
The Semigroups of Order 10

Andreas Distler1, Chris Jefferson2, Tom Kelsey2, and Lars Kotthoff2

1 Centro de Álgebra da Universidade de Lisboa,
1649-003 Lisboa, Portugal

2 School of Computer Science,
University of St Andrews, KY16 9SX, UK

Abstract. The number of finite semigroups increases rapidly with the
number of elements. Since existing counting formulae do not give the
complete number of semigroups of given order up to equivalence, the
remainder can only be found by careful search. We describe the use
of mathematical results combined with distributed Constraint Satisfac-
tion to show that the number of non-equivalent semigroups of order 10
is 12,418,001,077,381,302,684. This solves a previously open problem in
Mathematics, and has directly led to improvements in Constraint Satis-
faction technology.

Keywords: Constraint Satisfaction, Mathematics, semigroup, Minion,
symmetry breaking, distributed search

1 Introduction

An important area of investigation is the determination of the number of solu-
tions of a given finite algebraic problem. It is often the case that we are interested
in the number of classes of solutions under some type of equivalence relation,
since this gives the number of structural types rather than distinct objects. In
certain cases, these numbers can be found by deriving counting formulae. It may
also be possible, on an ad hoc basis, to derive enumerative constructions of larger
objects from smaller ones. In both these cases, no systematic computer search
is required – the numbers are calculated from mathematical proofs using the
structures of the underlying problem.

There is no guarantee, of course, that the use of formally-proven formulae
will work for all problems. It may be that no suitable formulae is available. In
this event, the only method left is to carefully search for solutions, ensuring
that none is missed and none is counted more than once. Examples include
the search for all distinct transitive graphs on n vertices [23, 24], all binary
self-dual codes of length 32 [2], all ordered trees with k leaves [32], and all
non-equivalent semigroups up to order 9 and monoids up to order 10 [6, 7, 9,
17, 26, 28, 30]. Large-scale studies often involve a combination of enumeration
by formula and computer search. The tautomer enumeration problem [18] from
Cheminfomatics is an illustrative example. Commercial and academic software
packages used to solve this type of problem typically use a suite of transformation

2 The Semigroups of Order 10

rules that allow enumeration without search, combined with generate-and-test
searches for structures not predicted by the rulesets [25].

Whenever computer search is used to solve for types of solutions rather than
absolute number of solutions, some method must be employed that ensures that
exactly one canonical representative from each equivalence class is returned.
This involves breaking the symmetries that allow objects from the same class
to be interchanged, and the design and implementation of such methods is an
important field of study in its own right [29, chapter 10].

A detailed exposition of search, symmetry-breaking, enumeration, and solu-
tion generation is given in [21]. The Constraint Satisfaction methods used in our
search are described in [29], details of the specific Constraint Satisfaction solver
used – Minion – are in [13], and the computational algebra package – GAP –
used to identify and break symmetries is described at [11]. Basics of semigroup
theory can be found in [15].

Table 1. Semigroup T of order 10.

* 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 4 4 0 0 4 4
1 0 1 0 0 4 4 0 0 4 4
2 2 2 2 2 5 5 2 2 5 5
3 2 2 2 3 5 5 2 2 5 5
4 0 0 0 0 4 4 4 4 0 0
5 2 2 2 2 5 5 5 5 2 2
6 0 0 2 2 4 5 6 7 8 9
7 0 0 2 2 4 5 7 6 9 8
8 2 2 0 0 5 4 8 9 7 6
9 2 2 0 0 5 4 9 8 6 7

A semigroup T = (S, ∗) consists of a set of elements S and a binary operation
∗ : S×S → S that is associative, satisfying (x∗y)∗ z = x∗ (y ∗ z) for each x, y, z
in S. We call two semigroups (S, ∗) and (S′, ◦) isomorphic – respectively anti-
isomorphic – if there exists a bijection σ : S → S′ such that σ(x∗y) = σ(x)◦σ(y)
– respectively σ(x ∗ y) = σ(y) ◦ σ(x) – for all x, y ∈ S; in this case σ is an
isomorphism respectively anti-isomorphism. An element x of T is an idempotent
if x ∗ x = x. The semigroup T is nilpotent if there exists an r ∈ N such that
|{s1 ∗ s2 ∗ · · · ∗ sr | s1, s2, . . . , sr ∈ S}| = 1, in other words if all products of r
elements take the same value. If r is the least value for which this is true, then
T is nilpotent of degree r. Table 1 is an illustrative example: T = ({0, . . . , 9}, ∗).
By inspection, T is 7-idempotent, i.e. has exactly seven idempotents. T is not
nilpotent of degree 3 since, for example, 4 ∗ 5 ∗ 6 = 4 6= 5 = 2 ∗ 3 ∗ 4. Given a
permutation π of the elements of {0, . . . , 9}, it is easy to check that a semigroup
isomorphic to T is obtained by permuting the rows, the columns, and finally the

The Semigroups of Order 10 3

values according to π, and that additionally transposing yields the table of an
anti-isomorphic semigroup.

The problem addressed in this paper is finding all ways of filling in a blank
table such that multiplication is associative up to symmetric equivalence, i.e. up
to isomorphism or anti-isomorphism.

