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Abstract—We present a robust and generic framework for
web-scale distributed e-Science Artificial Intelligence search.
Our validation approach is to distribute constraint satisfaction
problems that require perfect accuracy to 10, 12 and 15 digits. By
checking solutions obtained using the framework against known
results, we can ensure that no errors, duplications nor omissions
are introduced. Unlike other approaches, we do not require
dedicated machines, homogeneous infrastructure or the ability
to communicate between nodes. We give special consideration
to the robustness of the framework, minimising the loss of
effort even after a total loss of infrastructure, and allowing easy
verification of every step of the distribution process. The unique
challenges our framework tackles are related to the combinatorial
explosion of the space that contains the possible solutions, and
the robustness of long-running computations. Not only is the
time required to finish the computations unknown, but also the
resource requirements may change during the course of the
computation. We demonstrate the applicability of our framework
by using it to solve challenging problems using two separate large-
scale distribution paradigms. The results show that our approach
scales to e-Science computations of a size that would have been
impossible to tackle just a decade ago.

Index Terms—Distributed computation, AI search, infrastruc-
ture, scalable computing, constraints

I. INTRODUCTION

e-Science benefits from the provision and use of search
procedures to tackle a variety of important problems. In
this paper we focus on classes of e-Science problems that
are discrete, computationally expensive, and require perfect
accuracy to 10, 12 and 15 digits. We describe and evaluate a
distribution framework that allows the deployment of combi-
natorial search to complex scientific problems with excellent
expected performance.

In the face of the constant increase of computing power
available to computing users of all levels, the processing of
so-called “big data” is one of the directions in which there
has been intensive research activity, and now applications
can be scaled across hundreds of machines relatively easily.
However, the situation in many areas of Artificial Intelligence
(henceforth AI) is completely different. Distributing problems
across several machines had been a research endeavour long
before the advent of easily accessible computational resources
and big data. The problems AI aims to solve have typically
required a large amount of computational resources to solve
problems of practical relevance.

Considering the keen interest of AI researchers in par-
allelisation, it is somewhat paradoxical that frameworks to
distribute AI techniques are still in their infancy when it
comes to practical applications. One such example is Apache
Mahout [1], which leverages the generic Hadoop framework to
distribute Machine Learning algorithms. For AI search on the
other hand, there are, to the best of our knowledge, no similar
frameworks. Consequentially, the system described herein is
of great interest as an emergent achitecture, both to be utilised
by the e-Science search community as-is, or to be expanded
upon by the general community.

AI search itself has a wide range of applications and
has been applied in such varied contexts as planning work-
flows [2], identifying optimal protein and DNA structures [3],
[4], and obtaining qualitative models of dynamics systems
arising in a wide range of scientific areas [5]–[11].

AI search involves the efficient creation, exploration and
pruning of very large search trees (e.g. for the game of chess,
the tree has an estimated 1047 nodes). In many cases it is
acceptable to find the first solution from many candidates, or
accept sub-optimal solutions with respect to a cost function
to limit the amount of search performed. However, we often
require either all solutions to a given problem, or a solution
that has a guarantee of optimality.

Even when only the first solution is required, the time to
find it can quickly grow to days, months or even years on a
single computer. In most cases, this timescale is unacceptable:
we must be able to find a solution more quickly. There are two
strategies for achieving this: the AI search techniques can be
improved to be more efficient for the problem, or the search
can be distributed across several machines such that the time
to find a solution decreases without actually decreasing the
total effort. The framework presented in this paper pursues
the latter strategy. Our requirements for such a framework can
be summarised as follows.
• Scalability.

We want to be able to use as many resources as possible
at the same time, regardless of type and location and with
minimal connectivity requirements.

• Robustness.
The framework must be able to cope with hardware and
similar failures. In particular, the amount of computa-



tional effort lost because of such an event should be small.
• Verifiability.

In order to be useful for solving open problems, we must
be able to follow each step in the distribution process to
verify that AI search proceeded correctly and no solutions
were lost.

In this paper we describe two frameworks that fulfil these
requirements. The design and implementations are motivated
by the Recovery Oriented Computing [12], [13] aspects of
the much wider research into Ultralarge systems [14]. The
AI search undertaken is Constraint Programming, described
in Section I-A. This is not a restriction: as a generalisation
of propositional satisfiablity (SAT), most AI search problems
can be expressed as Constraint Programming problems. The
application areas that we use to evaluate the implementation
of the framework are described in Sections I-B and I-C.

