
1

An Evaluation of Machine Learning in
Algorithm Selection for Search Problems

Lars Kotthoff a,∗, Ian P. Gent a and Ian Miguel a
a School of Computer Science
Jack Cole Building, North Haugh
St Andrews
KY16 9SX
United Kingdom
E-mail: {larsko,ipg,ianm}@cs.st-andrews.ac.uk

Machine learning is an established method of selecting algo-
rithms to solve hard search problems. Despite this, to date no
systematic comparison and evaluation of the different tech-
niques has been performed and the performance of exist-
ing systems has not been critically compared with other ap-
proaches. We compare the performance of a large number
of different machine learning techniques from different ma-
chine learning methodologies on five data sets of hard algo-
rithm selection problems from the literature. In addition to
well-established approaches, for the first time we also ap-
ply statistical relational learning to this problem. We demon-
strate that there is significant scope for improvement both
compared with existing systems and in general. To guide
practitioners, we close by giving clear recommendations as
to which machine learning techniques are likely to achieve
good performance in the context of algorithm selection prob-
lems. In particular, we show that linear regression and alter-
nating decision trees have a very high probability of achiev-
ing better performance than always selecting the single best
algorithm.

Keywords: Algorithm Selection, Machine Learning, Combi-
natorial Search

1. Introduction

The technique of portfolio creation and algorithm
selection has recently received a lot of attention in ar-
eas of artificial intelligence that deal with solving com-
putationally hard problems [26, 39]. The current state
of the art is such that often there are many algorithms
and systems for solving the same kind of problem; each

*Corresponding Author.

with different performance characteristics on a partic-
ular problem.

Recent research has focussed on creating algorithm
portfolios, which contain a selection of state of the art
algorithms. To solve a particular problem with a port-
folio, the suitability of each algorithm in the portfolio
for the problem at hand is assessed in a preprocessing
step. This step often involves some kind of machine
learning, as the actual performance of each algorithm
on the given, unseen problem is unknown.

The algorithm selection problem was first described
many decades ago by Rice [30] and numerous systems
that employ machine learning techniques have been
developed since [26, 28, 37, 39]. While there has been
some small-scale work to compare the performance
of different machine learning algorithms (e.g. [28]),
there has been no comparison of the machine learning
methodologies available for algorithm selection and
large-scale evaluation of their performance to date.

The systems that perform algorithm selection usu-
ally justify their choice of a machine learning method-
ology (or a combination of several) with their perfor-
mance compared with one of the algorithms selected
from and do not critically assess the real performance
– could we do as well or even better by using just a sin-
gle algorithm instead of having to deal with portfolios
and complex machine learning?

This paper presents a comprehensive comparison of
machine learning paradigms and techniques for tack-
ling algorithm selection. It evaluates the performance
of a large number of different techniques on data sets
used in the literature. We furthermore compare our re-
sults with existing systems and to a simple “winner-
takes-all” approach where the best overall algorithm
is always selected. We demonstrate that this approach
performs quite well in practice, a result that we were
surprised by. Based on the results of these extensive
experiments and additional statistical simulations, we
give recommendations as to which machine learning
techniques should be considered when performing al-
gorithm selection.

AI Communications
ISSN 0921-7126, IOS Press. All rights reserved



2 L. Kotthoff et al. / Algorithm Selection for Search Problems

The aim of the investigation presented here is not to
establish a set of machine learning algorithms that are
best in general for algorithm selection and should be
used in all cases, but rather to provide guidance to re-
searchers with little experience in algorithm selection.
In any particular scenario, an investigation similar to
the one presented here can be performed to establish
the best machine learning method for the specific case
if the resources for doing so are available.

2. Background

We are addressing an instance of the algorithm se-
lection problem [30] – given variable performance
among a set of algorithms, choose the best candi-
date for a particular problem instance. Machine learn-
ing is an established method of addressing this prob-
lem [5, 24]. Given the performance of each algorithm
on a set of training problems, we try to predict the per-
formance on unseen problems.

An algorithm portfolio [11, 23] consists of a set of
algorithms. A subset is selected and applied sequen-
tially or in parallel to a problem instance, according to
some schedule. The schedule may involve switching
between algorithms while the problem is being solved
(e.g. [21, 36]). We consider the problem of choosing
the best algorithm from the portfolio (i.e. a subset of
size 1) and using it to solve the particular problem in-
stance to completion. In this context, the widest range
of machine learning techniques are applicable. Some
of the techniques are also applicable in other contexts
– performance predictions can easily be used to devise
a schedule with time allocations for each algorithm in
the portfolio, which can then be applied sequentially
or in parallel. Therefore some of our results are also
relevant to other approaches.

There have been many systems that use algorithm
portfolios in some form developed over the years and
an exhaustive list is beyond the scope of this pa-
per. Smith-Miles [34] presents a survey of many dif-
ferent approaches. One of the earliest systems was
Prodigy [3], a planning system that uses various ma-
chine learning methodologies to select from search
strategies. PYTHIA [37] is more general and selects
from among scientific algorithms. MULTI-TAC [25]
tailors constraint solvers to the problems they are to
tackle. Borrett et al. [2] employed a sequential port-
folio of constraint solvers. More recently, Guerri and
Milano [12] use a decision-tree based technique to
select among a portfolio of constraint- and integer-

programming based solution methods for the bid eval-
uation problem. In the area of hard combinatorial
search problems, a highly successful approach in satis-
fiability (SAT) is SATzilla [39]. In constraint program-
ming, CP-Hydra uses a similar approach [26]. The
AQME system [28] performs algorithm selection for
finding satisfying assignments for quantified Boolean
formulae.

Silverthorn and Miikkulainen [33] describe a dif-
ferent approach to portfolio performance prediction.
They cluster instances into latent classes (classes that
are unknown before and only emerge as the cluster-
ing takes place) and choose the best algorithm for each
class. The ISAC system [18] is similar in that it clusters
problem instances and assigns algorithms to each clus-
ter, but it does not use a latent approach. The classes
are only implicit in the clusters. Stern et al. [35] use
a Bayesian model to manage portfolios and allow for
changes to the algorithms from the portfolio and prob-
lem instance characteristics. Hydra [40] configures al-
gorithms before adding them to the portfolio. The aim
is to compose portfolios where the algorithms comple-
ment each other.

There are many different approaches to using ma-
chine learning for algorithm selection. Often, the
method of choice is not compared with other ap-
proaches. Justification of the authors’ decision usu-
ally takes the form of demonstrated performance im-
provements over a single algorithm of the ones be-
ing selected from. Other approaches use ensembles of
machine learning algorithms to provide good perfor-
mance [20].