In this paper we report that the hitherto unknown number of semigroups of
order 10, up to equivalence, is 12,418,001,077,381,302,684. The size of the search
space for this problem is 10100 with 2 × 10! symmetries to be broken, making
generate-and-test an intractable solution method. A recent advance in the theory
of finite semigroups has led to a formula [8] that gives the number of ‘almost
all’ semigroups of given order. Despite this, 718,981,858,383,872 non-equivalent
solutions had to be found by a combination of ad hoc constructive enumeration
proofs and Constraint Satisfaction search, which took 130 CPU years distributed
across two local clusters and the Amazon cloud [1].

Our investigations have directly led to improvements in the Minion Con-
straint Satisfaction Problem solver. Watched constraints were introduced, and
a more efficient lexicographic ordering constraint was implemented. These gave
orders of magnitude improvements to our search, and have been included in
subsequent releases of Minion.

We stress the interdisciplinary nature of our work: the result cannot – to
our knowledge – be obtained by mathematical proof alone, nor can current AI
search technologies hope to return the exact number of solutions with realistic
resources.

In Section 2 we give detailed descriptions of our models and methods, and
of the family of Constraint Satisfaction Problems (CSPs) that were solved to
provide the main result. Section 3 contains the results divided into the sub-
cases used to overcome computational bottlenecks. In Section 4 we discuss the
improvements in CSP solving that we were able to identify and implement,
together with a brief analysis of how our solver can often backtrack very early
in search, and how distribution of the CSPs across multiple compute nodes is
likely to generalise. We give some concluding remarks in Section 5.

2 Methods

We first describe a single CSP for our combinatorial problem (Sec. 2.1), that
incorporates a priori knowledge regarding the number of semigroups of a certain
type. The next stage is the replacement of this CSP by families of CSPs (Sec. 2.2),
some of which are both computationally and mathematically difficult, and are
solved by distributed search (Sec. 2.3). More computationally tractable families
are solved using a single processor, and families having exploitable structure are
solved mainly by constructive enumeration (Secs. 2.4, 2.5, and 2.6).

2.1 The single Constraint Satisfaction model

We model semigroups of order 10 as a CSP: a set of variables V each with a
discrete and finite domain D of potential values, and a set of constraints C that

4 The Semigroups of Order 10

either forbid or require certain instantiations of variables by domain values. A
full instantiation of the variables in V by values from D is a solution whenever
no constraint is violated. We make extensive use of the element constraint on
variables N , Mi and P having natural number domains

N = 〈M0, . . . ,Mn−1〉[P]

which requires that N is the P th element of the list 〈M0, . . . ,Mn−1〉 in any
solution. Propagators for this constraint are implemented in many CSP solvers,
including Minion.

CSP 1 Let V1 = {Ta,b | 0 ≤ a, b ≤ 9} be variables representing the entries
in a 10 × 10 multiplication table T , and V2 = {Aa,b,c | 0 ≤ a, b, c ≤ 9} be
variables representing each of the products of three elements. Our basic CSP has
V = V1 ∪ V2 as variables, each with domain D = {0, . . . , 9}. For each triple
(a, b, c) of values from D, we post the pair of constraints

〈Ta,0, . . . , Ta,9〉[Tb,c] = Aa,b,c = 〈T0,c, . . . , T9,c〉[Ta,b] (1)

which enforce associativity.

Finding all solutions of CSP 1 would give the number of distinct semigroups
of order 10, i.e. all non-identical associative 10 × 10 multiplication tables. Our
task, however, is to search for the number of classes of solutions up to symmetric
equivalence, i.e. up to isomorphism or anti-isomorphism. The symmetry group
is the set of permutations of {0, . . . , 9} combined with possible transpositions of
the tables, which we denote as S10×C2 using standard group theoretic notation.
Let g = (π, φ) ∈ S10 ×C2 be a symmetry and T be a multiplication table. T g is
then the table obtained by

1. permuting the rows and columns of T according to π;
2. permuting the values in T according to π;
3. either

(a) doing nothing if φ is the identity element φ1 of C2;
(b) transposing the table if φ is the non-identity φ2 element of C2.

Two multiplication tables T1 and T2 are isomorphic if T1 = T
(π,φ1)
2 for some

π ∈ S10; T1 and T2 are anti-isomorphic if T1 = T
(π,φ2)
2 for some π ∈ S10.

Since S10 ×C2 is a group, the set of all multiplication tables can be partitioned
into subsets of symmetric equivalents: those tables that are isomorphic or anti-
isomorphic to each other form an equivalence class.

Our problem is to find the number of equivalence classes, either by formal
enumeration proofs or by solving a variant of CSP 1 that returns exactly one
canonical representative from each class. Our general search methodology is to
post “lex-leader” symmetry-breaking constraints before search. This is a well-
known technique for dealing with symmetries in CSPs [4], made harder to im-
plement in our case because our symmetries involve both variables and values,

The Semigroups of Order 10 5

and made harder to deploy since we need to post 2×10! = 7, 257, 600 symmetry-
breaking constraints.

To explain our realisation of “lex-leader” we first introduce of another way
to describe a solution of CSP 1. A literal of a CSP L = (V,D,C) is an element
in the Cartesian product V ×D. Literals are denoted in the form (x = k) with
x ∈ V and k ∈ D. An instantiation f corresponds to the set of literals If =
{(x = f(x)) | f is defined on x}, which uniquely defines f (but not every set
of literals defines an instantiation). In particular, literals are mapped to literals
under the isomorphic and anti-isomorphic transformations described above.

