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Abstract. In recent years, portfolio approaches to solving SAT prob-
lems and CSPs have become increasingly common. There are also a num-
ber of different techniques for converting SAT problems into CSPs. In
this paper, we leverage advances in both areas and present a novel hierar-
chical portfolio-based approach to CSP solving that does not rely purely
on CSP solvers, but may convert a problem to SAT choosing a conversion
technique and the accommodating SAT solver. Our experimental eval-
uation relies on competition CSP instances and uses eight CSP solvers,
three SAT encodings and eighteen SAT solvers. We demonstrate that
significant performance improvements can be obtained by considering
alternative view-points of a combinatorial problem.

1 Introduction

The pace of development in both csp and sat solver technology has been rapid.
Combined with portfolio and algorithm selection technology, impressive perfor-
mance improvements over systems that have been developed only a few years
previously have been demonstrated. Constraint satisfaction problems and satis-
fiability problems are both NP-complete and, therefore, there exist polynomial-
time transformations between them. We can leverage this fact to convert csps
into sat problems and solve them using sat solvers.

In this paper we show that different sat solvers have different performance
on different encodings of the same csp. In fact, the particular choice of encoding
that will give good performance with a particular sat solver is dependent on
the problem instance to be solved. We show that, in addition to using dedicated
csp solvers, to achieve the best performance for solving a csp, the best course of
action might be to translate it to sat and solve it using a sat solver. We name
our approach Proteus, after the Greek god Proteus, the shape-shifting water
deity that can foretell the future.

Our approach offers a novel perspective on using sat solvers for constraint
solving. The idea itself is not new. The solvers Sugar, Azucar and CSP2SAT4J are
three examples for sat-based csp solving. Sugar [38] has been very competitive
in recent csp solver competitions. It encodes the csp to sat using a specific
encoding, known as the order encoding, which will be discussed in more detail
later in this paper. Azucar [39] is a related sat-based csp solver that uses the
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compact order encoding. However, both Sugar and Azucar use a single prede-
fined solver to solve the encoded csp instances. Our work does not assume that
conversion to sat is the best way of solving a problem, but considers multiple
candidate encodings and solvers.

In contrast to our approach, CSP2SAT4J [26] uses the SAT4J library as its
sat back-end and a set of static rules to choose either the direct or the support
encoding for each constraint. For intensional and extensional binary constraints
that specify the supports, they use the support encoding. For all other constraints
they use the direct encoding. Our approach does not have predefined rules but
instead chooses the encoding and solver dynamically based on features of the
problem to solve.

Our approach employs algorithm selection techniques to dynamically choose
whether to translate to sat, and if so, which sat encoding and the solver to
use. There has been a great deal of research in the area of algorithm selection
and portfolios; we refer the reader to a recent survey of this work [24]. We note
three contrasting example approaches to algorithm selection for the constraint
satisfaction and satisfiability problems: CPhydra (csp), SATzilla (sat), and
isac (sat). CPhydra [31] contains an algorithm portfolio of csp solvers which
partitions CPU-Time between components of the portfolio in order to maxi-
mize the expected number of solved problem instances within a fixed time limit.
SATzilla [46], at its core, uses cost-sensitive decision forests that vote on the
sat solver to use for an instance. In addition to that, it contains a number of
practical optimizations, for example running a pre-solver to quickly solve the
easy instances. isac [22] is a cluster-based approach that groups instances based
on their features and then finds the best solver for each cluster.

Our approach is not a straightforward application of portfolio techniques. In
particular, there is a series of decisions to make that affect not only the solvers
that will be available, but also the information that can be used to make the
decision. Because of this, the different choices of conversions, encodings and
solvers cannot simply be seen as different algorithms or different configurations
of the same algorithm.

The remainder of this paper is organised as follows. Section 2 motivates
the need to choose the representation and solver in combination. In Section 3
we summarise the necessary background on csp and sat to make the paper
self-contained and present an overview of the main sat encodings of csps.
The detailed evaluation of our portfolio is presented in Section 4. We create
a portfolio-based approach to csp solving that employs eight csp solvers, three
sat encodings and eighteen sat solvers. Finally, we conclude in Section 5.

