0

 100

 200

 300

 400

 500

 100 200 300 400 500

cl
us

te
rs

T (ε)

Scpnosym
 3

Scpnosym
 4

Scpnosym
 5

Scpnosym
 6

Sdm(min_size)
 3

Sdm(min_size)
 4

Sdm(min_size)
 5

Sdm(min_size)
 6

Figure 5. Number of clusters found by the data mining approach (dm) and the con-
straint model without symmetry constraints (CPnosym) for different distance threshold
and cluster size values T and S.

Clusters left unpaired are assigned to an empty set. When A completely
covers B, cl cov(A,B) = 1.

While the trajectory coverage compares the overall ability to recognize sys-
tematic trips, the cluster coverage looks at how much each single cluster is dis-
covered by the other method. Figures 6 and 7 report the results obtained on
our dataset. Lines labelled with SCPsym represent the coverages of the model
with symmetry constraint (CPsym) over that without symmetry (CPnosym),
and SCPnosym the opposite.

The plots clearly show that the model that takes symmetric trajectories
into account completely covers the other one, both in global terms of trajectory
coverage (Figure 6) and in terms of (the more precise) cluster coverage (Figure 7),
since the corresponding values are always very close to 1. The model that does
not take symmetric trajectories into account on the other hand loses at least 50%
of trajectories and 70% of cluster coverage. These results are consistent across
the range of values for S and T that we consider here, with little variation.

Our results show that considering the symmetry of clusters has a large impact
on results. We are able to cluster a lot more trajectories that were mistakenly
identified as noise before, allowing to recover several backward trips that would
otherwise not be recognized as routines.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100 200 300 400 500

tr
aj

ec
to

ry
 c

ov
er

ag
e

T

Scpsym
 = 3

Scpsym
 = 4

Scpsym
 = 5

Scpsym
 = 6

Scpnosym
 = 3

Scpnosym
 = 4

Scpnosym
 = 5

Scpnosym
 = 6

Figure 6. Trajectory coverage for constraint models with symmetry constraint
(CPsym) and without (CPsym) for different distance threshold and cluster size val-
ues T and S.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100 200 300 400 500

cl
us

te
r

co
ve

ra
ge

T

Scpsym
 = 3

Scpsym
 = 4

Scpsym
 = 5

Scpsym
 = 6

Scpnosym
 = 3

Scpnosym
 = 4

Scpnosym
 = 5

Scpnosym
 = 6

Figure 7. Cluster coverage for constraint models with symmetry constraint (CPsym)
and without (CPsym) for different distance threshold and cluster size values T and S.

5.3 Qualitative Evaluation

The quality of the clustering is more difficult to assess, as there are no auto-
mated means to determine whether a set of clusters “makes sense”. In practice,
clusterings are evaluated through assessment by a human expert. We obviously
cannot do this for all of the users we consider in this paper and consider the
clusters for a single user as an example here.

While not all users have symmetric trajectories, the following example demon-
strates the motivation of our approach and the case that is difficult to solve for
specialised data mining methods. A clustering example that shows the benefit of
the constraint model is presented in Figure 8. The image was obtained by using
T = 100 and S = 6.

The red and the blue trajectories represent symmetric parts of the same
routine. However, there are fewer red than blue trajectories; in particular the
number of red trajectories is smaller than the threshold S. If the symmetry is not
taken into account, only the blue trajectories are clustered, whereas the red ones
are discarded as noise. The CP approach that does consider symmetry identifies
the red trajectories correctly as a non-noise cluster.

Figure 8. Trajectory clusters found on a sample user (best seen in colors).

For the eastward journey, our user mainly follows the blue routine, but for
the return journey he/she often changes path, either for traffic reasons or for
personal needs, and the red trajectories represent the most frequent choice. The
figure clearly shows the benefit of being able to take symmetric trajectories into
account. Indeed, there are only three trajectories in the red cluster, which has
been discarded as noise by the other method.