Given a fixed ordering (χ1, χ2, . . . , χ|V1||D|) of all literals in V1×D, an instan-
tiation can then be represented as a bit vector of length |V1||D| = 100× 10. The
bit in the i-th position is 1 if χi is contained in the instantiation and otherwise
the bit is 0. The bit vector for the instantiation If corresponding to the ordering
of the literals (χ1, χ2, . . . , χ|V1||D|) is denoted by (χ1, χ2, . . . , χ|V1||D|)If

.
There is one solution in each set of symmetric equivalents for which the cor-

responding bit vector is lexicographic maximal, which we take to be the property
identifying the canonical solution. We denote the standard lexicographic order
on vectors by ≥lex.

CSP 2 Let (V,D,C) be as defined in CSP 1. We extend C by adding for all
symmetries g ∈ S10 × C2 the constraint

(χ1, χ2, . . . , χ|V1||D|) ≥lex (χg1, χ
g
2, . . . , χ

g
|V1||D|). (2)

The solutions of CSP 2 are canonical representatives of associative multiplication
tables, as required.

It is not hard to show that all finite semigroups have at least one idempotent.
Our symmetry-breaking constraints ensure that all solution tables will have the
value 0 at T0,0. Since we ensure that 0 ∗ 0 ∗ 0 = 0, exactly those solutions that
are nilpotent of degree at most 3 will have a ∗ b ∗ c = 0 for all values of a, b and
c. A formula has recently been derived that gives the number of such solutions
without search [8], so we add constraints that rule out these solutions from our
CSP. We already have variables that represent each product of three elements,
namely V2.

CSP 3 Let (V,D,C) be as defined in CSP 2. Form a vector containing the
variables 〈V2〉 = 〈Aa,b,c | 0 ≤ a, b, c ≤ 9〉, and another vector 〈Z〉 consisting of
103 zeros. We post the additional constraint

〈V2〉 6= 〈Z〉 (3)

that guarantees that at least one triple product is non-zero in every solution.

Adding the number of solutions of CSP 3 to the formula value for semigroups
of nilpotency degree at most 3 will give our full result. It should be noted that no
enumeration formula for the solutions of CSP 3 exists: some form of organised
search is required to solve the complete problem.

6 The Semigroups of Order 10

2.2 Case splits

CSP 3 has too many symmetries to be solved as a single entity. In practice,
we apply a well-established technique that has been used in the enumeration
of semigroups of orders 6 and 8 [28, 30] to subdivide the problem (CSP 4). For
each subproblem we prescribe the entries on the diagonal of the multiplication
table. There exist 1010 distinct diagonals, but only a small number appear in a
canonical solution, so that far fewer subproblems are created. A detailed descrip-
tion of the efficient derivation of a set of diagonals containing all canonical ones
is given in [5]. This approach heavily influences the symmetry-breaking, as any
lex-leader constraint (2) is automatically fulfilled if it corresponds to a symme-
try that does not fix the prescribed diagonal. We therefore significantly reduce
the overall search space, and also the number of symmetry-breaking constraints
needed for most subproblems.

CSP 4 Let (V,D,C) be as defined in CSP 3, and let E = {Ea | 0 ≤ a ≤ 9} be
a canonical diagonal. We post the constraints

Ta,a = Ea for 0 ≤ a ≤ 9 (4)

which prescribe the entries on the diagonal of any solution.

To further reduce the number of instances, we combine certain easy subprob-
lems and prescribe only the number of idempotents, as done in [17]. For more
difficult subproblems we do further easily-derived case splits which will be men-
tioned in Section 3. The choice of method used for a particular subproblem was
based on our experience from searching for the semigroups of order 9.

2.3 Distributed CSP search

Our method of solving constraint problems in a distributed way does not require
support for distributed architectures in the constraint solver. Instead, we parti-
tion and distribute the problem specification itself, with the different partitions
of the search space solved independently. The advantage of this approach over
techniques that require communication between the compute nodes is that its
implementation and deployment are much simpler.

We partition by splitting on the values in the domain of a variable during
search [20]. This is done as follows: first the solution process is stopped, then
we compute restart nogoods as described in [22] and encode them as constraints
that can be added to the original problem. When added, the new constraints
enable the solver to restart search from where it was interrupted. In addition, we
add constraints that split the remaining search space. We partition the domain
for the variable currently under consideration into n pieces of roughly equal size.
We then create n new models and to each in turn add the constraints ruling out
the previously done search and n− 1 partitions of that domain. As an example,
consider the case n = 2. If the variable under consideration is x and its domain
is {1, 2, 3, 4}, we generate 2 new models. One of them has the constraint x ≤ 2

The Semigroups of Order 10 7

added and the other one x ≥ 3. Thus, solving the first model will try the values
1 and 2 for x, whereas the second model will try 3 and 4.

It is impossible to predict reliably the size of the search space for each of the
splits, and the time needed to search it. This directly affects the effectiveness
of the splitting – if the search space is distributed unevenly across the splits,
some of the compute nodes will be idle while the others do most of the work.
We address this problem by repeatedly splitting the search space during search.
In this way we create new units of work whenever a worker becomes idle by
simply asking one of the busy workers to stop and generate split models. The
search is then resumed from where it was stopped and the remaining search
space is explored in parallel by the two workers. Note that there is a runtime
overhead involved with stopping and resuming search because the constraints
which enable resumption must be propagated and the solver needs to explore a
small number of search nodes to get to the point where it was stopped before.
There is also a memory overhead because the additional constraints need to be
stored.