2 Multiple Encodings and Solvers

To motivate our work, we performed a detailed investigation for two solvers to
assess the relationship between solver and problem encoding with features of the
problem to be solved. For this experiment we considered uniform random binary
csps with a fixed number of variables, domain size and number of constraints,
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(a) Performance using Minisat.
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(b) Performance using Clasp.

Fig. 1. Minisat and Clasp on random binary csps.

and varied the constraint tightness. The constraint tightness t is a measure of
the proportion of forbidden to allowed possible assignments to the variables
in the scope of the constraint. We vary it from 0 to 1, where 0 means that
all assignments are allowed and 1 that no assignments are part of a solution,
in increments of 0.005. At each tightness the mean run-time of the solver on
100 random csp instances is reported. Each instance contains 30 variables with
domain size 20 and 300 constraints. This allowed us to study the performance
of sat encodings and solvers across the phase transition.

Figure 1 plots the run-time for Minisat and Clasp on uniformly random
binary csps that have been translated to sat using three different encodings.
Observe that in Figure 1(a) there is a distinct difference in the performance of
Minisat on each of the encodings, sometimes an order of magnitude difference.
Before the phase transition we see that the order encoding achieves the best
performance on these instances and maintains this even at the phase transi-
tion. Beginning at constraint tightness 0.41, the order encoding gradually starts



achieving poorer performance and the support encoding now achieves the best
performance. Notably, if we rank the encodings based on their performance, the
ranking changes after the phase transition. This illustrates that there is not just
a single encoding that will perform best overall and that the choice of encoding
matters, but also that this choice is dependent on problem characteristics such
as constraint tightness.

Around the phase transition, we observe contrasting performance for Clasp,
as illustrated in Figure 1(b). Using Clasp, the ranking of encodings around the
phase transition is direct � support � order; whereas for Minisat the ranking
is order � direct � support. Note also that the peaks at the phase transition
differ in magnitude between the two solvers. These differences underline the im-
portance of the choice of solver, in particular in conjunction with the choice of
encoding – making the two choices in isolation does not consider the interdepen-
dencies that affect performance in practice.

In addition to the random csp instances, our analysis also comprises 2207
benchmarks from the csp solver competitions. Figure 2 illustrates the respective
performance of csp-based and sat-based methods on these instances. Unsur-
prisingly the dedicated csp methods often achieve the best performance. There
are, however, cases where considering sat-based methods has the potential to
yield significant performance improvements. In particular, there are a number of
instances that are unsolved by any csp solver but can be solved using sat-based
methods. The Proteus approach aims to unify the best of both worlds and take
advantage of the potential performance gains.

3 Background

3.1 The Constraint Satisfaction Problem

Constraint satisfaction problems (csp) are a natural means expressing and rea-
soning about combinatorial problems that are present in everyday life. They have
a large number of practical applications such as scheduling, planning, vehicle
routing, configuration, network design, routing and wavelength assignment [34].
An instance of a csp is represented by a set of variables, each of which can
be assigned a value from its domain. The assignments to the variables must be
consistent with a set of constraints, where each constraint limits the values that
can be assigned to variables.

Finding a solution to a csp is typically done using systematic search based
on backtracking. Because the general problem is NP-complete, systematic search
algorithms have exponential worst-case run times, which has the effect of limiting
the scalability of these methods. However, the development of effective heuristics
and a wide variety of solvers with different strengths and weaknesses means than
many problems can be solved efficiently in practice.