There are a few publications that do explicitly
compare different machine learning algorithms. Xu
et al. [39] mention that, in addition to the chosen
ridge regression for predicting the runtime, they ex-
plored using lasso regression, support vector ma-
chines and Gaussian processes. Cook and Varnell [4]
compare different decision tree learners, a Bayesian
classifier, a nearest neighbour approach and a neu-
ral network. Leyton-Brown et al. [22] compare sev-
eral versions of linear and non-linear regression. Guo
and Hsu [13] explore using decision trees, naı̈ve
Bayes rules, Bayesian networks and meta-learning
techniques. Gebruers et al. [6] compare nearest neigh-
bour classifiers, decision trees and statistical models.
Hough and Williams [16] use decision tree ensembles
and support vector machines. Bhowmick et al. [1] in-
vestigate alternating decision trees and various forms
of boosting, while Pulina and Tacchella [27] use deci-
sion trees, decision rules, logistic regression and near-



L. Kotthoff et al. / Algorithm Selection for Search Problems 3

est neighbour approaches and Roberts and Howe [32]
evaluate 32 different Machine Learning algorithms
for predicting the runtime. Silverthorn and Miikku-
lainen [33] compare the performance of different latent
class models. Gent et al., Kotthoff et al. [8, 20] com-
pare 18 classification algorithms.

Of these, only [6, 8, 13, 16, 20, 27, 33] quantify
the performance of the different methods they used.
The other comparisons give only qualitative evidence.
None of the publications that give quantitative evi-
dence are as comprehensive as this study, neither in
terms of data sets nor Machine Learning algorithms.

3. Algorithm selection methodologies

In an ideal world, we would know enough about the
algorithms in the portfolio to formulate rules to select
a particular one based on certain characteristics of a
problem to solve. In practice, this is not possible except
in trivial cases. For complex algorithms and systems,
like the ones mentioned above, we do not understand
the factors that affect the performance of a specific al-
gorithm on a specific problem well enough to make
the decisions the algorithm selection problem requires
with confidence.

As outlined above, a common approach to overcom-
ing these difficulties is to use machine learning. Several
machine learning methodologies are applicable here.
We present the most prevalent ones below. We use the
term “methodology” to mean a kind of machine learn-
ing algorithm that can be used to achieve a certain kind
of prediction output. In addition to these, we use a
simple majority predictor that always predicts the al-
gorithm from the portfolio with the largest number of
wins, i.e. the one that is fastest on the largest subset
of all training instances, (“winner-takes-all” approach)
for comparison purposes. This provides an evaluation
of the real performance improvement over manually
picking the best algorithm from the portfolio. For this
purpose, we use the WEKA [14] ZeroR classifier im-
plementation.

3.1. Case-based reasoning

Case-based reasoning informs decisions for unseen
problems with knowledge about past problems. An in-
troduction to the field can be found in [31]. The idea
behind case-based reasoning is that instead of trying
to construct a theory of what characteristics affect the

performance, examples of past performance are used
to infer performance on new problems.

The main part of a case-based reasoning system
is the case base. We use the WEKA IBk nearest-
neighbour classifier with 1, 3, 5 and 10 nearest neigh-
bours considered as our case-based reasoning algo-
rithms. The case base consists of the problem instances
we have encountered in the past and the best algorithm
from the portfolio for each of them – the set of train-
ing instances and labels. Each case is a point in n-
dimensional space, where n is the number of attributes
each problem has. The nearest neighbours are deter-
mined by calculating the Euclidean distance. While
this is a very weak form of case-based reasoning, it is
consistent with the observation above that we simply
do not have more information about the problems and
algorithms from the portfolio that we could encode in
the reasoner.

The attraction of case-based reasoning, apart from
its conceptual simplicity, is the fact that the underly-
ing performance model can be arbitrarily complex. As
long as the training data is representative (i.e. the case
base contains problems similar to the ones we want to
solve with it), the approach will achieve good perfor-
mance.

We use the AQME system [28] as a reference sys-
tem that uses case-based reasoning to compare with.
AQME uses a nearest-neighbour classifier to select the
best algorithm.

3.2. Classification

Intuitively, algorithm selection is a simple classifica-
tion problem – label each problem instance with the al-
gorithm from the portfolio that should be used to solve
it. We can solve this classification problem by learning
a classifier that discriminates between the algorithms
in the portfolio based on the characteristics of the prob-
lem. A set of labelled training examples is given to the
learner and the learned classifier is then evaluated on a
set of test instances.

We use the WEKA

– AdaBoostM1,
– BayesNet,
– BFTree,
– ConjunctiveRule,
– DecisionTable,
– FT,
– HyperPipes,
– J48,



4 L. Kotthoff et al. / Algorithm Selection for Search Problems

– J48graft,
– JRip,
– LADTree,
– LibSVM (with radial basis and sigmoid function

kernels),
– MultilayerPerceptron,
– OneR,
– PART,
– RandomForest,
– RandomTree and
– REPTree

classifiers. Our selection is large and inclusive and con-
tains classifiers that learn all major types of classifica-
tion models. In addition to the WEKA classifiers, we
used a custom classifier that assumes that the distribu-
tion of the class labels for the test set is the same as
for the training set and samples from this distribution
without taking features into account.

We consider the classifier presented by Gent et al. [7]
as a reference system from the literature to compare
with. They use a decision tree induced by the J48 al-
gorithm.

3.3. Regression

Instead of considering all algorithms from the port-
folio together and selecting the one with the best per-
formance, we can also try to predict the performance of
each algorithm on a given problem independently and
then select the best one based on the predicted perfor-
mance measures. The downside is that instead of run-
ning the machine learning once per problem, we need
to run it for each algorithm in the portfolio for a single
problem.

The advantage of this approach is that instead of
trying to learn a model of a particular portfolio, the
learned models only apply to individual algorithms.
This means that changing the portfolio (i.e. adding or
removing algorithms) can be done without having to
retrain the models for the other algorithms. Further-
more, the performance model for a single algorithm
might be not as complex and easier to learn than the
performance model of a portfolio.

Regression is usually performed on the runtime of
an algorithm on a problem. Xu et al. [39] predict the
logarithm of the runtime because they “have found this
log transformation of runtime to be very important due
to the large variation in runtimes for hard combinato-
rial problems.”

We use the WEKA

– GaussianProcesses,
– LibSVM (ε and ν),
– LinearRegression,
– REPTree and
– SMOreg

learners to predict both the runtime and the logarithm
of the runtime. Again we have tried to be inclusive and
add as many different regression learners as possible
regardless of our expectations as to their suitability or
performance.

We use a modified version of SATzilla [39] (denoted
SATzilla′) to compare with. SATzilla uses a form of
ridge regression to predict a performance measure re-
lated to the runtime of an algorithm on a problem.

3.4. Statistical relational learning

Statistical relational learning is a relatively new dis-
cipline of machine learning that attempts to predict
complex structures instead of simple labels (classifica-
tion) or values (regression) while also addressing un-
certainty. An introduction can be found in [10]. For al-
gorithm selection, we try to predict the performance
ranking of the algorithms from the portfolio on a par-
ticular problem.

