
Journal of Machine Learning Research 17 (2016) 1-5 Submitted 2/15; Revised 8/16; Published 9/16

mlr: Machine Learning in R

Bernd Bischl bernd.bischl@stat.uni-muenchen.de

Michel Lang lang@statistik.tu-dortmund.de

Lars Kotthoff larsko@cs.ubc.ca

Julia Schiffner schiffner@math.uni-duesseldorf.de

Jakob Richter jakob.richter@tu-dortmund.de

Erich Studerus erich.studerus@upkbs.ch

Giuseppe Casalicchio giuseppe.casalicchio@stat.uni-muenchen.de

Zachary M. Jones zmj@zmjones.com

Department of Statistics

Ludwig-Maximilians-University Munich

Ludwigstrasse 33, 80539 Munich, Germany

Editor: Antti Honkela

Abstract

The mlr package provides a generic, object-oriented, and extensible framework for classifi-
cation, regression, survival analysis and clustering for the R language. It provides a unified
interface to more than 160 basic learners and includes meta-algorithms and model selection
techniques to improve and extend the functionality of basic learners with, e.g., hyperpa-
rameter tuning, feature selection, and ensemble construction. Parallel high-performance
computing is natively supported. The package targets practitioners who want to quickly
apply machine learning algorithms, as well as researchers who want to implement, bench-
mark, and compare their new methods in a structured environment.

Keywords: machine learning, hyperparameter tuning, model selection, feature selection,
benchmarking, R, visualization, data mining

1. Introduction

R is one of the most popular and widely-used software systems for statistics, data mining,
and machine learning. However, it does not define a standardized interface to, e.g., su-
pervised predictive modelling. For any non-trivial experiment one needs to write lengthy,
tedious, and error-prone code to unify calling methods and handling output. The mlr
package offers a clean, easy-to-use, and flexible domain-specific language for machine learn-
ing experiments in R. It supports classification, regression, clustering, and survival analysis
with more than 160 modelling techniques. Defining learning tasks, training models, mak-
ing predictions, and evaluating their performance abstracts from the implementation of the
underlying learner through an object-oriented interface. Replacing one learning algorithm
with another becomes as easy as changing a string. mlr goes far beyond simply provid-
ing a unified interface. It implements a generic architecture that allows the assessment of
generalization performance, comparison of different algorithms in a scientifically rigorous
way, feature selection, and hyperparameter tuning for any method, as well as extending

c©2016 B. Bischl, M. Lang, L. Kotthoff, J. Schiffner, J. Richter, E. Studerus, G. Casalicchio and Z. M. Jones.



Bischl, Lang, Kotthoff, Schiffner, Richter, Studerus, Casalicchio and Jones

the functionality of learners through a wrapper mechanism. Queryable properties provide a
reflection mechanism for machine learning objects. Finally, mlr provides sophisticated vi-
sualization methods that allow to show effects of partial dependence of models. mlr’s long
term goal is to provide a high-level domain-specific language to express as many aspects of
machine learning experiments as possible.

2. Implemented Functionality

mlr uses R’s S3 object system and follows a clear structure. Everything is an object and the
classes are as reusable and extensible as possible. This permits to extend the package; e.g.,
connect a new model from a third-party package or write a custom performance measure.

Tasks and Learners. Tasks encapsulate the data and further relevant information like
the name of the target variable for supervised learning problems. They are organized hier-
archically, with an abstract Task at the top and specific subclasses. mlr supports regular,
multilabel and cost-sensitive classification, regression, survival analysis, and clustering. The
integrated learners specialize to these task types. Currently 82 classification learners, 61 re-
gression learners, 13 survival learners, and 9 cluster learners are integrated. Cost-sensitive
classification with observation-dependent costs is supported through a cost-sensitive one-
versus-one approach, which delegates to ordinary weighted binary classification.

Evaluation and Resampling. mlr provides 46 different performance measures and im-
plements the resampling methods subsampling (including simple holdout), bootstrapping
(OOB, B632, B632+), and cross-validation (normal, leave-one-out, repeated). All resam-
pling strategies may be stratified on both target classes and categorical input features. Ob-
servations may be partitioned into inseparable blocks (e.g., when observations come from
the same image, sound file, or clinic). Moreover, nested resampling is supported and the
resampling strategies used in the outer and inner loops can be combined arbitrarily.

Tuning. In practice, successful modelling often depends on a number of choices like
the applied learner, its hyperparameter settings, or the data preprocessing. mlr imple-
ments joint optimization of hyperparameters of any learning algorithm and any pre- and
postprocessing methods for any task, any resampling strategy, and any performance mea-
sure, including categorical and conditional hyperparameters. Random search, grid search,
evolutionary algorithms, iterated F-racing, and sequential model-based optimization are
available.