3.2 The Satisfiability Problem

The satisfiability problem (sat) consists of a set of Boolean variables and a
propositional formula over these variables. The task is to decide whether or
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not there exists a truth assignment to the variables such that the propositional
formula evaluates to true, and, if this is the case, to find this assignment.

sat instances are usually expressed in conjunctive normal form (cnf). The
representation consists of a conjunction of clauses, where each clause is a dis-
junction of literals. A literal is either a variable or its negation. Each clause is
a logical or of its literals and the formula is a logical and of each clause. The
following sat formula is in cnf:

(x1 ∨ x2 ∨ ¬x4) ∧ (¬x2 ∨ ¬x3) ∧ (x3 ∨ x4)

This instance consists of four sat variables. One assignment to the variables
which would satisfy the above formula would be to set x1 = true, x2 = false,
x3 = true and x4 = true.

sat, like csp, has a variety of practical real world applications such as hard-
ware verification, security protocol analysis, theorem proving, scheduling, rout-
ing, planning, digital circuit design [5]. The application of sat to many of these
problems is made possible by transformations from representations like the con-
straint satisfaction problem. We will study three transformations into sat that
can benefit from this large collection of solvers.

The following sections explain the direct, support and order encodings that
we use. We will use the following notation. The set of csp variables is represented
by the set X . We use uppercase letters to denote csp variables in X ; lowercase
xi and xv refer to sat variables. The domain of a csp variable X is denoted
D(X).

3.3 Direct Encoding

Translating a csp variable X into sat using the direct encoding [42], also known
as the sparse encoding, creates a sat variable for each value in its domain:
x1, x2, . . . , xd. If x1 is true in the resulting sat formula, then X = 1 in the csp
solution. This means that in order to represent a solution to the csp, exactly
one of x1, x2, . . . , xd must be assigned true. We add an at-least-one clause to the
sat formula for each csp variable as follows:

∀X ∈ X : (x1 ∨ x2 ∨ . . . ∨ xd).

Conversely, to ensure that only one of these can be set to true, we add at-most-
one clauses. For each distinct pair of values in the domain of X, we add a binary
clause to enforce that at most one of the two can be assigned true. The series of
these binary clauses ensure that only one of the sat variables representing the
variable will be assigned true, i.e.

∀v, w ∈ D(X) : (¬xv ∨ ¬xw).

Constraints between csp variables are represented in the direct encoding by
enumerating the conflicting tuples. For binary constraints for example, we add
clauses as above to forbid both values being used at the same time for each



disallowed assignment. For a binary constraint between a pair of variables X
and Y , we add the conflict clause (¬xv ∨ ¬yw) if the tuple 〈X = v, Y = w〉 is
forbidden. For extensionally specified constraints, we simply encode the conflicts
directly using the respective sat variable for each assignment. For intensionally
specified constraints, we enumerate all possible tuples and encode the disallowed
assignments.

Example 1 (Direct Encoding). Consider a simple csp with three variables X =
{X,Y, Z}, each with domain 〈1, 2, 3〉. The constraints between the variables pre-
vent each pair of variables from taking the same value: X 6= Y , X 6= Z, and
Y 6= Z. Table 1 shows the complete direct-encoded cnf formula for this csp.
The first 12 clauses encode the domains of the variables, the remaining clauses
encode the constraints between X, Y and Z. There is an implicit conjunction
between these clauses.

Table 1. An example of the direct encoding.

Domain Clauses
(x1 ∨ x2 ∨ x3) (¬x1 ∨ ¬x2) (¬x1 ∨ ¬x3) (¬x2 ∨ ¬x3)
(y1 ∨ y2 ∨ y3) (¬y1 ∨ ¬y2) (¬y1 ∨ ¬y3) (¬y2 ∨ ¬y3)
(z1 ∨ z2 ∨ z3) (¬z1 ∨ ¬z2) (¬z1 ∨ ¬z3) (¬z2 ∨ ¬z3)

X 6= Y (¬x1 ∨ ¬y1) (¬x2 ∨ ¬y2) (¬x3 ∨ ¬y3)
X 6= Z (¬x1 ∨ ¬z1) (¬x2 ∨ ¬z2) (¬x3 ∨ ¬z3)
Y 6= Z (¬y1 ∨ ¬z1) (¬y2 ∨ ¬z2) (¬y3 ∨ ¬z3)

3.4 Support Encoding

The support encoding [14, 23] uses the same mechanism as the direct encoding
to encode csp domains into sat – each value in the domain of a csp variable is
encoded as a sat variable which represents whether or not it takes that value.
However, the support encoding differs on how the constraints between variables
are encoded. Given a constraint between two variables X and Y , for each value
v in the domain of X, let SY,X=v ⊂ D(Y ) be the subset of the values in the
domain of Y which are consistent with assigning X = v. Either xv is false or
one of the consistent assignments from y1 . . . yd must be true. This is encoded in
the clause

¬xv ∨

 ∨
i∈SY,X=v

yi

 .