In practice, we run Minion for a specified amount of time, then stop, split
and resume instead of splitting at the beginning and when workers become idle.
Initially the utilisation of the workers is suboptimal because not enough work
units have been generated. However, after some time the number of work units
exceeds the number of workers and the utilisation reaches 100%, and the initial
phase of under-utilised resources is negligible compared to the total computation
time.

We used the distributed computing system Condor [31] to handle distribution
of the work units to the worker nodes. Every time new models are generated,
they are submitted to the system which queues them and allocates a worker as
soon as one becomes available.

2.4 Construction of certain 2-idempotent semigroups

If T = ({1, . . . , 9}, ∗) is a 1-idempotent semigroup, 1 being the idempotent, we
define four multiplications on {0, . . . , 9}:

i ∗I j =

{
i ∗ j if i, j ∈ T
0 otherwise i ∗II j =

i ∗ j if i, j ∈ T
i if j = 0
j if i = 0

i ∗III j =

i ∗ j if i, j ∈ T
i ∗ 1 if i ∈ T, j = 0
1 ∗ j if j ∈ T, i = 0
0 if i = j = 0

i ∗IV j =

i ∗ j if i, j ∈ T
0 if i = 0
1 if i 6= 0, j = 0

Denote TI = ({0, . . . , 9}, ∗I), . . . , TIV = ({0, . . . , 9}, ∗IV). Then it can be readily
verified that TI, TII, and TIII are 2-idempotent semigroups, and so is TIV if the

8 The Semigroups of Order 10

element 1 is a left-zero in T , i.e. 1∗ i = 1 for all i ∈ T . These four semigroups are
pairwise non-equivalent (except that TII = TIII if T is a group). Moreover, for
two non-equivalent semigroups on {1, . . . , 9} the first three constructions lead
to non-equivalent semigroups; and two non-isomorphic semigroups on {1, . . . , 9}
lead to non-equivalent semigroups under the fourth construction.

We use the above constructions to reduce the search effort for certain 2-
idempotent diagonals, with 0 and 1 being the idempotents. It can then be shown
that T0,1, T1,0 ∈ {0, 1}, and that the only solutions not arising from one of the
constructions have T0,1 = T1,0 = 1. Hence we fix these variables of the CSP and
in addition add constraints to rule out solutions that are of the form TII or TIII

for some semigroup T on {1, . . . , 9}.

2.5 Construction from nilpotent semigroups of order 9

For a 1-idempotent semigroup T = ({0, . . . , 8}, ∗) with 0 being the idempotent
we define a multiplication ◦ on {0, . . . , 9} as follows:

i ◦ j =

i ∗ j if i, j ∈ T
0 if i = j = 9
9 otherwise

If 0 is a zero element in T then ◦ is associative and we define the semigroup
T◦ = ({0, . . . , 9}, ◦). Two semigroups constructed in this manner are equivalent
if and only if the two semigroups on {0, . . . , 8} are equivalent.

To rule out all semigroups that are equivalent to a constructed one from
the CSP search for a given 1-idempotent diagonal, we cannot assume that 9
is the distinguished element. Every element whose diagonal entry equals the
idempotent element 0, and does not appear on the diagonal itself, is a potential
candidate. For each such element k we forbid that the entries in the k-th row
and k-th column except the diagonal entry are all equal to k. That is we post
the constraint

〈K〉 6= 〈T0,k, . . . , Tk−1,k, Tk+1,k, . . . , T9,k, Tk,0, . . . , Tk,k−1, Tk,k+1, . . . , Tk,9〉, (5)

where 〈K〉 is the vector of length 18 containing k in each position. It remains
to justify that we do not miss any solution by posting these constraints. If T is
a multiplication table for which equality holds in (5) for some k, then either T
is equivalent to a semigroup as constructed above or there exists Ti,j = k with
i, j 6= k. This gives

k ∗ (i ∗ j) = k ∗ k = 0 and (k ∗ i) ∗ j = k ∗ j = k

showing that such a table T is not associative.

2.6 Construction from nilpotent semigroups of degree at most 3

Let T = ({1, . . . , k}, ∗) be a nilpotent semigroup of degree at most 3 for some
2 ≤ k ≤ 9 with 1 being its idempotent. The structure of T yields a natural

The Semigroups of Order 10 9

partition of {1, . . . , k} into 3 sets: the zero element 1 by itself, the non-zero
products, and the remaining elements (for details see [5, Section 2.1]). We denote
the latter set by A− and the set of non-zero products by B+. The superscripts
indicate a sign function, or multiplicative parity, that we introduce on {0, . . . , k}
with sign(0) = − and sign(1) = +. We define a multiplication ∗± on {0, . . . , k}
as follows:

i∗±j =

i ∗ j if i, j ∈ T and sign(i) = sign(j)
1 if i = 0, j ∈ A− or i ∈ A−, j = 0 or i = j = 0
0 if sign(i) 6= sign(j)

Then T± = ({0, . . . , k}, ∗±) is a semigroup as all products of three elements
equal either 0 or 1 depending only on the parity of the elements in the product.
In a second step we define a multiplication on the set {0, . . . , 9} based on ∗±.

i ◦± j =

i ∗± j if i, j ∈ T±
1 ∗± j if i ∈ T±, j ≥ k + 1
i ∗± 1 if i ≥ k + 1, j ∈ T±
1 if i, j ≥ k + 1

Two semigroups of order 10 constructed in this way are equivalent if and only
if they arise from equivalent semigroups. None of the semigroups are nilpotent
as they do not contain a zero and none are equivalent to those constructed in
Section 2.5.