Feature Selection. Feature selection can improve the interpretability and performance
of a learned predictive model. mlr supports filter and wrapper approaches, while embedded
techniques like L1-penalization are included directly in the learners. Supported selection
techniques include information gain, MRMR, and RELIEF, with forward and backward
search. Filter scores and sequential wrapper search results can be visualized.

Wrapper Extensions. mlr’s wrapper mechanism allows to extend learners through pre-
train, post-train, pre-predict, and post-predict hooks. We provide wrappers for missing
value imputation, user-defined preprocessing, class imbalance correction, feature selection,
tuning, bagging, and stacking. Wrappers can be nested to combine functionalities. Wrapped
learners behave like base learners, with added functionality and expanded hyperparameter
set. During resampling, all added steps are carried out in each iteration. During tuning,

2



mlr: Machine Learning in R

the joint parameter space can be optimized. For example thresholds for feature filtering
can be tuned jointly with other hyperparameters (Lang et al., 2015).

Benchmarking and Parallelization. The benchmark function evaluates the performance
of multiple learners on multiple tasks. As benchmark studies can quickly become very
resource-demanding, mlr natively supports parallelization through the parallelMap pack-
age (Bischl and Lang, 2015) that can use local multicore, socket, and MPI computation
modes. BatchJobs (Bischl et al., 2015) provides distribution on compute clusters. Oper-
ations to be parallelized can be selected explicitly.

Properties and Parameters. Many of the mlr objects have properties that allow them to
be used programmatically, e.g., check whether a task has missing values, whether a learner
can handle categorical variables, or list all learners suitable for a given task. Every learner
includes a description object that defines all hyperparameters, including type, default value,
and feasible range. This information is usually not readily available from the implementation
of an integrated learning method and may only be listed in its documentation.

3. Example

The following example demonstrates the use of mlr. After loading required packages and
the “Sonar” data set (Line 1), we create a classification task and a support vector machine
learner (Lines 2–3). The resample description tells mlr to use a 5-fold cross-validation
(Line 4). Hyperparameters and box-constraints for tuning are specified in Lines 5–11. We
optimize over the choice of a polynomial versus a Gaussian kernel by making their individual
parameters dependent on the kernel via the requires setting (Lines 9 and 11). We use
random search with at most 50 evaluations (Line 12). The values for C and sigma are
sampled on a log-scale through the transformation functions given as the trafo argument
(Lines 7–8). Line 13 binds everything together and optimizes for mean misclassification error
(mmce). res holds the best configuration and information on the evaluated parameters.

1 library(mlr); library(mlbench); data(Sonar)

2 task = makeClassifTask(data=Sonar , target="Class")

3 lrn = makeLearner("classif.ksvm")

4 rdesc = makeResampleDesc(method="CV", iters =5)

5 ps = makeParamSet(

6 makeDiscreteParam("kernel", values=c("polydot", "rbfdot")),

7 makeNumericParam("C", lower=-15, upper=15, trafo=function(x) 2^x),

8 makeNumericParam("sigma", lower=-15, upper=15, trafo=function(x) 2^x,

9 requires = quote(kernel == "rbfdot")),

10 makeIntegerParam("degree", lower = 1, upper = 5,

11 requires = quote(kernel == "polydot")))

12 ctrl = makeTuneControlRandom(maxit =50)

13 res = tuneParams(lrn , task , rdesc , par.set=ps , control=ctrl , measures=mmce)

4. Availability, Documentation, Maintenance, and Code Quality Control

The mlr source code is available under the BSD 2-clause license and hosted on GitHub
(https://github.com/mlr-org/mlr). Stable releases are frequently published on the Con-
tributed R Archive Network (CRAN), which lists mlr in Task View ‘Machine Learning &
Statistical Learning’. We provide extensive API documentation through R’s internal help

3



Bischl, Lang, Kotthoff, Schiffner, Richter, Studerus, Casalicchio and Jones

system and a very detailed tutorial (Schiffner et al., 2016) that guides the user from very
basic tasks to complex applications with worked examples and is continuously extended. An
issue tracker, the test framework testthat (with more than 10,000 lines of tests and more
than 1,200 assertions), and the CI systems Travis and Jenkins support the correctness of
the code base. In addition, we provide documentation and coding guidelines for developers
and contributors.