There is a clause for each value in the domain of Y that lists the values in X
which are consistent with the respective assignment.

An interesting property of the support encoding is that if a constraint has
no consistent values in the corresponding variable, a unit-clause will be added,
thereby pruning the values from the domain of a variable which cannot exist



in any solution. Also, a solution to a sat formula without the at-most-one con-
straint under the support encoding represents an arc-consistent assignment to
the csp. Unit propagation on this sat instance establishes arc-consistency in
optimal worst-case time for establishing arc-consistency [14].

Example 2 (Support Encoding). Table 2 gives the complete support-encoded cnf
formula for the simple csp given in Example 1. The first 12 clauses encode the
domains and the remaining ones the support clauses for the constraints. There
is an implicit conjunction between clauses.

Table 2. An example of the support encoding.

Domain Clauses
(x1 ∨ x2 ∨ x3) (¬x1 ∨ ¬x2) (¬x1 ∨ ¬x3) (¬x2 ∨ ¬x3)
(y1 ∨ y2 ∨ y3) (¬y1 ∨ ¬y2) (¬y1 ∨ ¬y3) (¬y2 ∨ ¬y3)
(z1 ∨ z2 ∨ z3) (¬z1 ∨ ¬z2) (¬z1 ∨ ¬z3) (¬z2 ∨ ¬z3)

X 6= Y
(¬x1 ∨ y2 ∨ y3) (¬x2 ∨ y1 ∨ y3) (¬x3 ∨ y1 ∨ y2)
(¬y1 ∨ x2 ∨ x3) (¬y2 ∨ x1 ∨ x3) (¬y3 ∨ x1 ∨ x2)

X 6= Z
(¬x1 ∨ z2 ∨ z3) (¬x2 ∨ z1 ∨ z3) (¬x3 ∨ z1 ∨ z2)
(¬z1 ∨ x2 ∨ x3) (¬z2 ∨ x1 ∨ x3) (¬z3 ∨ x1 ∨ x2)

Y 6= Z
(¬y1 ∨ z2 ∨ z3) (¬y2 ∨ z1 ∨ z3) (¬y3 ∨ z1 ∨ z2)
(¬z1 ∨ y2 ∨ y3) (¬z2 ∨ y1 ∨ y3) (¬z3 ∨ y1 ∨ y2)

3.5 Order Encoding

Unlike the direct and support encoding, which model X = v as a sat variable
for each value v in the domain of X, the order encoding (also known as the
regular encoding [?]) creates sat variables to represent X ≤ v. If X is less than
or equal to v (denoted x≤v), then X must also be less than or equal to v + 1
(x≤v+1). Therefore, we add clauses to enforce this consistency across the domain
as follows:

∀d−1v : (¬x≤v ∨ x≤v+1).

This linear number of clauses is all that is needed to encode the domain of a csp
variable into sat under the order encoding. In contrast, the direct and support
encodings require a quadratic number of clauses in the domain size.