We consider this approach promising because it at-
tempts to learn the model that that is most intuitive
for humans. In the context of algorithm portfolios, we
do not care about the performance of individual algo-
rithms, but the relative performance of the algorithms
in the portfolio. While this is not relevant for selecting
the single best algorithm, many approaches use pre-
dicted performance measures to compute schedules ac-
cording to which to run the algorithms in the portfolio
(e.g. [9, 26, 28]). We also expect a good model of this
sort to be much more robust with respect to the inherent
uncertainty of empirical performance measurements.

We use the support vector machine SVMrank in-
stantiation1 of SVMstruct [17]. It was designed to pre-
dict ranking scores. Instances are labelled and grouped
according to certain criteria. The labels are then ranked
within each group. We can use the system unmodified
for our purposes and predict the ranking score for each
algorithm on each problem. We left the parameters at
their default values and used a value of 0.1 for the con-
vergence parameter ε except in cases where the model
learner did not converge within an hour. In these cases,
we set ε = 0.5.

1http://www.cs.cornell.edu/People/tj/svm_
light/svm_rank.html

http://www.cs.cornell.edu/People/tj/svm_light/svm_rank.html
http://www.cs.cornell.edu/People/tj/svm_light/svm_rank.html


L. Kotthoff et al. / Algorithm Selection for Search Problems 5

To the best of our knowledge, statistical relational
learning has never before been applied to algorithm se-
lection.

4. Evaluation data sets

We evaluate and compare the performance of the ap-
proaches mentioned above on five data sets of hard al-
gorithm selection problems taken from the literature.
We take three sets from the training data for SATzilla
2009. This data consists of SAT instances from three
categories – hand-crafted, industrial and random. They
contain 1181, 1183 and 2308 instances, respectively.
The SATzilla authors use 91 attributes for each in-
stance and select a SAT solver from a portfolio of 19
solvers2. We compare the performance of each of our
methodologies to a modified version of SATzilla that
only outputs the predictions for each problem with-
out running a presolver or doing any of the other op-
timisations and denote this system SATzilla′. While
the effectiveness of such optimisations has been shown
in some cases, most systems do not use them (e.g.
[26, 28]). We adjusted the timeout values reported in
the training data available on the website to 3600 sec-
onds after consultation with the SATzilla team as some
of the reported timeout values are incorrect.

The fourth data set comes from the QBF Solver
Evaluation 20103 and consists of 1368 QBF instances
from the main, small hard, 2QBF and random tracks.
46 attributes are calculated for each instance and we
select from a portfolio of 5 QBF solvers. Each solver
was run on each instance for at most 3600 CPU sec-
onds. If the solver ran out of memory or was unable
to solve an instance, we assumed the timeout value for
the runtime. The experiments were run on a machine
with a dual 4 core Intel E5430 2.66 GHz processor and
16 GB RAM. We compare the performance to that of
the AQME system.

Our last data set is taken from [7] and selects from
a portfolio of two solvers for a total of 2028 constraint
problem instances from 46 problem classes with 17 at-
tributes each. We compare our performance to the clas-
sifier described in the paper.

For each data set, some of the attributes are cheap
to compute while others are extremely expensive. In
practice, steps are usually taken to avoid the expensive

2http://www.cs.ubc.ca/labs/beta/Projects/
SATzilla/

3http://www.qbflib.org/index_eval.php

attributes; see for example [7], who explicitly elimi-
nate them. More details can be found in the referenced
publications.

We chose the data sets because they represent algo-
rithm selection problems from three areas where the
technique of algorithm portfolios has attracted a lot of
attention recently. For all sets, reference systems exist
that we can compare with. Furthermore, the number of
algorithms in the respective portfolios for the data sets
is different.

It should be noted that the systems we are comparing
against are given an unfair advantage. They have been
trained on at least parts of the data that we are using
for the evaluation. Their performance was assessed on
the full data set as a black box system. The machine
learning algorithms we use however are given disjoint
sets of training and test instances.

5. Methodology

The focus of our evaluation is the performance of
the machine learning algorithms. Additional factors
that would impact the performance of an algorithm se-
lection system in practice are not taken into account.
These factors include the time to calculate problem
features and additional considerations for selecting al-
gorithms, such as memory requirements.

We furthermore do not assess the impact of tech-
niques such as using a presolver to allow the machine
learning to focus on problems that take a long time to
solve. While this technique has been used successfully
by Xu et al. [39], most approaches in the literature do
not use such techniques (e.g. [21, 26, 28]). Therefore,
our results are applicable to a wide range of research.

We measured the performance of the machine learn-
ing algorithms in terms of misclassification penalty.
The misclassification penalty is the additional CPU
time we need to solve a problem instance if not choos-
ing the best algorithm from the portfolio, i.e. the dif-
ference between the CPU time the selected algorithm
required and the CPU time the fastest algorithm would
have required. This is based on the intuition that we
do not particularly care about classifying as many in-
stances correctly as possible; we rather care that the in-
stances that are important to us are classified correctly.
The wider the performance between the best and worst
algorithm for an instance, the more important it is to us.
If the selected algorithm was not able to solve the prob-
lem, we assumed the timeout value minus the fastest
CPU time to be the misclassification penalty. This only

http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/
http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/
http://www.qbflib.org/index_eval.php


6 L. Kotthoff et al. / Algorithm Selection for Search Problems

gives a weak lower bound, but we cannot determine the
correct value without running the algorithm to comple-
tion.

For the classification learners, we attached the max-
imum misclassification penalty as a weight to the re-
spective problem instance during the training phase.
The intuition is that instances with a large performance
difference between the algorithms in the portfolio are
more important to classify correctly than the ones with
almost no difference. We use the weight as a means of
biasing the machine learning algorithms towards these
instances. The maximum misclassification penalty is
the maximum possible gain – if the default choice is
the worst performer, we can improve the solve time by
this much by selecting the best performer. This weight
ensures that the optimisation objective of the classifi-
cation learners is the same as the objective we are us-
ing in the evaluation – minimising the additional time
required because of misclassifications.

The handling of missing attribute values was left up
to the specific machine learning system. We estimated
the performance of the learned models using ten-fold
stratified cross-validation [19]. The performance on the
whole data set was estimated by summing the misclas-
sification penalties of the individual folds.

For each data set, we used two sets of features – the
full set and the subset of the most predictive features.
We used WEKA’s CfsSubsetEval attribute selec-
tor with the BestFirst search method with default
parameters to determine the most predictive features
for the different machine learning methodologies. We
treated SVMrank as a black box algorithm and there-
fore did not determine the most predictive features for
it.