A. Constraint Programming

Constraints are a natural and compact way of representing
problems that are ubiquitous in everyday life. Constraint
Programming investigates techniques for solving problems
that involve constraints. Common application domains include
other areas of Artificial Intelligence such as planning, but
also real world and industrial applications such as scheduling,
design and configuration or diagnosis and testing. Wallace [15]
gives an early overview of application areas.

Constraint problems are typically solved by building a
search tree in which the nodes are assignments of values
to variables and the edges lead to assignment choices for
the next variable. If at any node a constraint is violated,
search backtracks by returning to a previous state. If a leaf
is reached and no constraints are violated, all variables have
been assigned values and this set of assignments denotes a
solution to the Constraint Satisfaction Problem (CSP).

Clearly the search trees are exponential in the number of
variables. Exploring all of them is infeasible in many cases and
inference is used at each node of the search tree to prune values
from the domains of unassigned variables that cannot be part
of a solution based on the assignments made so far. Inference
also allows backtracking before a constraint is violated: if
the domain of a particular variable becomes empty, the set
of assignments made so far cannot be part of a solution.

The inference checks have a computational cost and the
trade-off is between the effort of making checks – hopefully
resulting in a reduction of the search space – and the effort
of searching a presumably larger tree but at a cheaper cost
per node. This is an area of active research and the Handbook
of Constraint Programming [16] provides more details on the
many techniques that can be used to solve constraint problems.

B. Semigroups

We apply one of our frameworks to finding the semigroups
of order 10, i.e. finding all ways of filling in a blank 10× 10
mulitiplication table such that multiplication is associative up
to symmetric equivalence. For orders less than 10, this problem
can be solved by a combination of enumeration formulae and

TABLE I
NUMBER OF SEMIGROUPS OF ORDER n. THE NUMBER FOR ORDER 10 WAS

FOUND USING THE TECHNIQUES DESCRIBED IN THIS PAPER.

n Semigroups
1 1
2 4
3 18
4 126
5 1,160
6 15,973
7 836,021
8 1,843,120,128
9 52,989,400,714,478

10 12,418,001,077,381,302,684

Method Semigroups CPU years
Known 1
Formula 12,417,282,095,522,918,811

Construction 461,919,236,210,408
Minion 257,062,622,173,464 133
Total: 12,418,001,077,381,302,684

TABLE II
SUMMARY OF METHODS USED FOR THE ENUMERATION OF THE

SEMIGROUPS OF ORDER 10

computation on a single processor. Table I – with entries taken
from sequence A001423 of the On-Line Encyclopaedia of
Integer Sequences – demonstrates the combinatoric growth in
the number of solutions with increasing order, and motivates
the use of multiple compute nodes to explore the solution
space. The table for the semigroups of order n has n2 cells, and
each of these can take any one of n values. Hence the search
space for order n is nn2

. For the problem under consideration,
n = 10, the size of the search space is 10100. To put this
number into context, it is currently estimated that there are
approximately 1080 atoms in the universe. The search space
for our problem is so vast that we cannot possibly hope to
solve it by brute force search.

Recent advances in the theory of finite semigroups have
led to an enumerative formula [17] that gives the number
of ‘almost all’ semigroups of given order. This formula has
been used as a basis for studies enumerating semigroups
and monoids using standard, single-processor search tech-
niques [18]–[20]. Our constraint programming methodology
was therefore to first rule out these solutions by adding addi-
tional constraints, and then implement the distributed search
using the framework described in this paper. A summary of
the solutions and CPU effort required is given in Table II.

A full description of the CSP model, the breaking of
symmetries and the reduction into case-splits are given in [21]–
[23].



C. The Progressive Party Problem

Our second class of problems was selected due to its
combination of small data size, large number of solutions,
and amount of CPU time needed to identify and enumerate
the solutions. The Progressive Party Problem is one of a
library of AI search problems [24]. We solve a modifica-
tion of the problem, being all solutions to the problem of
generating all instances of the Progressive Party Problem
as described in [25]. Scalability, robustness and verifiability
of our framework are demonstrated by finding exactly the
known number of solutions – 5, 782, 683, 648 (≈ 1010) and
161, 915, 142, 144 (≈ 1012) – for selected instances.

II. RELATED WORK

The parallelisation of depth-first search has been the subject
of much research in the past. The first papers on the subject
study the distribution over various specific hardware architec-
tures and investigate how to achieve good load balancing [26],
[27]. Distributed solving of constraint problems specifically
was first explored only a few years later [28].