In a similar manner to the construction in Section 2.5, given a 1-idempotent
diagonal, we have to add constraints for every potential candidate for the dis-
tinguished element from the above definition of ∗±. The constraints are similar
to (5) but are required for all vectors 〈K〉 whose entries are the idempotent and
the candidate k as in the construction for some semigroup T . Note that this does
not result in one constraint for every nilpotent semigroup of degree at most 3,
but in one constraint for each of a few specific partitions into sets A− and B+

allowed by the diagonal.
In addition we have to search for semigroups not equivalent to one from the

construction, in which the idempotent and a candidate for the distinguished
element behave as in a construction. This reduces the domains for many table
entries to a singleton, and requires one additional constraint that the vector
of table entries that would be fixed by the construction does not equal the
corresponding vector.

3 Results

For 4 to 7 and for 9 idempotents we added constraints that fixed the idempotents
to CSP 3, and were able to solve as single instances on a single computer (Table

10 The Semigroups of Order 10

Idempotents Semigroups Method

3 219,587,421,825 Minion†

4 1,155,033,843 Minion
5 396,258,335 Minion
6 478,396,381 Minion
7 412,921,339 Minion

8 214,294,637 Minion†

9 60,036,717 Minion

10 7,033,090 Minion‡

Total: 222,311,396,167

Table 2. Semigroups up to equivalence for the cases 3–10 idempotents. Minion† denotes
specialised search using 289 sub-cases based on possible diagonals for 3 idempotents,
and 4 sub-cases for 8 idempotents. The full methodology is described in [7]. Minion‡

denotes specialised search for bands as described in [5]. The computations took around
920 hours on a machine with 2.66GHz Intel X-5430 processor and 16GB RAM, giving
roughly 67,000 solutions per second.

2). The 3- and 8-idempotent cases were solved by case-split into CSP 4 using the
appropriate canonical diagonals. A k-idempotent semigroup of order k is known
as a band, and there is extensive theory for these objects that can be used to
refine search. This has been done in [5] for all bands up to order 10.

The 2-idempotent case is strictly harder: there are 2 × 9! symmetries, and
from our experience with semigroups of orders 1–9 we predicted about 4× 1014

solutions. We therefore derived the constructions given in Section 2.4, which give
the majority of such solutions without search. We still had to search for roughly
1.2× 1014 solutions (Table 3).

Case Semigroups Method

Based on Section 2.4
– up to equivalence 158,929,640,752,110 TI , TII and TIII

– up to isomorphism 105,945,136,997,613 TIV

– the rest 226,006,150,622 Minion
Not based on Section 2.4 116,179,193,109,431 Distributed Minion

Total: 381,279,977,009,776

Table 3. Semigroups up to equivalence having exactly 2 idempotents. The distributed
Minion computation (involving machines with varying architectures) took 73 CPU
years, returning an average 50,400 solutions per second. The CPU time taken to search
for solutions not given by the constructions described in Section 2.4 was comparatively
negligible. Methods TI etc. denote the constructive multiplication defined in Section
2.4. ‘The rest’ denotes solutions for those instances that are not ruled out by the
constraints that forbid the constructions.

The Semigroups of Order 10 11

The 1-idempotent case can be split naturally into two cases: solutions that
are nilpotent of some degree (Table 4), and solutions that are not nilpotent
(Table 5). There is exactly one canonical semigroup of nilpotency degree 2 (the
zero semigroup) and one of degree 10 (the monogenic, nilpotent semigroup), and
there is an enumeration formula for those of degree 3. The cases for degrees 5
through 9 are small enough to be solved by a single computer. The degree 4
case is again sub-divided into 316 canonical diagonals. For 68 pairs of instances,
two distinct diagonals lead to CSPs that have the same search variables (the off-
diagonal entries), symmetry group and constraints. In these cases we only solve
the first CSP, and double the number of solutions to obtain the true value (Table
4). The final case, 1-idempotent but non-nilpotent semigroups, was approached
via the constructions from smaller semigroups described in Sections 2.5 and 2.6,
with limited CSP search for the remaining solutions (Table 5).

Nilpotency degree Semigroups Method

2 1 Zero semigroup
3 12,417,282,095,522,918,811 Formula
4

– unique 49,304,583,445,962 Distributed Minion
– replicable 91,103,513,956,511 Distributed Minion
– replicas 91,103,513,956,511 No search

5 10,027,051,364 Minion
6 3,395,624 Minion
7 17,553 Minion
8 328 Minion
9 15 Minion
10 1 Monogenic semigroup

Total: 12,417,495,617,164,742,681

Table 4. Semigroups up to equivalence having exactly 1 idempotent and being nilpo-
tent of some degree. The distributed Minion computation (involving machines with
varying architectures) took 60 CPU years, returning an average 74,000 solutions per
second. The CPU times for the 5–9 degree cases were negligible by comparison.

3.1 Improved solver performance

As an integral part of the methodology development stage of this investigation,
we performed careful profiling of Minion and compared performance against an-
other CSP solver, Gecode [12]. Initial evidence was that Gecode was an order
of magnitude faster than Minion on semigroup instances having a large num-
ber (over 20,000) of symmetry-breaking constraints, and that the solvers were
competitive for other instances. Analysis showed that the speedup was primarily
due to the fact that Gecode removes constraints from search once they become

12 The Semigroups of Order 10

entailed, whereas Minion would leave constraints in place throughout search.
We revised Minion to do the same, resulting in two solvers that were broadly
comparable in terms of performance.