The order encoding is naturally suited to modelling inequality constraints.
To state X ≤ 3, we would just post the unit clause (x≤3). If we want to model
the constraint X = v, we could rewrite it as (X ≤ v ∧X ≥ v). X ≥ v can then
be rewritten as ¬X ≤ (v − 1). To state that X = v under the order encoding,
we would encode (x≤v ∧¬x≤v−1). A conflicting tuple between two variables, for
example 〈X = v, Y = w〉 can be written in propositional logic and simplified to



a cnf clause using De Morgan’s Law:

¬((x≤v ∧ x≥v) ∧ (y≤w ∧ y≥w))
¬((x≤v ∧ ¬x≤v−1) ∧ (y≤w ∧ ¬y≤w−1))
¬(x≤v ∧ ¬x≤v−1) ∨ ¬(y≤w ∧ ¬y≤w−1)

(¬x≤v ∨ x≤v−1 ∨ ¬y≤w ∨ y≤w−1)

Example 3 (Order Encoding). Table 3 gives the complete order-encoded cnf for-
mula for the simple csp specified in Example 1. There is an implicit conjunction
between clauses in the notation.

Table 3. An example of the order encoding.

Domain Clauses
(¬x≤1 ∨ x≤2) (¬x≤2 ∨ x≤3) (x≤3)
(¬y≤1 ∨ y≤2) (¬y≤2 ∨ y≤3) (y≤3)
(¬z≤1 ∨ z≤2) (¬z≤2 ∨ z≤3) (z≤3)

X 6= Y
(¬x≤1 ∨ ¬y≤1)
(¬x≤2 ∨ x≤1 ∨ ¬y≤2 ∨ y≤1)
(¬x≤3 ∨ x≤2 ∨ ¬y≤3 ∨ y≤2)

X 6= Z
(¬x≤1 ∨ ¬z≤1)
(¬x≤2 ∨ x≤1 ∨ ¬z≤2 ∨ z≤1)
(¬x≤3 ∨ x≤2 ∨ ¬z≤3 ∨ z≤2)

Y 6= Z
(¬y≤1 ∨ ¬z≤1)
(¬y≤2 ∨ y≤1 ∨ ¬z≤2 ∨ z≤1)
(¬y≤3 ∨ y≤2 ∨ ¬z≤3 ∨ z≤2)

3.6 Algorithm Portfolios

The Algorithm Selection Problem [33] is to select the most appropriate algo-
rithm for solving a particular problem. It is especially relevant in the context of
algorithm portfolios [16,20], where a single solver is replaced with a set of solvers
and a mechanism for selecting a subset to use on a particular problem.

Algorithm portfolios have been used with great success for solving both sat
and csp instances in systems such as SATzilla [46], ISAC [22] or CPHydra [31].
Most approaches are similar in that they relate the characteristics of a problem
to solve to the performance of the algorithms in the portfolio. The aim of an
algorithm selection model is to provide a prediction as to which algorithm should
be used to solve the problem. The model is usually induced using some form of
machine learning.

There are three main approaches to using machine learning to build algorithm
selection models. First, the problem of predicting the best algorithm can be
treated as a classification problem where the label to predict is the algorithm.



Second, the training data can be clustered and the algorithm with the best
performance on a particular cluster assigned to it. The cluster membership of
any new data decides the algorithm to use. Finally, regression models can be
trained to predict the performance of each portfolio algorithm in isolation. The
best algorithm for a problem is chosen based on the predicted performances.

Our approach makes a series of decisions – whether a problem should be
solved as a csp or a sat problem, which encoding should be used for converting
into sat, and finally which solver should be assigned to tackle the problem.
Approaches that make series of decisions are usually referred to as hierarchical
models. [44] and [17] use hierarchical models in the context of a sat portfolio.
They first predict whether the problem to be solved is expected to be satisfiable
or not and then choose a solver depending on that decision. Our approach is
closer to [15], who first predict what level of consistency the alldifferent
constraint should achieve before deciding on its implementation.

To the best of our knowledge, no portfolio approach that potentially trans-
forms the representation of a problem in order to be able to solve it more effi-
ciently exists at present.

4 Experimental Evaluation

4.1 Setup

We implemented a tool to translate a csp instance specified in xcsp format [35]
into sat (cnf). At present, it supports encoding inequality and binary exten-
sional constraints using the direct, support and order encoding.

The hierarchical model we present in this paper consists of a number of layers
to determine how the instance should be solved. At the top level, we decide
whether to solve the instance using as a csp or using a sat-based method. If
we choose to leave the problem as a csp, then one of the dedicated csp solvers
must be chosen. Otherwise, we must choose the sat encoding to apply, followed
by the choice of sat solver to run on the sat-encoded instance.