We performed a full factorial set of experiments
where we ran each machine learning algorithm of
each methodology on each data set. We also evalu-
ated the performance with thinned out training data.
We randomly deleted 25, 50 and 75% of the problem-
algorithm pairs in the training set. We thus simulated
partial training data where not all algorithms in the
algorithm portfolio had been run on all problem in-
stances. The missing data results in less comprehensive
models being created.

To evaluate the performance of the algorithm selec-
tion systems we compare with, we ran them on the full,
unpartitioned data set. The misclassification penalty
was calculated in the same way as for the machine
learning algorithms.

5.1. Machine learning algorithm parameters

We tuned the parameters of all machine learning al-
gorithms to achieve the best performance on the given
data sets. Because of the very large space of possible
parameter configurations, we focussed on the subset of
the parameters that is likely to affect the generalisa-
tion error. Tuning the values of all parameters would be
prohibitively expensive. The total number of evaluated
configurations was 19,032.

Our aim was to identify the parameter configuration
with the best performance on all data sets. Configura-
tions specific to a particular data set would prevent us
from drawing conclusions as to the performance of the
particular machine learning algorithm in general. It is
very likely that the performance on a particular data set
can be improved significantly by carefully tuning a ma-
chine learning algorithm to it (cf. [7]), but this requires
significant effort to be invested in tuning for each data
set.

Our intention for the results presented in this paper is
twofold. On one hand, the algorithms that we demon-
strate to have good performance can be used with their
respective configurations as-is by researchers wishing
to build an algorithm selection system for search prob-
lems. On the other hand, these algorithm configura-
tions can serve as a starting point for tuning them to
achieve the best performance on a particular data set.
The advantage of the former approach is that a machine
learning algorithm can be chosen for a particular task
with quantitative evidence for its performance already
available.

In many approaches in the literature, machine learn-
ing algorithms are not tuned at all if the performance
of the algorithm selection system is already sufficient
with default parameters. Many researchers who use
machine learning for algorithm selection are not ma-
chine learning experts.

We used the same methodology for tuning as for the
other experiments. For each parameter configuration,
the performance in terms of misclassification penalty
with the full set of parameters on each data set was
evaluated using ten-fold stratified cross-validation. We
determined the best configurations by calculating the
intersection of the set of best configurations on each
individual data set. For four algorithms, this intersec-
tion was empty and we used the configurations closest
to the best one to determine the best overall configura-
tion. This was the case for the classification algorithms
BFTree, DecisionTable, JRip and PART. For



L. Kotthoff et al. / Algorithm Selection for Search Problems 7

all other algorithms, there was at least one configura-
tion that achieved the best performance on all data sets.

We found that for most of the machine learning al-
gorithms that we used, the default parameter values al-
ready gave the best performance across all data sets.
Furthermore, most of the parameters had very little or
no effect; only a few made a noticeable difference. For
SVMrank, we found that only a very small number of
parameter configurations were valid across all data sets
– in the majority of cases, the configuration would pro-
duce an error. We decided to change the parameter val-
ues from the default for the six case-based reasoning
and classification algorithms below.

AdaBoostM1 We used the -Q flag that enables resam-
pling.

DecisionTable We used the -E acc flag that uses the
accuracy of a table to evaluate its classification
performance.

IBk with 1, 3, 5 and 10 neighbours We used the -I
flag that weights the distance by its inverse.

J48 We used the flags -R -N 3 for reduced error
pruning.

JRip We used the -U flag to prevent pruning.
PART We used the -P flag to prevent pruning.

We were surprised that the use of pruning decreased
the performance on unseen data. Pruning is a way of
preventing a learned classifier from becoming too spe-
cific to the training data set and generalising poorly
to other data. One possible explanation for this be-
haviour is that the concept that the classifier learns is
sufficiently prominent in even relatively small subsets
of the original data and pruning over-generalises the
learned model which leads to a reduction in perfor-
mance.

6. Experimental results

We first present and analyse the results for each ma-
chine learning methodology and then take a closer look
at the individual machine learning algorithms and their
performance.4

The misclassification penalty in terms of the ma-
jority predictor for all methodologies and data sets is
shown in Figure 1. The results range from a misclassi-

4Some of the results in a previous version of this pa-
per have been corrected here. For an explanation of the is-
sue, see http://www.cs.st-andrews.ac.uk/˜larsko/
asc-correction.pdf.

fication penalty of less than 10% of the majority pre-
dictor to almost 650%. In absolute terms, the differ-
ence to always picking the best overall algorithm can
be from an improvement of more than 28 minutes per
problem to a decrease in performance of more than 41
minutes per problem.

At first glance, no methodology seems to be inher-
ently superior. The “No Free Lunch” theorems, in par-
ticular the one for supervised learning [38], suggest
this result. We were surprised by the good performance
of the majority predictor, which in particular delivers
excellent performance on the industrial SAT data set.
The SVMrank relational approach is similar to the
majority predictor when it delivers good performance.

Many publications do not compare their results
with the majority predictor, thus creating a mislead-
ing impression of the true performance. As our re-
sults demonstrate, always choosing the best algorithm
from a portfolio without any analysis or machine learn-
ing can significantly outperform more sophisticated ap-
proaches.

Some of the machine learning algorithms perform
worse than the majority predictor in some cases. There
are a number of possible reasons for this. First, there
is always the risk of overfitting a trained model to the
training set such that it will have bad performance on
the test set. While cross-validation somewhat mitigates
the problem, it will still occur in some cases. Second,
the set of features we are using may not be informative
enough. The feature sets are however what is used in
state of the art algorithm selection systems and able to
inform predictions that provide performance improve-
ments in some cases.

Figure 2 shows the misclassification penalty in terms
of a classifier that learns a simple rule (OneR in
WEKA) – the data is the same as in Figure 1, but the
reference is different. This evaluation was inspired by
Holte [15], who reports good classification results even
with simple rules. On the QBF and SAT-IND data sets,
there is almost no difference. On the CSP data set, a
simple rule is not able to capture the underlying per-
formance characteristic adequately – it performs worse
than the majority predictor, as demonstrated by the
improved relative performance. On the remaining two
SAT data sets, learning a simple classification rule im-
proves over the performance of the majority predictor.