Through profiling, we found that the revised Minion was spending over 95% of
its time in the lexicographic ordering constraint for highly symmetric instances.
We identified propagation calls that had a cost but almost always no effect,
and as a result were able to design and implement the QuickLex algorithm [16],
which looks at only two variables out of the whole constraint at once, leading to
massive performance gains for lexicographic ordering constraints. On average,
the cost of the QuickLex propagator is 15% of the cost of the hitherto optimal
method of Frisch et al. [10].

The use of “watched literals” has led to remarkable improvements in SAT
solvers, and an implementation for Constraint Satisfaction was proposed in [14].
The careful use of this technique allows efficient maintenance of generalised arc
consistency on the element constraints that we use to enforce associativity (Sec-
tion 2.1).

Our empirical experience for orders smaller than 10 is that the combined
use of QuickLex and watched element constraints makes Minion over an order
of magnitude faster than Gecode for this class of problems. Minion versions
from 0.9 onwards have incorporated these enhancements. We report that solving
semigroups appears to be a good stress test for constraint solvers, involving a
small number of types of constraints, but large search spaces, large numbers of
solutions and large numbers of symmetries.

Case Semigroups Method

Diagonal does not admit nilpotent of degree 3
solutions

3,673,835,659 Minion

Diagonal admits nilpotent of degree 3 solu-
tions, and has a sub-diagonal that admits
nilpotent of degree 3 solutions

– construction from order 9 52,972,873,141,621 Construction 2.5
– the rest 12,596,375,843 Minion
– construction from orders up to 9 52,968,071,362,553 Construction 2.6
– the rest 712,828,694 Minion

Diagonal admits nilpotent of degree 3 solu-
tions, and does not have a sub-diagonal that
admits nilpotent of degree 3 solutions

609,690 Minion

Total: 105,957,928,154,060

Table 5. Non-nilpotent semigroups up to equivalence having exactly 1 idempotent.
The single CPU Minion calculations took about 110 hours, returning an average 44,700
solutions per second. ‘The rest’ denotes solutions for those instances that are not ruled
out by the constraints that forbid the constructions.

The Semigroups of Order 10 13

4 Discussion

4.1 CSP search analysis

* 0 1 2 3 4 5 6 7 8 9
0 1 7 0
1 7 0
2 2
3 2
4 3
5 4
6 3
7 � 1 6
8 6
9 8

Minion is very successful at solving
semigroup instances. We found that in-
stances with no solutions were solved al-
most immediately, and problems with a
large number of solutions had just over
twice as many search nodes as solutions,
approaching the minimum possible.

The displayed example shows how
Minion performs early backtracks from
a partially filled table when no solution
exists. In our example, the diagonal en-
tries have been set before search, and
we have assigned T0,1 = 7. By simple
inference from the element constraints,
three variables are instantly instantiated
(shown with values in italics in the fig-
ure). The element constraints in Minion
can also remove individual values from the domains of variables. In particular,
one of these constraints removes domain values for variable T7,0(denoted as �).
This constraint gives:

〈T7,0, . . . , T7,9〉[T0,1] = A7,0,1 = 〈T0,1, . . . , T9,1〉[T7,0] (6)
⇒ 7 ∗ 7 = 6 = A7,0,1 = 〈7, 0, T2,1, . . . , T9,1〉[T7,0] (7)

⇒ T7,0 6= 0 and ⇒ T7,0 6= 1, (8)

contradicting the associativity requirement 7∗0 = (0∗1)∗0 = 0∗(1∗0) = 0∗7 = 0.
The value 7 was arbitrary; Minion will backtrack without further assignment for
any value between 3 and 9, and search terminates after only 5 search nodes.

Whilst there are common classes of CSP symmetry that can be broken by
posting a polynomially-sized subset of the symmetries – typically pure variable
or pure value symmetries [3] – this does not seem to be one of those instances.
This is because our symmetries permute both variables and values, and since the
underlying group consists of all permutations, we have to post a constraint for
each member of the subgroup of S10×C2 determined by the case splits described
in Section 2.2. Moreover, partial symmetry-breaking would lead to more than
one solution per equivalence class, and we would then have to implement a
potentially expensive maximal image post-process in order to obtain the correct
result.

Minion has the further advantage that when symmetry-breaking or case-split
constraints are added, the reasoning they generate is automatically combined
with the reasoning of the associativity constraints, making it quick and easy to
try out new ideas.

14 The Semigroups of Order 10

4.2 Distributed search

Using our knowledge of the numbers of smaller semigroups of various types, our
a priori estimate of the number of solutions of CSP 3 was somewhere between
5 × 1014 and 1 × 1015. Our development experience with semigroups of order
9 is that, on average, about 70,000 semigroups are found every second using a
single compute node. Assuming a search rate of 50,000 solutions per second for
order 10 – since the number and length of the constraints increase with increased
order – this equates to between 317 and 634 years of wall clock time on a single
machine. We therefore developed a distributed strategy.