Backtracking search in a distributed setting has also been
investigated by several authors [29], [30]. A special variant
for distributed scenarios, asynchronous backtracking, was pro-
posed in [31]. Yokoo et al. formalise the distributed constraint
satisfaction problem and present algorithms for solving it [32].

Schulte presents the architecture of a system that uses
networked computers [33]. More recent papers have explored
how to transparently parallelise search without having to
modify existing code [34].

Most of the existing work is concerned with the problem of
effectively distributing the workload such that every compute
node is kept busy. The most prevalent technique used to
achieve this is work stealing. The nodes communicate with
each other and those which are idle request a part of the work
a busy node is doing. Blumofe and Leiserson propose and dis-
cuss a work stealing scheduler for multithreaded computations
in [35]. Rolf and Kuchcinski investigate different algorithms
for load balancing and work stealing in the specific context of
distributed constraint solving [36].

Several frameworks for distributed constraint solving
have been proposed and implemented, e.g. FRODO [37],
DisChoco [38] and Disolver [39]. All of these approaches
have in common that the systems to solve constraint problems
are modified or augmented to support distribution of parts
of the problem across and communication between multiple
compute nodes. The constraint model of the problem remains
unchanged however; no special constructs have to be used
to take advantage of distributed solving. All parallelisation is
handled in the respective solver. This does not preclude the
use of an entirely different model of the problem to be solved
for the distributed case in order to improve efficiency, but in
general these solvers are able to solve the same model both
with a single executor and distributed across several executors.

The decomposition of constraint problems into subproblems
which can be solved independently has been proposed in [40],
albeit in a different context. In this work, we explore the use

of this technique for parallelisation. A similar approach was
taken in [36], but requires parallelisation support in the solver.

III. DISTRIBUTING CSPS

Our approach to parallelising the solving of constraint
problems has been previously described in [41]. This paper
updates the description and, crucially, reports results from an
application of the framework.

Constraint problems are typically solved by searching
through the possible assignments of values to variables. After
each such assignment, inference can rule out possible future
assignments based on past assignments and the constraints.
This process builds a search tree that explores the space of
possible (partial) solutions to the constraint problem.

There are two different ways to build up these search trees
– n-way branching and 2-way branching. This refers to the
number of new branches which are explored after each node.
In two-way branching, the left branch is of the form x = y
where x is a variable and y is a value from its domain. The
right branch is of the form x 6= y.

The more commonly used way is 2-way branching, imple-
mented for example in the Minion constraint solver [42], avail-
able at http://minion.sf.net. However, regardless of
the way the branching is done, exploring the branches can be
done concurrently. No information between the branches needs
to be exchanged in order to find a solution to the problem.

We exploit this fact by, given the model of a constraint
problem, generating new models which partition the remaining
search space. These models can then be solved independently.
We furthermore represent the state of the search by adding
additional constraints such that the splitting of the model can
occur at any point during search. The new models can be
resumed, taking advantage of both the splitting of the search
space and the search already performed.

A. Model splitting

Our new approach to the distributed solving of constraint
problems requires the constraint solver to modify the con-
straint model but does not require explicit parallelisation
support in the solver.

To split the remaining search space of a constraint problem,
we signal the solver to stop. Now we partition the domain
for the variable currently under consideration into n pieces of
roughly equal size. Then we create n new models and to each
in turn add constraints ruling out the other n− 1 partitions of
that domain. Each one of these models restricts the possible
assignments to the current variable to one nth of its domain.

As an example, consider the case n = 2. The variable under
consideration is x and its domain is {1, 2, 3, 4}. We generate
2 new models. One of them has the constraint x ≤ 2 added
and the other one x ≥ 3. Thus, solving the first model will
try the values 1 and 2 for x, whereas the second model will
try 3 and 4.

The main problem when splitting constraint problems into
parts that can be solved in parallel is that the size of the
remaining search space for each of the splits is impossible to



predict reliably. This directly affects the effectiveness of the
splitting however: if the search space is distributed unevenly,
some of the workers will be idle while the others do most of
the work.

Our approach allows to repeatedly split the search space
after search has started. We use the procedure described
above several times, each time adding more constraints to the
model. In addition, we add restart nogoods, that is, additional
constraints that tell the solver how much of the search space
has been explored. Constraints added in a previous iteration
are not affected by constraints added later – regardless of how
often we split, no parts of the search space will be “lost”,
potentially missing solutions, and no part of the search space
will be visited more than once.