Lowering S to 3 would have clustered the red trajectories as non-noise, but
at the same time erroneously identified a number of additional clusters that are
in fact noise for our purposes. Therefore, the model that does not consider sym-
metric trajectories (as well as the specialised data mining algorithm discussed
above) could not have identified the same set of clusters for this user.

6 Conclusion and Future Work

We have presented a constraint programming formulation of the problem of
mining mobility profiles from GPS trajectories. This is an important research
direction with many real-world applications that, to date, has been the domain
of specialised data mining algorithms. We have described the drawbacks of these
specialised algorithms and how they are alleviated with constraint programming.

The implementation of our model and its experimental evaluation on real-
world data showed that the model stands up to its promise and delivers clus-
terings of a higher quality than those that the previously-used specialised data
mining algorithms achieve. In particular, we are able to identify a much larger
number of non-noise trajectories and clusters. The experiments further demon-
strate that it is feasible to use complete optimisation methods for this problem.

The main benefit of constraint programming over similar technologies for
this application is the succinct representation of the model. In particular SAT
models would be much larger to accommodate the potentially large domains
encoding the possible cluster assignments. Similarly, ILP formulations would be
more complex because of nested constructs.

There are several avenues for future work. We did not add any symmetry-
breaking constraints to our model even though symmetries occur – for example
in the numbering of the clusters. Formulating and adding symmetry-breaking
constraints may increase the scalability of our approach further.

On the data mining side, there are additional problem characteristics that
are not taken into account in our current model. The day that particular trips
were taken for example is not considered, but it would be beneficial to do so.
We could for instance boost symmetric trajectories that occur on the same day,
as they are more likely to represent a recurring activity.

There are many additional extensions to the model presented in this paper.
Even our relatively basic formulation shows the promise of the approach by
delivering results of a higher quality than specialised approaches while being
easier to maintain and modify.

Acknowledgements

This work was supported by the European Commission as part of the “ICON -
Inductive Constraint Programming” project (contract number FP7-284715). The
Insight Centre for Data Analytics is supported by Science Foundation Ireland
under grant number SFI/12/RC/2289. We thank the anonymous reviewers for
their helpful feedback.

References

1. Davidson, I., Ravi, S.S., Shamis, L.: A SAT-based Framework for Efficient Con-
strained Clustering. In: SIAM International Conference on Data Mining. pp. 94–105
(2010)

2. De Raedt, L., Guns, T., Nijssen, S.: Constraint programming for data mining and
machine learning. In: AAAI. pp. 1671–1675 (2010)

3. Gent, I.P., Jefferson, C.A., Miguel, I.: MINION: a fast, scalable, constraint solver.
In: ECAI. pp. 98–102. IOS Press (2006)

4. Giannotti, F., Nanni, M., Pedreschi, D., Pinelli, F.: Trajectory pattern analysis for
urban traffic. In: Proceedings of the Second International Workshop on Computa-
tional Transportation Science, IWCTS 2009. pp. 43–47 (2009)

5. Giannotti, F., Nanni, M., Pedreschi, D., Pinelli, F., Renso, C., Rinzivillo, S.,
Trasarti, R.: Unveiling the complexity of human mobility by querying and min-
ing massive trajectory data. The VLDB Journal 20(5), 695–719 (2011), http:

//dx.doi.org/10.1007/s00778-011-0244-8

6. Giannotti, F., Pedreschi, D. (eds.): Mobility, Data Mining and Privacy - Geographic
Knowledge Discovery. Springer (2008)

7. Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-Wesley
(2005)

8. Trasarti, R., Pinelli, F., Nanni, M., Giannotti, F.: Mining mobility user profiles for
car pooling. In: KDD. pp. 1190–1198 (2011)

9. Wagstaff, K., Cardie, C.: Clustering with Instance-level Constraints. In: Seventeenth
International Conference on Machine Learning. pp. 1103–1110. ICML ’00, Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA (2000)