Each decision of the hierarchical approach aims to choose the direction which
has the potential to achieve the best performance in that sub-tree. For exam-
ple, for the decision to choose whether to solve the instance using a sat-based
method or not, we choose the sat-based direction if there is a sat solver and
encoding that will perform faster than any csp solver would. Whether this par-
ticular encoding-solver combination will be selected subsequently depends on
the performance of the algorithm selection models used in that sub-tree of our
decision mechanism. For regression models, the training data is the best perfor-
mance of any solver under that branch of the tree. For classification models, it
is the label of the sub-branch with the virtual best performance.

This hierarchical approach presents the opportunity to employ different de-
cision mechanisms at each level. We consider 10 regression, 26 classification and
3 clustering algorithms, which are listed below. For each of these algorithms, we
evaluate the performance using 10-fold cross-validation. The dataset is split into



10 partitions with approximately the same size and the same distribution of the
best solvers. One partition is used for testing and the remaining 9 partitions as
the training data for the model. This process is repeated with a different par-
tition considered for testing each time until every partition has been used for
testing. We measure the performance in terms of PAR10 score. The PAR10 score
for an instance is the time it takes the solver to solve the instance, unless the
solver times out. In this case, the PAR10 score is ten times the timeout value.
The sum over all instances is divided by the number of instances.

Instances. In our evaluation, we consider csp problem instances from the csp
solver competition.1 Of these, we consider the instances that contain either in-
equality or binary extensional constraints that our tool can translate to sat.
Altogether, we use 2, 207 instances from the Graph Colouring, Random, Quasi-
random, Black Hole, Quasi-group Completion, Quasi-group with Holes, Lang-
ford, Towers of Hanoi and Pigeon Hole problem classes.

Features. A fundamental requirement of any machine learning algorithm is a
set of representative features. We explore a number of different feature sets to
train our models: i) features of the original csp instance, ii) features of the
direct-encoded sat instance, iii) features of the support-encoded sat instance,
iv) features of the order-encoded sat instance and v) a combination of all four
feature sets. These features are described in further detail below.

We computed the 36 features used in CPhydra for each csp instance using
Mistral; for reasons of space we will not enumerate them all here. The set
includes static features like statistics about the types of constraints used, average
and maximum domain size; and dynamic statistics recorded by running Mistral
for 2 seconds: average and standard deviation of variable weights, number of
nodes, number of propagations and a few others.

In addition to the csp features, we computed the 54 sat features used by
SATzilla [46] for each of the encoded instances and different encodings. The
features encode a wide range of different information on the problem such as
problem size, features of the graph-based representation, balance features, the
proximity to a Horn formula, DPLL probing features and local search probing
features.

Constraint Solvers. Our csp models are able to choose from 8 complete csp
solvers:

– Abscon [27],
– Choco [40],
– CSP4J [26],
– Gecode [12],

– Mistral [19],
– PCS [41],
– SAT4J [25] and
– Sugar [38].

Satisfiability Solvers. We considered the following 18 complete sat solvers:

1 csp solver competition instances
http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html

http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html


– Minisat [10],
– cryptominisat [37],
– glucose [1],
– lingeling [4],
– clasp [11],
– picosat [3],
– precosat [3],
– kcnfs [9],
– mxc [6],

– riss [28],
– sat4j [25],
– glueminisat [30],
– qutersat [43],
– contrasat [13],
– rsat [32],
– march_rw [29],
– MPhaseSAT64 [8] and
– cirminisat [36].

In addition to these solvers, we include Minisat with variable elimination
turned off. During our initial experimentation we found that some sat-encoded
formulas are very large but trivially solvable. Minisat was wasting time elimi-
nating variables when it could very quickly solve the instance without having to
do so. This gives a total of 19 sat solvers.