Assume for example that we are doing 2-way branching
(so that search branching decisions are simply that a variable
does or does not take a specific value), the variable currently
under consideration is again x with domain {1, 2, 3, 4} and
the branches that we have taken thus far are x 6= 1 and x 6= 2.
The new generated models will all have the constraints x 6= 1
and x 6= 2 to get to the point in the search tree where we split
the problem. Then we add constraints to partition the search
space based on the remaining values in the domain of x similar
to the previous example. The splitting process and subsequent
parallel search is illustrated in Figure 1.

Using this technique, we can create new chunks of work
whenever a worker becomes idle by simply asking one of
the busy workers to split the search space. The search is
then resumed from where it was stopped and the remaining
search space is explored in parallel by the two workers.
Note that there is a runtime overhead involved with stopping
and resuming search because the constraints which enable
resumption must be taken into account and the solver needs
to explore a small number of search nodes to get to the point
where it was stopped before. There is also a memory overhead
because the additional constraints need to be stored.

We have implemented this approach in a recent version of
Minion which has been released to the public. Experiments
show that the overhead of stopping, splitting and resuming is
not significant for large problems.

In practice, we run Minion for a specified amount of
time before timing out, splitting based on the current state
and resuming instead of splitting at the beginning and when
workers become idle. This approach is much simpler and
works well for large problems. The algorithm is detailed in
Procedure 1. It creates an n-ary split tree of models for n
new models generated at each split. The procedure for finding
all solutions is similar. Initially, the potential for distribution
is small but grows exponentially as more and more search
is performed. We have found that n = 2 works well in
practice because it is the easiest to implement and minimises
the number of models created.

Minion models are stored in ordinary files. Each time the
search space is split, two new input files are written. We
modified the output produced by Minion to include the names
of the files it produced and included the name of the file that

Input : constraint problem X , allotted time Tmax and
splitting factor n ≥ 2

Output: a solution to X or “no solution” if no solution
has been found

run the constraint solver with input X until termination
or Tmax;

if solved?(X) then
terminate workers;
return solution;

else if search space exhausted? then
return “no solution”;

else
X ′ ← X with new constraints ruling out search
already performed;
split X ′ into n parts X ′1, . . . , X

′
n;

for i← 1 to n do in parallel
distSolve(X ′n, Tmax,n);

end
end

Procedure distSolve(X ,Tmax,n): Recursive procedure to
find the first solution to a constraint problem distributed
across several workers.

was run when the search space was split in the new model
files. This way, we can easily trace the splitting of the search
space across the different files.

B. Comparison to existing approaches

The main advantages of our approach are as follows.
• We require only minimal modifications to existing con-

straint solvers. In particular, we do not require network
communication and work stealing to be implemented.

• We do not require communication between workers to
achieve good utilisation.

• The creation of separate model files when splitting in-
creases the robustness against worker failure and provides
accountability for every step.

For the purposes of a framework for solving large Artifi-
cial Intelligence search problems, the last point is especially
crucial. The nature of the applications that we have in mind
is such that it will be neither easy to verify whether a
solution is valid nor feasible to repeat the calculations to get a
confirmation. Furthermore, we have to be able to rely on the
capability to recover from failures without having to repeat all
the work.

By creating regular “snapshots” of the search done, the
resilience against failure increases. This is in contrast to
most other approaches, where the reliability of the system is
decreased by using techniques that distribute work and rely on
several machines instead of just a single one. Such systems
have then to take additional measures to mitigate the problems
caused by failures of machines or communication links. Every
time we split the search space, the modified models are saved.
As they contain constraints that rule out the search already
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Fig. 1. Illustration of how search proceeds with splitting. The dashed and dotted line shows the search up to the solid black node where the models are
split. The nodes subsequently explored by the two parallel searches are shown with dashed and dotted lines, respectively.

done, we only lose the work done after that point if a worker
fails. This means that the maximum amount of work we lose
in case of a total failure of all workers is the allotted time
Tmax times the number of workers |w|.

We note that our approach provides many of the advantages
of efforts dedicated to improving the robustness and account-
ability of computations, e.g. [43], but is easier to implement
and requires a minimal amount of supporting infrastructure.

Another consequence of our approach is that the solving
process can be moved to a different set of workers after it
has been started without losing any work. This may become
necessary if parts of the problem require much more memory
to solve than other parts. Instead of provisioning workers with
a large number of resources for the entire duration of the
computation, it becomes feasible to do this on-demand. This
allows for excellent and easy integration with existing services
that offer on-demand computing, such as a cloud.