Our approach works very well for the extremely large problem we are tackling
here. The computations took several CPU decades, making negligible the cost of
the under-utilisation of nodes in the first few hours of computation. Similarly, we
found that the overheads incurred through splitting, restarting and propagating
additional constraints were acceptable, because without the distribution across
many computers, we would not have been able to solve the problem at all.

There are several advantages to implementing distributed solving in this way.
First, by creating regular “snapshots” of the search done, the resilience against
failures increases. Every time we stop, split and resume, our modified models
are saved. As they contain constraints that rule out the search already done, we
can only lose the work done after that point if a worker fails. This means that
the maximum amount of work lost in case of a total failure of all workers is the
allotted time Tmax times the number of workers |w|. This is especially important
for large-scale computations, and our experience shows this to be extremely
useful in practice. The modified models can be stored. We exploited this by
moving the solving process to a different set of workers, without losing any work.
Since our methods require no communication between the individual workers
solving the problem, they only need to be able to receive the problem sub-
instances, and send either the solution or split models back. We used compute
nodes in two local clusters and the Amazon cloud, and, since some parts of the
search space required more memory than the machines initially chosen could
provide, we were able to seamlessly move those parts of the computation onto
more powerful machines.

Our leveraging of existing software to handle the logistics of distribution
led to reductions in both development time and systematic errors. For large
problems such as these, our experience is that the number of queued jobs will
usually exceed the number of workers, ensuring good resource utilisation.

4.3 Validation

For most of the case-splits, we have run the solver exactly once. It is not in-
conceivable, therefore, that a miscalculation has occurred. For orders up to 8,
the number of solutions is small enough that we can solve CSP 2 with diago-
nal case splits, using neither enumeration formulae nor constructions. For order
9 we can solve CSP 3, as a family of CSPs using no constructions. We have

The Semigroups of Order 10 15

performed these calculations multiple times on various architectures, using dif-
ferent choices for search heuristics and different implementations of constraint
propagators. The expected totals are returned every time. For orders 7, 8 and 9
we have re-calculated using exactly the same case-splits described in this paper.
Again, the computed totals match those in the literature for order 7 [17], 8 [30]
and 9 [7]. These checks increase our confidence that (a) there are no systematic
errors in our splitting of the problem into smaller instances, and (b) our code
for identifying symmetries and solving CSPs is correct.

5 Conclusions

Counting semigroups up to equivalence is not easy, being in some sense near
the worst point of the combinatoric tradeoff between counting by reasoning and
counting by search. At one end of the scale, the number of all distinct 10 × 10
multiplication tables is trivial to derive: 100 entries each having one of 10 values
gives 10100 solutions. This triviality is due to the complete lack of structure. As
an example from the other end, finite groups are relatively easy to search for due
to their higher level of structure, and there are far fewer of them. Semigroups
occupy an intermediate zone, having a small amount of exploitable structure
and a large number of solutions.

For many algebraic structures we break symmetries in order to deal with the
combinatorial explosion in the number of trivially distinct objects. However for
semigroups, the breaking of symmetries – which grow factorially with increasing
order – still leaves a super-exponential growth in the number of non-equivalent
solutions. The formula for finite semigroups that are nilpotent of degree three
gives the vast majority of solutions, but, again, the remainder to be found by
search grows super-exponentially as order increases.

It is relatively unusual for Constraint Satisfaction modelling and technology
to produce new results in Mathematics. The only examples that we are aware
of are new instances of graceful graphs [27] and the monoids of order 10 [7].
Finding the number of semigroups of order 10 has involved advances in both
Constraint Satisfaction and abstract algebra. The mathematical constructions
described in this paper rule out more than half the search needed and without
the enumeration formula for nilpotent of degree 3 solutions the problem is ef-
fectively intractable using any known approach. Moreover, both the Constraint
Satisfaction technology and the Mathematics are vital – semigroups 10 cannot
be solved by researchers from either discipline alone.

Acknowledgments. Parts of the computational resources for this project were
provided by an Amazon Web Services research grant. This work was developed
within the project PTDC/MAT/101993/2008 of Centro de Álgebra da Univer-
sidade de Lisboa, financed by FCT and FEDER. TWK is supported by UK
EPSRC grant EP/H004092/1. LK is supported by a SICSA studentship and an
EPSRC fellowship.

16 The Semigroups of Order 10

References

1. Amazon Elastic Compute Cloud (Amazon EC2). http://aws.amazon.com/ec2/

(2008)

2. Bilous, R.T., Van Rees, G.H.J.: An enumeration of binary self-dual codes of length
32. Des. Codes Cryptography 26(1-3), 61–86 (Jun 2002), http://dx.doi.org/10.
1023/A:1016544907275

3. Cohen, D.A., Jeavons, P., Jefferson, C., Petrie, K.E., Smith, B.M.: Symmetry def-
initions for constraint satisfaction problems. In: van Beek, P. (ed.) CP. Lecture
Notes in Computer Science, vol. 3709, pp. 17–31. Springer (2005)

4. Crawford, J.M., Ginsberg, M.L., Luks, E.M., Roy, A.: Symmetry-breaking predi-
cates for search problems. In: Aiello, L.C., Doyle, J., Shapiro, S. (eds.) KR’96: Prin-
ciples of Knowledge Representation and Reasoning. pp. 148–159. Morgan Kauf-
mann, San Francisco, California (1996)

5. Distler, A.: Classification and Enumeration of Finite Semigroups. Shaker Verlag,
Aachen (2010), also PhD thesis, University of St Andrews, 2010, http://hdl.