Learning Algorithms. We evaluate a number of regression, classification, and
clustering algorithms using WEKA [18]. All algorithms, unless otherwise stated
use the default parameters. The regression algorithms we used were AdditiveRe-
gression, LinearRegression, PaceRegression, REPTree, M5Rules, M5P, SMOreg,
SVM ε and SVM ν. The classification algorithms were AdaBoost, BayesNet,
BFTree, ConjunctiveRule, DecisionTable, FT, HyperPipes, IBk (nearest neigh-
bour) with 1, 3, 5 and 10 neighbours, J48, J48graft, JRip, LADTree, Multi-
layerPerceptron, OneR, PART, RandomForest, RandomForest with 99 random
trees, RandomTree, REPTree, SimpleLogistic, SVM with radial basis function
and SVM with sigmoid basis function. For clustering, we considered EM, Far-
thestFirst, and SimplekMeans. The FarthestFirst and SimplekMeans algorithms
require the number of clusters to be given as input. We evaluated with multiples
of 1 through 10 of the number of solvers in the respective data set given as the
number of clusters. The number of clusters is represented by 1n, 2n and so on
in the name of the algorithm, where n stands for the number of solvers.

4.2 Portfolio and Solver Results

The performance of each of the 19 sat solvers was evaluated on the three sat
encodings of 2,207 csp competition benchmarks with a time-out of 1 hour. Each
of the 8 csp solvers were evaluated on the original csps. Our results report
the PAR10 score and number of instances solved for each of the algorithms we
evaluate. The PAR10 is the sum of the runtimes over all instances, counting 10
times the timeout if that was reached. This data will be made available online.

The performance of a number of hierarchical approaches is given in Table 4.
The hierarchy of algorithms which produced the best overall results for our
dataset involves SVM regression ν with csp features at the root node to choose
sat or csp, J48 with csp features is used to select the csp solver, M5P with
csp features is used to select the sat encoding, IBk with 5 neighbours with csp
features selects the sat solver for the direct encoded instance, SVM regression



Table 4. Performance of the learning algorithms for the hierarchical approach. We
show the top 10 results due to space constraints. The ‘Category Bests’ consists of
the hierarchy of algorithms where at each node of the tree of decisions we take the
algorithm that achieves the best PAR10 score for that particular decision.

Classifier Mean PAR10 Number Solved

VBS 54 2207
Proteus 252 2194
J48 with csp features 335 2189
SVM nu log with csp features 365 2187
Category Bests 433 2183
M5P with csp features 565 2175
IBk with 5 neighbours with csp features 616 2172
IBk with 5 neighbours with all features 753 2168
J48 with all features 770 2168
SVM nu log with all features 1058 2150
M5P with all features 1091 2148

ν with csp features selects the sat solver for the order encoded instance, and
IBk with 5 neighbours with csp features is used to choose the sat solver for
the support encoded instance. The hierarchical tree of specific machine learning
approaches we found to deliver the best overall performance is labelled Proteus
and is depicted in Figure 3.

We would like to point out that in many solver competitions the difference
between the top few solvers is fewer than 10 additional instances solved. In the
2012 sat Challenge for example, the difference between the first and second place
single solver was only 3 instances and the difference among the top 4 solvers was
only 8 instances. The results we present in Table 4 are therefore very significant
in terms of the gains we are able to achieve.

Our results demonstrate the power of Proteus. The performance it delivers
is very close to the virtual best (VBS). The improvements we achieve over other
approaches are similarly impressive. The results conclusively demonstrate that

solve as CSP solve as SAT

encode with direct
encoding

encode with order
encoding

encode with support
encoding

J48 classification with CSP features

SVM nu regression with CSP features

M5P regression with CSP features

SVM nu regression with CSP features

Nearest neighbour classification
with CSP features and five neighbours

Nearest neighbour classification
with CSP features and five neighbours

Fig. 3. Overview of the machine learning models used in the hierarchical approach.



Table 5. Ranking of each classification, regression and clustering algorithm to choose
the solving mechanism in a flattened setting. The portfolio consists of all possible
combination of the 3 encodings and the 19 sat solvers is and the 8 csp solvers for a
total of 65 solvers. We show the top 10 results due to space constraints.