C. Large-scale distribution

In the previous sections, we have described the techniques
that enable the distribution of the solving of a constraint
problem across a set of workers, but not the systems to take
care of the actual distribution. The implementation of such
systems is difficult, hence we decided to leverage tried-and-
tested existing frameworks.

1) Condor: For the purposes of a framework that allows
to distribute problems across a large number of heterogeneous
workers, the Condor HPC system [44] is particularly suitable.
It runs in many different operating and network environments
and provides most of the functionality we require out of the
box. In particular, it allows for the transfer of files that are
created on the worker back to the master: the constraint models
that split the search space.

Condor allows work units to be submitted to a central node
which puts them in a queue to be executed when a worker
becomes available. In our case, a constraint model is a unit

of work and splitting the search space on one of the workers
creates two new units of work that are transferred back to the
master and queued for execution. The Condor job submission
system makes sure that a job is executed to completion, i.e. if
a worker node fails while it is processing a work unit, Condor
requeues the work unit and sends it to a different worker.

Each Condor work unit needs to be created separately.
In order to submit models that split the search space and
are created during search, we have implemented a custom
control system that monitors Condor and takes the appropriate
action when split models are returned. The control system
is an almost trivial piece of software that was very easy to
implement – all of the heavy lifting is done by Condor.

While Condor is an adequate system for our needs, its
installation is not always straightforward, meaning it can only
be performed by trained personnel. This inherently limits
usable machines to those which are accessible by such a user,
and introduces a time factor to the addition of new machines
to a cluster. Thus, any such cluster is strictly limited in its size
by practicality, while the scale of problems we are aiming for
might well ultimately require thousands, or tens of thousands,
of machines. An institution would be hard-pressed to produce
sufficient resources to make this available for a single project.
Fortunately, the rise of the internet has facilitated so-called
volunteer computing, where interested users can “donate”
compute time to a project of their choice.

2) BOINC: The best-known framework for such projects
is the Berkeley Open Infrastructure for Network Computing
(BOINC) [45]. It has been used for many applications, in-
cluding astrophysics [46], biology [47] and mathematics [48],
focusing on the reliable distribution of individual small-scale
“workunits” on fully heterogeneous nodes throughout the Web.
Using its framework, we have produced a system along similar
lines to the Condor one, allowing our central server to manage
the distribution of jobs to any clients who request such work.

This system retains the total accuracy of the Condor or



single-node executions by actively mitigating node failure. In
the case of loss of a client machine – a common event when
working with many non-dedicated systems – the server will,
like Condor, simply pass the job on to another worker, losing
only limited time. Even in case of a total server collapse,
the reinstating of a backup will restore complete server state,
including the ongoing progress of partially executed tasks.

Other than robustness, the BOINC system has a number of
advantages over single-node processing and even over Condor-
style distribution, most of which relate to scalability. The
nature of volunteer computing allows theoretically unlimited
machines to contribute to any given task, with a bare minimum
of technical knowledge required by the users. This flexibil-
ity provides inherent challenges such as the possibility of
client falsification of data and potentially significant overheads
involved in communication and readiness polling. There is
also the practical issue of volunteer recruitment and reten-
tion. However, in practice these downsides are mitigated and
even benefited from: communication overheads are reliably
insignificant compared to the overally speedup gained through
parallelisation. There have been many attempts to mitigate
reliability and trust issues with clients, eg. [49], but we
have chosen a simple redundancy framework, which suits our
problem well given the fact that any anomalies can be detected
through minor discrepancies in the final results.

IV. APPLICATION AND DISCUSSION

The BOINC framework has been applied to a number of
tasks in the area of the Progressive Party Problem. During
these experiments, results were obtained which demonstrated
the expected significant speed gains, as a single-node system
running Minion locally. Despite various client problems, in-
cluding machines shutting down mid-computation and users
aborting tasks, results were returned that exactly matched those
of a single node running Minion without any framework, to
the total degree of accuracy that the problem required.

We have also had significant success with the evaluation of
our Condor framework. This was done empirically by using it
to compute the number of semigroups of order 9, a problem
that had previously been solved using non-distributed search.
We were able to confirm the known result on a number of
different hardware configurations and splitting parameters, e.g.
the time search is run before splitting the model.