The reason for including this additional comparison
was to show that there is no simple solution to the prob-
lem. In particular, there is no single attribute that ad-
equately captures the performance characteristics and
could be used in a simple rule to reliably predict the

http://www.cs.st-andrews.ac.uk/~larsko/asc-correction.pdf
http://www.cs.st-andrews.ac.uk/~larsko/asc-correction.pdf


8 L. Kotthoff et al. / Algorithm Selection for Search Problems

CSP
0.01

0.05

0.10

0.50

1.00

5.00

10.00

penalty relative
to majority predictor

QBF SAT−HAN SAT−IND SAT−RAN

Fig. 1. Experimental results with full feature sets and training data across all methodologies and data sets. The plots show the 0th (bottom line),
25th (lower edge of box), 50th (thick line inside box), 75th (upper edge of box) and 100th (top line) percentile of the performance of the machine
learning algorithms for a particular methodology (4 for case-based reasoning, 19 for classification, 6 for regression and 1 for statistical relational
learning). The boxes for each data set are, from left to right, case-based reasoning, classification, regression, regression on the log and statistical
relational learning. The performance is shown as a factor of the simple majority predictor which is shown as a dotted line. Numbers less than 1
indicate that the performance is better than that of the majority predictor. The solid lines for each data set show the performance of the systems
we compare with ([7] for the CSP data set, [28] for the QBF data set and SATzilla′ for the SAT data sets).

CSP
0.01

0.05

0.10

0.50

1.00

5.00

10.00

penalty relative
to simple rule predictor

QBF SAT−HAN SAT−IND SAT−RAN

Fig. 2. Experimental results with full feature sets and training data across all methodologies and data sets. The boxes for each data set are, from
left to right, case-based reasoning, classification, regression, regression on the log and statistical relational learning. The performance is shown
as a factor of a classifier that learns a simple rule (OneR in WEKA) which is shown as a dotted line. Numbers less than 1 indicate that the
performance is better than that of the simple rule predictor.



L. Kotthoff et al. / Algorithm Selection for Search Problems 9

best solver to use. On the contrary, the results suggest
that considering only a single attribute in a rule is an
oversimplification that leads to a deterioration of over-
all performance. The decrease in performance com-
pared to the majority predictor on some of the data sets
bears witness to this.

To determine whether regression on the runtime or
on the log of the runtime is better, we estimated the per-
formance with different data by choosing 1000 boot-
strap samples from the set of data sets and comparing
the performance of each machine learning algorithm
for both types of regression. Regression on the run-
time has a higher chance of better performance – with a
probability of ≈67% it will be better than regression on
the log of the runtime on the full data set. With thinned
out training data the picture is different however and
regression on the log of the runtime delivers better per-
formance. We therefore show results for both types of
regression in the remainder of this paper.

6.1. Most predictive features and thinned out training
data

Figure 3 shows the results for the set of the most
predictive features. The results are very similar to the
ones with the full set of features. A bootstrapping es-
timate as described above indicated that the probabil-
ity of the full feature set delivering results better than
the set of the most important features is ≈69%. There-
fore, we only consider the full set of features in the
remainder of this paper – it is better than the selected
feature set with a high probability and does not require
the additional feature selection step. In practice, most
of the machine learning algorithms ignore features that
do not provide relevant information anyway – either
explicitly like J48 by not including them in the gen-
erated decision tree, or implicitly like the regression
techniques that set their factors to zero.

The effects of thinning out the training data were
different across the data sets and are shown in Fig-
ure 4. On the industrial and random SAT data sets,
the performance varied seemingly at random; some-
times increasing with thinned out training data for
one machine learning methodology while decreasing
for another one on the same data set. On the hand-
crafted SAT and QBF data sets, the performance de-
creased across all methodologies as the training data
was thinned out while it increased on the CSP data set.
Statistical relational learning was almost unaffected in
most cases.

There is no clear conclusion to be drawn from these
results as the effect differs across data sets and method-
ologies. They however suggest that deleting a propor-
tion of the training data may improve the performance
of the machine learning algorithms. At the very least,
not running all algorithms on all problems because of
resource constraints seems to be unlikely to have a
large negative impact on performance as long as most
algorithms are run on most problems.

The size of the algorithm portfolio did not have a
significant effect on the performance of the different
machine learning methodologies. For all data sets, each
solver in the respective portfolio was the best one in
at least some cases – it was not the case that although
the portfolio sizes are different, the number of solvers
the should be chosen in practice was the same or very
similar. Figure 1 does not show a general increase or
decrease in performance as the size of the portfolio in-
creases. In particular, the variation in performance on
the three SAT data sets with the same portfolio size is
at least as big as the variation compared to the other
two data sets with different portfolio sizes.

Our intuition was that as the size of the portfolio
increases, classification would perform less well be-
cause the learned model would be more complex. At
the same time, we expected the performance of regres-
sion to increase because the complexity of the learned
models does not necessarily increase. In practice how-
ever the opposite appears to be the case – on the CSP
data set, where we select from only 2 solvers, classi-
fication and case-based reasoning perform worse com-
pared with the other methodologies than on the other
data sets. It turned out however that the number of al-
gorithms selected from the portfolio by the machine
learning algorithms at all was small in all cases. As we
compared only three different portfolio sizes, there is
not enough data from which to draw definitive conclu-
sions.

6.2. Best machine learning methodology

As it is not obvious from the results which method-
ology is the best, we again used bootstrapping to es-
timate the probability of being the best performer for
each one. We sampled, with replacement, from the
set of data sets and for each methodology from the
set of machine learning algorithms used and calcu-
lated the ranking of the median and maximum perfor-
mances across the different methodologies. Repeated
1000 times, this gives us the likelihood of an aver-
age and the best algorithm of each methodology being



10 L. Kotthoff et al. / Algorithm Selection for Search Problems

CSP
0.1

0.2

0.5

1.0

2.0

5.0

10.0

penalty relative
to majority predictor

QBF SAT−HAN SAT−IND SAT−RAN

Fig. 3. Experimental results with reduced feature sets across all methodologies and data sets. The boxes for each data set are, from left to
right, case-based reasoning, classification, regression and regression on the log. We did not determine the set of the most predictive features
for statistical relational learning. The performance is shown as a factor of the simple majority predictor. For each data set, the most predictive
features were selected and used for the machine learning.

CSP

c(
m

ed
ia

n1
00

, m
ed

ia
n7

5,
 m

ed
ia

n5
0,

 m
ed

ia
n2

5)

0.1

10.0

1000.0

penalty relative
to majority predictor

0% 50%
25% 75% deleted training data

case−based
reasoning

classification
regression

regression−log

statistical
relational
learning

QBF

c(
m

ed
ia

n1
00

, m
ed

ia
n7

5,
 m

ed
ia

n5
0,

 m
ed

ia
n2

5)

SAT−HAN

c(
m

ed
ia

n1
00

, m
ed

ia
n7

5,
 m

ed
ia

n5
0,

 m
ed

ia
n2

5)

SAT−IND

c(
m

ed
ia

n1
00

, m
ed

ia
n7

5,
 m

ed
ia

n5
0,

 m
ed

ia
n2

5)

SAT−RAN

c(
m

ed
ia

n1
00

, m
ed

ia
n7

5,
 m

ed
ia

n5
0,

 m
ed

ia
n2

5)

Fig. 4. Experimental results with full feature sets and thinned out training data across all methodologies and data sets. The lines show the median
penalty (thick line inside the box in the previous plots) for 0%, 25%, 50% and 75% of the training data deleted. The performance is shown as a
factor of the simple majority predictor which is shown as a grey line. Numbers less than 1 indicate that the performance is better than that of the
majority predictor.