5. Comparison to Similar Toolkits/Frameworks

Several other R packages provide frameworks for handling prediction models, including
caret (Kuhn, 2008), DMwR (Torgo, 2010), CORElearn (Robnik-Sikonja and with con-
tributions from John Adeyanju Alao, 2016), rattle (Williams, 2011), rminer (Cortez,
2010), CMA (Slawski et al., 2008), and ipred (Peters and Hothorn, 2015). The first 5
only support classification and regression, CMA only classification. mlr’s generic wrap-
per mechanism is not provided by any other package in this form. Although caret and
CMA can fuse a learner with a preprocessing or variable selection method, only mlr can
seamlessly tune these methods simultaneously (Koch et al., 2012). Only mlr, rminer,
and CMA support nested cross-validation. A similar degree of flexibility can be achieved
in caret, but requires custom implementations. Only mlr supports ensemble learning
through stacking natively, mlr and caret support bagging natively. Bagging is also avail-
able in ipred and caretEnsemble provides stacking for caret. Only mlr and caret
have native support for parallel computations. Similar toolkits exist for other languages,
e.g., Weka for Java (Hall et al., 2009) and scikit-learn for Python (Pedregosa et al.,
2011).

6. Conclusions and Outlook

We presented the mlr package, which provides a unified interface to machine learning in R.
It implements a generic architecture for a range of common machine learning tasks. mlr
is alive and under active development. It has a growing user community and is used for
teaching and research.

Major directions for future extensions include better support for large-scale data, a closer
connection to the OpenML project (Vanschoren et al., 2013) for open machine learning
experiments,1 and better integration of sequential model-based optimization.2

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft [SCHW 1508/3-1 to J.S.]
and Collaborative Research Center SFB 876, project A3.

1. An OpenML-R connector package is available at https://github.com/openml/r.
2. mlr supports an experimental integration via mlrMBO (https://github.com/mlr-org/mlrMBO).

4



mlr: Machine Learning in R

References

B. Bischl and M. Lang. parallelMap: Unified interface to some popular parallelization back-
ends for interactive usage and package development, 2015. URL https://github.com/

berndbischl/parallelMap. R package version 1.3.

B. Bischl, M. Lang, O. Mersmann, J. Rahnenführer, and C. Weihs. BatchJobs and Batch-
Experiments: Abstraction mechanisms for using R in batch environments. Journal of
Statistical Software, 64(11), 2015.

P. Cortez. Data Mining with Neural Networks and Support Vector Machines using the R/r-
miner Tool. In P. Perner, editor, Advances in Data Mining. Applications and Theoretical
Aspects, volume 6171 of LNCS, pages 572–583, Berlin, Germany, 2010. Springer.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The WEKA
data mining software: An update. SIGKDD Explorations, 11(1), 2009.

P. Koch, B. Bischl, O. Flasch, T. Bartz-Beielstein, C. Weihs, and W. Konen. Tuning and
evolution of support vector kernels. Evolutionary Intelligence, 5(3):153–170, 2012.

M. Kuhn. Building predictive models in R using the caret package. Journal of Statistical
Software, 28(5):1–26, 2008.

M. Lang, H. Kotthaus, P. Marwedel, C. Weihs, J. Rahnenführer, and B. Bischl. Automatic
model selection for high-dimensional survival analysis. Journal of Statistical Computation
and Simulation, 85(1):62–76, 2015.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, et al. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

A. Peters and T. Hothorn. ipred: Improved Predictors, 2015. URL http://CRAN.

R-project.org/package=ipred. R package version 0.9-5.

M. Robnik-Sikonja and P. S. with contributions from John Adeyanju Alao. CORE-
learn: Classification, Regression and Feature Evaluation, 2016. URL https://CRAN.

R-project.org/package=CORElearn. R package version 1.48.0.

J. Schiffner, B. Bischl, M. Lang, J. Richter, Z. M. Jones, P. Probst, F. Pfisterer, M. Gallo,
D. Kirchhoff, T. Kühn, J. Thomas, and L. Kotthoff. mlr tutorial, 2016.

M. Slawski, M. Daumer, and A.-L. Boulesteix. CMA – a comprehensive Bioconductor
package for supervised classification with high dimensional data. BMC Bioinformatics, 9
(1):439, 2008.

L. Torgo. Data Mining with R: Learning with Case Studies. Data Mining and Knowledge
Discovery Series. Chapman and Hall/CRC, Boca Raton, FL, 2010.

J. Vanschoren, J. N. van Rijn, B. Bischl, and L. Torgo. OpenML: Networked science in
machine learning. SIGKDD Explorations, 15(2):49–60, 2013.

G. J. Williams. Data Mining with Rattle and R: The Art of Excavating Data for Knowledge
Discovery. Use R! Springer, New York, NY, 2011.

5