Encouraged by the results of these experiments, we started
the calculation of the number of semigroups of order 10. The
hardware configuration throughout the computations varied,
but the principal resources we used are shown in Figure 2.
Here, one of the main advantages of our framework became
apparent. The different resources we used were located in
different networks that did not always have unrestricted con-
nectivity to the other nodes. One of the research group clusters
for example was behind a NAT in its own private network and
unable to receive connections from outside this network. We
were still able to utilise the resources to their full extent.

The submit machine and the Condor master shown in
Figure 2 were not used for any of the computations, but

only for the management of the calculations. It should be
noted that there is no reason to have dedicated machines
for those purposes as the resource requirements for the tasks
they performed were very low. In principle, a machine used
for management of the computations could also be used to
perform computations itself.

The maximum number of processors that we used in parallel
at any one time was about 150. One of the reasons for using
the Amazon cloud was that it turned out that the machines we
had available locally did not have enough memory to explore
some parts of the search space efficiently. We were able to
move those calculations to virtual machines in the Amazon
cloud with suitable specifications and seamlessly integrate the
results of those computations with the rest.

The total CPU time we expended to solve the problem
(i.e. find exactly 256,587,290,511,904 semigroups from 10100

potential tables) was approximately 133 years. This effort
was achieved in approximately 18 months; full details of the
mathematics and the case-splits used are described in [23].
The limiting factor was the resources that were available to
us. Even though we did not start with a short search time
before splitting, enough split models to utilise all our resources
were available after a few hours. For shorter computations, it
might be desirable to facilitate faster splitting at the beginning
to achieve good utilisation earlier, but for our purposes the
framework as described previously was sufficient. The number
of split models produced suggested that we could have utilised
up to several thousand processors to a very high degree.

The robustness of our framework proved useful several
times during the computations. Events that we success-
fully coped with included power and network outages, air-
conditioning failures, physical machines being switched off
and virtual machines disappearing. The damage in terms of
computational effort lost was very limited in all cases. Condor
was able to recover from most of these failures without any
manual intervention by simply re-queueing the failed jobs. The
verification of the distribution process revealed that because
of the re-queueing a small part of the search space had been
explored several times, but we were able to isolate and discard
the duplicate model and output files.

After the computations finished, we were able to verify each
step of the distribution and solving process. Therefore, we are
confident that the result we obtained is correct. Ultimately,
certainty of the correctness can only be established by either a
new mathematical model that allows to calculate the computed
number directly, or by independent verification through a
second computation.

V. CONCLUSIONS AND FUTURE WORK

We have presented two frameworks for the large-scale
distribution of AI search in constraint programming across
resources with minimal network connectivity requirements.
Using two distribution mechanisms for classes of problems
with as many as 1015 solutions, the framework has fully
satisfied the joint requirements of scalability, robustness and
verifiability. The framework is capable of scaling almost



Condor master

Submit machine

Research group cluster Research group cluster

Private cloud Amazon cloud
Fig. 2. Overview of resources used for the Condor-based enumeration of semigroups. We used two research clusters: a private cloud hosted in St Andrews
and the Amazon cloud. One of the research clusters was behind a NAT switch such that no machines on the outside could reach it directly and all connections
had to be initiated from within it.

seamlessly to a large number of distributed and heterogeneous
resources while eliminating losses due to hardware failures or
other client problems.

The type of our applications is unusual in the area of large-
scale parallel algorithms. Instead of large amounts of data to
process, we have a concise problem specification that takes
vast computational resources to solve and must produce an
utterly exact, reliable result. We believe (i) that the nature
of such problems presents unique challenges to distribution
which have rarely been considered thus far, and (ii) that the
framework we have designed and the reasoning behind it will
be foundations on which the e-Science community can build.

With that in mind, there is no indication that the positive ex-
periences we have had with the specific applications described
here is limited to the particular problems we investigated. We
have, neither in the design of the framework nor the application
problems, made any assumptions to that effect.

A theoretical comparison of the two distribution systems
shows similarities in almost all important aspects, with the
exception that the BOINC framework has fewer scale limi-
tations. An obvious avenue for future work – apart from the
application to new problems – is the empirical verification
of this conjecture. A future application to the same problem

would allow us to not only judge the differences in terms
of distribution effectiveness and utilisation, but also to inde-
pendently verify the results that we have obtained. While we
are confident that we would indeed obtain the same result, an
empirical verification would eliminate any doubts about this
aspect of the framework.

We intend to release all components of the frameworks that
are not already available to the public, thus enabling other
researchers to tackle similarly large problems and providing
a framework that we hope will prove useful to the research
community.
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