L. Kotthoff et al. / Algorithm Selection for Search Problems 11

ranked 1st, 2nd and 3rd. We chose the median perfor-
mance for comparison because there was no machine
learning algorithm with a clearly better performance
than all of the others and algorithms with a good per-
formance on one data set would perform much worse
on different data. We also include the performance of
the best algorithm because the number of algorithms in
each methodology is different. While we believe that
we included algorithms that represent a representative
variety of approaches within each methodology, the
median performance of all algorithms of each method-
ology may in some cases obscure the performance of
the best algorithm. This is especially possible for the
methodologies that include a large number of different
algorithms. We used the same bootstrapping method
to estimate the likelihood that an average and the best
machine learning algorithm of a certain methodology
would perform better than the simple majority predic-
tor. The probabilities are summarised in Table 1.

Based on the bootstrapping estimates, an average
case-based reasoning algorithm is most likely to give
the best performance and most likely to deliver good
performance in terms of being better than the majority
predictor. The picture is different when considering the
best algorithm within each methodology rather than an
average algorithm. Regression on the runtime is most
likely to be the best performer here. Classification and
regression on the log of the runtime are almost certain
to be better than the majority predictor. The method-
ology that delivers good results in almost all cases is
regression on the runtime. It has good probabilities of
both a good ranking and being better than the majority
predictor both when considering the best algorithm and
an average algorithm. Only when a part of the training
data is deleted it delivers relatively poor performance.

The best algorithm of each methodology is not nec-
essarily the same on all data sets. This should be
taken into account when considering the probabilities
in parentheses in Table 1. For example, the numbers
show that the best algorithm that does regression on the
runtime has the highest probability of being the overall
best performing algorithm. This does however require
identifying that best algorithm first. Any one algorithm
of that methodology has a much lower chance of be-
ing best (the probability not in parentheses), whereas a
case-based reasoning algorithm is more likely to per-
form best.

We observe that the majority classifier still has a
non-negligible chance of being as least as good as so-
phisticated machine learning approaches. Its advan-
tages over all the other approaches are its simplicity

and that no problem features need to be computed, a
task that can further impact the overall performance
negatively because of the introduced overhead.

6.3. Determining the best machine learning algorithm

When using machine learning for algorithm selec-
tion in practice, one has to decide on a specific machine
learning algorithm rather than methodology. Looking
at Figure 1, we notice that individual algorithms within
the classification and regression methodologies have
better performance than case-based reasoning. While
having established case-based reasoning as the best
overall machine learning methodology, the question re-
mains whether an individual machine learning algo-
rithm can improve on that performance.

The GaussianProcesses algorithm to predict
the runtime has the best performance for the largest
number of data sets. But how likely is it to perform
well in general? Our aim is to identify machine learn-
ing algorithms that will perform well in general rather
than concentrating on the top performer on one data set
only to find that it exhibits bad performance on differ-
ent data. It is unlikely that one of the best algorithms
here will be the best one on new data, but an algorithm
with good performance on all data sets is more likely
to exhibit good performance on unseen data. We per-
formed a bootstrap estimate of the probability of an in-
dividual machine learning algorithm being better than
the majority predictor by sampling from the set of data
sets as described above. The results are summarised in
Table 2.

The results confirm our intuition – the two algo-
rithms that always perform better than the majority
predictor are never the best algorithms while the algo-
rithms that have the best performance on at least one
data set – GaussianProcesses predicting the run-
time and RandomForest and LibSVM with radial
basis function for classification – have a significantly
lower probability of performing better than the major-
ity predictor.

Some of the machine learning algorithms within the
classification and regression methodologies have a less
than 50% chance of outperforming the majority predic-
tor and do not appear in Table 2 at all. It is likely that
the bad performance of these algorithms contributed to
the relatively low rankings of their respective method-
ologies compared with case-based reasoning, where
all machine learning algorithms exhibit good perfor-
mance. The fact that the individual algorithms with the
best performance do not belong to the methodology



12 L. Kotthoff et al. / Algorithm Selection for Search Problems

rank with full training data better than rank 1 with deleted training data
methodology 1 2 3 majority predictor 25% 50% 75%

case-based reason-
ing

52% (5%) 29% (10%) 25% (31%) 80% (80%) 80% (7%) 70% (16%) 39% (6%)

classification 2% (33%) 3% (51%) 5% (32%) 60% (99%) 6% (61%) 8% (40%) 14% (43%)
regression 33% (60%) 32% (35%) 28% (24%) 67% (96%) 3% (6%) 7% (9%) 35% (23%)
regression-log 8% (2%) 19% (5%) 24% (14%) 75% (99%) 1% (26%) 15% (35%) 6% (27%)
statistical relational
learning

6% (0%) 16% (0%) 18% (0%) 0% (0%) 10% (0%) 0% (0%) 5% (0%)

Table 1

Probabilities for each methodology ranking at a specific place with regard to the median performance of its algorithms and probability that this
performance will be better than that of the majority predictor. We also show the probabilities that the median performance of the algorithms of
a methodology will be the best for thinned out training data. The numbers in parentheses show the probability of a methodology ranking at a
specific place or being better than the majority predictor with regard to the maximum performance of its algorithms. All probabilities are rounded
to the nearest percent. The highest probabilities for each rank are in bold.

with the highest chances of good performance indicate
that choosing the best individual machine learning al-
gorithm regardless of methodology gives better overall
performance.

The good performance of the case-based reasoning
algorithms was expected based on the results presented
in Table 1. All of the algorithms of this methodology
have a very high chance of beating the majority pre-
dictor. The nearest-neighbour approach appears to be
robust with respect to the number of neighbours con-
sidered.

The good results of the two best algorithms seem
to contradict the expectations of the “No Free Lunch”
theorems. These theorems state that superior perfor-
mance of an algorithm in one scenario must necessarily
be paid for by inferior performance in other scenarios.
It has been shown however that the theorems do not
necessarily apply in real-world scenarios because the
underlying assumptions may not be satisfied [29]. In
particular, the distribution of the best algorithms from
the portfolio to problems is not random – it is certainly
true that certain algorithms in the portfolio are the best
on a much larger number of problems than others. Xu
et al. [39] for example explicitly exclude some of the
algorithms in the portfolio from being selected in cer-
tain scenarios.

7. Conclusions

In this paper, we investigated the performance of five
different machine learning methodologies and many
machine learning algorithms for algorithm selection on
five data sets from the literature. We compared the per-

formance not only among these methodologies and al-
gorithms, but also to existing algorithm selection sys-
tems. To the best of our knowledge, we presented the
first large-scale, quantitative comparison of machine
learning methodologies and algorithms applicable to
algorithm selection. We furthermore applied statistical
relational learning to algorithm selection for the first
time.