Classifier Mean PAR10 Number Solved

VBS 22 2207
FarthestFirst1n with csp features 380 2186
SVM rbf with csp features 403 2185
IBk10 with csp features 412 2184
lm with csp features 424 2184
PaceRegression with csp features 426 2184
REPTree with csp features 435 2183
LinearRegression with csp features 439 2183
MultilayerPerceptron with csp features 443 2182
FarthestFirst1n with all features 453 2186

having the option to convert a csp to sat does not only have the potential to
achieve significant performance improvements, but also does so in practice.

An interesting observation is that the csp features are consistently used in
each of the top performing approaches. One reason for this is that it is quicker to
compute only the csp features instead of the csp features and the sat features
in addition. The additional overhead of computing sat features is worthwhile
in some cases though, for example for IBk with 5 neighbours, J48, SVM ν and
M5P, as seen in the lower half of Table 4.

We also compare the hierarchical approach to that of a flattened setting with
a single portfolio of all solvers and encoding solver combinations. That is, the
flattened portfolio includes all possible combinations of the 3 encodings and the
19 sat solvers and the 8 csp solvers for a total of 65 solvers. Table 5 shows these
results. The clustering algorithm FarthestFirst gives the best performance using
this approach. However, it is significantly worse than the performance achieved
by Proteus.

4.3 Greater than the Sum of its Parts

Given the performance of Proteus, the question remains as to whether a different
portfolio approach that considers just csp or just sat solvers could do better. Ta-
ble 6 summarizes the virtual best performance that such portfolios could achieve.
We use all the csp and sat solvers for the respective portfolios to give us VB
CSP and VB SAT, respectively. The former is the approach that always chooses
the best csp solver for the current instance, while the latter chooses the best
sat encoding/solver combination. VB Proteus is the portfolio that chooses the
best overall approach/encoding. We show the actual performance of Proteus for
comparison. It is interesting to note that the actual performance of Proteus is
competitive with these oracle approaches, and outperforms the other approaches
we present in this table.



Table 6. Virtual best performances ranked by PAR10 score.

Method Mean PAR10 Number Solved

VB Proteus 54 2207
VB SAT 111 2207
VB CSP 224 2197
Proteus 252 2194
VB CPHydra 326 2191
VB Order Encoding 969 2156
VB Direct Encoding 1450 2125
VB Support Encoding 2333 2070

Proteus outperforms four other VB portfolios. Specifically, the VB CPhydra
is the best possible performance that could be obtained from that portfolio if a
perfect choice of solver was made. Neither SATzilla nor isac consider different
sat encodings. Therefore, the best possible performance either of them could
achieve for a specific encoding is represented in the last three lines of Table 6.

These results do not only demonstrate the benefit of considering the different
ways of solving csps, but also eliminate the need to compare with existing port-
folio systems since we are computing the best possible performance that any of
those systems could theoretically achieve. Therefore, the strength of the Proteus
approach is very convincing.

5 Conclusions

In this paper we have presented a portfolio approach that does not rely on a
single problem representation or set of solvers, but leverages our ability to con-
vert between problem representations to increase the space of possible solving
approaches. To the best of our knowledge, this is the first time a portfolio ap-
proach like this has been proposed. We have shown that, to achieve the best
performance on a constraint satisfaction problem, it may be beneficial to trans-
late it to a satisfiability problem. For this translation, it is important to choose
both the encoding and satisfiability solver in combination. By doing so, the
contrasting performance among solvers on different representations of the same
problem can be exploited. The overall performance can be improved significantly
compared to restricting the portfolio to a single problem representation.

We demonstrated the significant performance improvements Proteus achieves
empirically on a large set of diverse benchmarks with a portfolio based on a range
of different state-of-the-art solvers. We have investigated a range of different csp
to sat encodings and evaluated the performance of a large number of machine
learning approaches and algorithms. Finally we have shown that the performance
of Proteus is close to the very best that is theoretically possible for solving csps.
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