handle.net/10023/945

6. Distler, A., Kelsey, T.: The monoids of order eight and nine. In: Autexier, S.,
Campbell, J., Rubio, J., Sorge, V., Suzuki, M., Wiedijk, F. (eds.) Artificial In-
telligence and Symbolic Computation, 8th International Conference, AISC 2008,
Birmingham, July, 2004, Proceedings. Lecture Notes in Computer Science, vol.
5144, pp. 61–76. Springer (2008)

7. Distler, A., Kelsey, T.: The monoids of orders eight, nine & ten. Ann. Math. Artif.
Intell. 56(1), 3–21 (2009)

8. Distler, A., Mitchell, J.D.: The number of nilpotent semigroups of degree 3 (2012)

9. Forsythe, G.E.: SWAC computes 126 distinct semigroups of order 4. Proc. Amer.
Math. Soc. 6, 443–447 (1955)

10. Frisch, A.M., Hnich, B., Kiziltan, Z., Miguel, I., Walsh, T.: Propagation algorithms
for lexicographic ordering constraints. Artificial Intelligence 170, 834 (2006)

11. The GAP Group, (http://www.gap-system.org): GAP – Groups, Algorithms,
and Programming, Version 4.4.12 (2008)

12. Gecode: Generic constraint development environment. http://www.gecode.org/

13. Gent, I.P., Jefferson, C., Miguel, I.: Minion: A fast scalable constraint solver. In:
Brewka, G., Coradeschi, S., Perini, A., Traverso, P. (eds.) The European Confer-
ence on Artificial Intelligence 2006 (ECAI 06). pp. 98–102. IOS Press (2006)

14. Gent, I.P., Jefferson, C., Miguel, I.: Watched literals for constraint propagation in
Minion. In: Benhamou, F. (ed.) CP. Lecture Notes in Computer Science, vol. 4204,
pp. 182–197. Springer (2006)

15. Howie, J.M.: Fundamentals of semigroup theory, London Mathematical Society
Monographs. New Series, vol. 12. The Clarendon Press Oxford University Press,
New York (1995), oxford Science Publications

16. Jefferson, C.: Quicklex - a case study in implementing constraints with dynamic
triggers. In: Proceedings of the ERCIM Workshop on Constraint Solving and Con-
straint Logic Programming. CSCLP’11 (2011)

17. Jürgensen, H., Wick, P.: Die Halbgruppen der Ordnungen ≤ 7. Semigroup Forum
14(1), 69–79 (1977)

18. Katritzky, A., Hall, C., El-Gendy, B., Draghici, B.: Tautomerism in drug discovery.
Journal of Computer-Aided Molecular Design 24, 475–484 (2010), http://dx.doi.
org/10.1007/s10822-010-9359-z, 10.1007/s10822-010-9359-z

The Semigroups of Order 10 17

19. Klee Jr., V.L.: The November meeting in Los Angeles. Bull. Amer. Math. Soc.
62(1), 13–23 (1956), http://dx.doi.org/10.1090/S0002-9904-1956-09973-2

20. Kotthoff, L., Moore, N.C.: Distributed solving through model splitting. In: 3rd
Workshop on Techniques for implementing Constraint Programming Systems
(TRICS). pp. 26–34 (2010)

21. Kreher, D., Stinson, D.: Combinatorial Algorithms: Generation, Enumeration, and
Search. CRC Press (1998)

22. Lecoutre, C., Sais, L., Tabary, S., Vidal, V.: Nogood recording from restarts. In:
Proceedings of the 20th International Joint Conference on Artifical Intelligence.
pp. 131–136 (2007)

23. McKay, B.D.: Transitive graphs with fewer than twenty vertices. Math. Comp.
33(147), 1101–1121 (1979), contains microfiche supplement

24. McKay, B.D., Royle, G.F.: The transitive graphs with at most 26 vertices. Ars
Combin. 30, 161–176 (1990)

25. Milletti, F., Storchi, L., Sforna, G., Cross, S., Cruciani, G.: Tautomer enumeration
and stability prediction for virtual screening on large chemical databases. Journal
of Chemical Information and Modeling 49(1), 68–75 (2009), http://pubs.acs.

org/doi/abs/10.1021/ci800340j

26. Motzkin, T.S., Selfridge, J.L.: Semigroups of order five. presented in [19] (1955)
27. Petrie, K.E., Smith, B.M.: Symmetry breaking in graceful graphs. In: Rossi, F.

(ed.) CP. Lecture Notes in Computer Science, vol. 2833, pp. 930–934. Springer
(2003)

28. Plemmons, R.J.: There are 15973 semigroups of order 6. Math. Algorithms 2, 2–17
(1967)

29. Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming (Foun-
dations of Artificial Intelligence). Elsevier Science Inc., New York, NY, USA (2006)

30. Satoh, S., Yama, K., Tokizawa, M.: Semigroups of order 8. Semigroup Forum 49(1),
7–29 (1994)

31. Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: The
Condor experience. Concurrency – Practice and Experience 17(2-4), 323–356
(2005)

32. Yamanaka, K., Otachi, Y., Nakano, S.I.: Efficient enumeration of ordered trees with
k leaves (extended abstract). In: Proceedings of the 3rd International Workshop
on Algorithms and Computation. pp. 141–150. WALCOM ’09, Springer-Verlag,
Berlin, Heidelberg (2009), http://dx.doi.org/10.1007/978-3-642-00202-1_13