We used the performance of the simple majority pre-
dictor as a baseline and evaluated the performance of
everything else in terms of it. This is a less favourable
evaluation than found in many publications, but gives a
better picture of the real performance improvement of
algorithm portfolio techniques over just using a single
algorithm. This method of evaluation clearly demon-
strates that simply choosing the best individual al-
gorithm in all cases can achieve better performance
than sophisticated (and computationally expensive) ap-
proaches.

Our evaluation also showed the performance in
terms of a simple rule learner, evaluated the effects of
using only the set of the most predictive features in-
stead of all features, looked at the influence the size of
the algorithm portfolio has on the relative performance
of the machine learning methodologies and quantified
performance changes with training with partial data
sets.

We demonstrate that methodologies and algorithms
that have the best performance on one data set do not
necessarily have good performance on all data sets. A
non-intuitive result of our investigation is that deleting
parts of the training data can help improve the overall
performance, although the results are not clear enough
to draw definitive conclusions from them.



L. Kotthoff et al. / Algorithm Selection for Search Problems 13

machine learn-
ing methodology

algorithm better than
majority
predictor

classification LADTree 100%
regression LinearRegression 100%

case-based
reasoning

IBk with 1 neighbour 81%

case-based
reasoning

IBk with 5 neighbours 81%

case-based
reasoning

IBk with 3 neighbours 80%

case-based
reasoning

IBk with 10 neighbours 80%

classification DecisionTable 80%
classification FT 80%
classification J48 80%
classification JRip 80%
classification RandomForest 80%
regression GaussianProcesses 80%
regression-log GaussianProcesses 80%
regression-log SMOreg 80%
regression-log LibSVM ε 80%
regression-log LibSVM ν 80%

classification REPTree 61%
classification LibSVM radial basis func-

tion
61%

regression REPTree 61%
regression SMOreg 61%
classification AdaBoostM1 60%
classification BFTree 60%
classification ConjunctiveRule 60%
classification PART 60%
classification RandomTree 60%
regression-log LinearRegression 60%
regression-log REPTree 60%
classification J48graft 59%
regression LibSVM ν 59%

Table 2

Probability that a particular machine learning algorithm will perform
better than the majority predictor on the full training data. We only
show algorithms with a probability higher than 50%, sorted by prob-
ability. All probabilities are rounded to the nearest percent.

Based on a statistical simulation with bootstrapping,
we give recommendations as to which algorithms are
likely to have good performance. We identify linear re-
gression and alternating decision trees as implemented
in WEKA as particularly promising types of machine
learning algorithms. In the experiments done for this

paper, they always outperform the majority predic-
tor. We focussed on identifying machine learning al-
gorithms that deliver good performance in general. It
should be noted that neither of these algorithms ex-
hibited the best performance on any of the data sets,
but the machine learning algorithms that did performed
significantly worse on other data.

We furthermore demonstrated that case-based rea-
soning algorithms are very likely to achieve good per-
formance and robust with respect to the number of past
cases considered. Combined with the conceptual sim-
plicity of nearest-neighbour approaches, it makes them
a good starting point for researchers who want to use
machine learning for algorithm selection, but are not
machine learning experts themselves.

These recommendations are not meant to establish
a set of machine learning algorithms that are the best
in general for algorithm selection, but to provide guid-
ance to practitioners who are unsure what machine
learning to use after surveying the literature. In many
cases, the choice of a particular machine learning algo-
rithm will be influences by additional constraints that
are particular to the specific scenario and cannot be
considered here.

Finally, we demonstrated that the default parameters
of the machine learning algorithms in WEKA already
achieve very good performance and in most cases no
tuning is required. While we were able to improve the
performance in a few cases, finding the better config-
uration carried a high computational cost. In practice,
few researcher will be willing or able to expend lots of
resources to achieve small improvements.

Acknowledgments

We thank the anonymous reviewers of this paper and
a previous version of this paper for their feedback; es-
pecially for helpful suggestions on how to improve the
evaluation. We furthermore thank Kristian Kersting for
pointing out SVMstruct to us. Holger Hoos, Kevin
Leyton-Brown and Lin Xu pointed out and helped to
fix erroneous results regarding SATzilla in a previous
version of this paper. They also pointed out the need
to adjust the timeout values in the training data they
present for SATzilla on their website.

This research was supported in part by EPSRC grant
EP/H004092/1 and a grant from Amazon Web Services
that provided for some of the computational resources
used in the evaluation. Lars Kotthoff is supported by a
SICSA studentship.



14 L. Kotthoff et al. / Algorithm Selection for Search Problems

References

[1] Sanjukta Bhowmick, Victor Eijkhout, Yoav Freund, Erika
Fuentes, and David Keyes. Application of machine learning
in selecting sparse linear solvers. Technical report, Columbia
University, 2006.

[2] James E. Borrett, Edward P. K. Tsang, and Natasha R. Walsh.
Adaptive constraint satisfaction: The quickest first principle. In
ECAI, pages 160–164, 1996.

[3] Jaime Carbonell, Oren Etzioni, Yolanda Gil, Robert Joseph,
Craig Knoblock, Steve Minton, and Manuela Veloso.
PRODIGY: an integrated architecture for planning and learn-
ing. SIGART Bull., 2:51–55, July 1991.

[4] Diane J. Cook and R. Craig Varnell. Maximizing the benefits of
parallel search using machine learning. In Proceedings of the
14th National Conference on Artificial Intelligence AAAI-97,
pages 559–564. AAAI Press, 1997.

[5] Eugene Fink. How to solve it automatically: Selection among
Problem-Solving methods. In Proceedings of the Fourth In-
ternational Conference on Artificial Intelligence Planning Sys-
tems, pages 128–136. AAAI Press, 1998.

[6] Cormac Gebruers, Brahim Hnich, Derek Bridge, and Eugene
Freuder. Using CBR to select solution strategies in constraint
programming. In Proc. of ICCBR-05, pages 222–236, 2005.

[7] Ian P. Gent, Christopher A. Jefferson, Lars Kotthoff, Ian
Miguel, Neil C.A. Moore, Peter Nightingale, and Karen Petrie.
Learning when to use lazy learning in constraint solving. In
ECAI, pages 873–878, August 2010.

[8] Ian P. Gent, Lars Kotthoff, Ian Miguel, and Peter Nightingale.
Machine learning for constraint solver design – a case study
for the alldifferent constraint. In 3rd Workshop on Techniques
for implementing Constraint Programming Systems (TRICS),
pages 13–25, 2010.

[9] Alfonso E. Gerevini, Alessandro Saetti, and Mauro Vallati.
An automatically configurable portfolio-based planner with
macro-actions: PbP. In Proceedings of the 19th International
Conference on Automated Planning and Scheduling (ICAPS-
09), pages 350–353, 2009.

[10] Lise Getoor and Ben Taskar. Introduction to Statistical Rela-
tional Learning. The MIT Press, 2007.

[11] Carla P. Gomes and Bart Selman. Algorithm portfolios. Artifi-
cial Intelligence, 126(1-2):43–62, 2001.

[12] Alessio Guerri and Michela Milano. Learning techniques for
automatic algorithm portfolio selection. In ECAI, pages 475–
479, 2004.

[13] Haipeng Guo and William H. Hsu. A Learning-Based algo-
rithm selection meta-reasoner for the Real-Time MPE problem.
In Australian Conference on Artificial Intelligence, pages 307–
318, 2004.

[14] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer,
Peter Reutemann, and Ian H. Witten. The WEKA data mining
software: An update. SIGKDD Explor. Newsl., 11(1):10–18,
November 2009.

[15] Robert C. Holte. Very simple classification rules perform well
on most commonly used datasets. Mach. Learn., 11:63–90,
April 1993.

[16] Patricia D. Hough and Pamela J. Williams. Modern machine
learning for automatic optimization algorithm selection. In
Proceedings of the INFORMS Artificial Intelligence and Data
Mining Workshop, November 2006.

[17] Thorsten Joachims. Training linear SVMs in linear time. In
Proceedings of the 12th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, KDD ’06,
pages 217–226, New York, NY, USA, 2006. ACM.

[18] Serdar Kadioglu, Yuri Malitsky, Meinolf Sellmann, and Kevin
Tierney. ISAC Instance-Specific algorithm configuration. In
ECAI 2010: 19th European Conference on Artificial Intelli-
gence, pages 751–756. IOS Press, 2010.

[19] Ron Kohavi. A study of Cross-Validation and bootstrap for ac-
curacy estimation and model selection. In IJCAI, pages 1137–
1143. Morgan Kaufmann, 1995.

[20] Lars Kotthoff, Ian Miguel, and Peter Nightingale. Ensemble
classification for constraint solver configuration. In CP, pages
321–329, September 2010.

[21] Michail G. Lagoudakis and Michael L. Littman. Algorithm se-
lection using reinforcement learning. In ICML ’00: Proceed-
ings of the Seventeenth International Conference on Machine
Learning, pages 511–518, San Francisco, CA, USA, 2000.
Morgan Kaufmann Publishers Inc.

[22] Kevin Leyton-Brown, Eugene Nudelman, and Yoav Shoham.
Learning the empirical hardness of optimization problems: The
case of combinatorial auctions. In CP ’02: Proceedings of
the 8th International Conference on Principles and Practice of
Constraint Programming, pages 556–572, London, UK, 2002.
Springer-Verlag.

[23] Kevin Leyton-Brown, Eugene Nudelman, Galen Andrew, Jim
Mcfadden, and Yoav Shoham. A portfolio approach to algo-
rithm selection. In IJCAI, pages 1542–1543, 2003.

[24] Lionel Lobjois and Michel Lemaı̂tre. Branch and bound algo-
rithm selection by performance prediction. In AAAI ’98/IAAI
’98: Proceedings of the Fifteenth National/Tenth Conference
on Artificial Intelligence/Innovative Applications of Artificial
Intelligence, pages 353–358, Menlo Park, CA, USA, 1998.
American Association for Artificial Intelligence.

[25] Steven Minton. Automatically configuring constraint satisfac-
tion programs: A case study. Constraints, 1:7–43, 1996.

[26] Eoin O’Mahony, Emmanuel Hebrard, Alan Holland, Conor
Nugent, and Barry O’Sullivan. Using case-based reasoning in
an algorithm portfolio for constraint solving. In Proceedings of
the 19th Irish Conference on Artificial Intelligence and Cogni-
tive Science, 2008.

[27] Luca Pulina and Armando Tacchella. A multi-engine solver
for quantified boolean formulas. In Proceedings of the 13th
International Conference on Principles and Practice of Con-
straint Programming, CP’07, pages 574–589, Berlin, Heidel-
berg, 2007. Springer-Verlag.

[28] Luca Pulina and Armando Tacchella. A self-adaptive multi-
engine solver for quantified boolean formulas. Constraints, 14
(1):80–116, 2009.

[29] R. Bharat Rao, Diana Gordon, and William Spears. For ev-
ery generalization action, is there really an equal and opposite
reaction? Analysis of the conservation law for generalization
performance. In Proceedings of the Twelfth International Con-
ference on Machine Learning, pages 471–479. Morgan Kauf-
mann, 1995.

[30] John R. Rice. The algorithm selection problem. Advances in
Computers, 15:65–118, 1976.

[31] Christopher K. Riesbeck and Roger C. Schank. Inside Case-
Based Reasoning. L. Erlbaum Associates Inc., Hillsdale, NJ,
USA, 1989.



L. Kotthoff et al. / Algorithm Selection for Search Problems 15

[32] Mark Roberts and Adele E. Howe. Learned models of perfor-
mance for many planners. In ICAPS 2007 Workshop AI Plan-
ning and Learning, 2007.

[33] Bryan Silverthorn and Risto Miikkulainen. Latent class models
for algorithm portfolio methods. In Proceedings of the Twenty-
Fourth AAAI Conference on Artificial Intelligence, 2010.

[34] Kate A. Smith-Miles. Cross-disciplinary perspectives on meta-
learning for algorithm selection. ACM Comput. Surv., 41:6:1–
6:25, January 2009.

[35] David H. Stern, Horst Samulowitz, Ralf Herbrich, Thore Grae-
pel, Luca Pulina, and Armando Tacchella. Collaborative expert
portfolio management. In AAAI, pages 179–184, 2010.

[36] Matthew J. Streeter and Stephen F. Smith. New techniques for
algorithm portfolio design. In UAI, pages 519–527, 2008.

[37] Sanjiva Weerawarana, Elias N. Houstis, John R. Rice, Anu-
pam Joshi, and Catherine E. Houstis. PYTHIA: A knowledge-
based system to select scientific algorithms. ACM Trans. Math.
Softw., 22(4):447–468, 1996.

[38] David H. Wolpert. The supervised learning No-Free-Lunch
theorems. In Proc. 6th Online World Conference on Soft Com-
puting in Industrial Applications, pages 25–42, 2001.

[39] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-
Brown. SATzilla: Portfolio-based algorithm selection for SAT.
J. Artif. Intell. Res. (JAIR), 32:565–606, 2008.

[40] Lin Xu, Holger H. Hoos, and Kevin Leyton-Brown. Hydra:
Automatically configuring algorithms for Portfolio-Based se-
lection. In Twenty-Fourth Conference of the Association for the
Advancement of Artificial Intelligence (AAAI-10), pages 210–
216, 2010.


