
Christian Bessiere · Luc De Raedt
Lars Kotthoff · Siegfried Nijssen
Barry O’Sullivan · Dino Pedreschi (Eds.)

Data Mining
and Constraint Programming

St
at

e-
of

-th
e-

Ar
t

Su
rv

ey

Foundations of a Cross-Disciplinary Approach

LN
AI

 1
01

01

 123

Lecture Notes in Artificial Intelligence 10101

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/1244

http://www.springer.com/series/1244

Christian Bessiere • Luc De Raedt
Lars Kotthoff • Siegfried Nijssen
Barry O’Sullivan • Dino Pedreschi (Eds.)

Data Mining
and Constraint Programming
Foundations of a Cross-Disciplinary Approach

123

Editors
Christian Bessiere
Université Montpellier 2
Montpellier
France

Luc De Raedt
KU Leuven
Heverlee
Belgium

Lars Kotthoff
University of British Columbia
Vancouver, BC
Canada

Siegfried Nijssen
Université Catholique de Louvain
Louvain-la-Neuve
Belgium

Barry O’Sullivan
University College Cork
Cork
Ireland

Dino Pedreschi
University of Pisa
Pisa
Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-319-50136-9 ISBN 978-3-319-50137-6 (eBook)
DOI 10.1007/978-3-319-50137-6

Library of Congress Control Number: 2016959176

LNCS Sublibrary: SL7 – Artificial Intelligence

© Springer International Publishing AG 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

In industry, society, and science, advanced software is used for planning, scheduling,
and allocating resources in order to improve the quality of service, reduce costs, or
optimize resource consumption. Examples include power companies generating and
distributing electricity, hospitals planning their surgeries, and public transportation
companies scheduling their time-tables. This type of problem is often referred to as
constraint satisfaction and combinatorial optimization problems.

Despite the availability of effective and scalable solvers that are applicable to a wide
range of applications, current approaches to this problem are still unsatisfactory. The
reason is that in all these applications it is very hard to acquire the constraints and
criteria (that is, the model) needed to specify the problem, and, even if one has suc-
ceeded in capturing the model at one point, it is likely that it needs to be to changed
over time to reflect changes in the environment. Therefore, there is an urgent need for
optimizing and revising a model over time based on data that should be continuously
gathered about the performance of the solutions and the environment they are used in.

Exploiting gathered data to modify the model is difficult and labour intensive with
state-of-the-art solvers, as these solvers do not support data mining (DM) and machine
learning (ML). However, existing frameworks for constraint satisfaction and combi-
natorial optimization problems do not support ML/DM techniques. In current ICT
technology, DM and ML have almost always been studied independently from solving
technology such as constraint programming (CP). On the other hand, a growing
number of studies indicate that significant benefits can be obtained by connecting these
two fields.

This led us to believe – almost five years ago – that it was the right time to develop
the foundations of an integrated and cross-disciplinary approach to these two fields.
A successful integration of CP and DM has the potential to lead to a new ICT paradigm
with far-reaching implications that would change the face of DM/ML as well as CP
technology. It would not only allow one to use DM techniques in CP to identify and
update constraints and optimization criteria, but also to employ such constraints and
criteria in DM and ML in order to discover models compatible with such prior
knowledge. This book reports on the key results obtained on this research topic within
the European FP7 FET Open project no. 284715 on “Inductive Constraint Program-
ming” and a number of associated workshops and Dagstuhl seminars.

The book is structured in five parts. Part I contains an introduction to CP by Barry
Hurley and Barry O’Sullivan and an introduction to DM by Valerio Grossi, Dino
Pedreschi, and Franco Turini.

The next two parts address different challenges related to using ML and DM in a CP
context. The first of these is the model acquisition problem, which aims at learning the
different components of the CP model. This includes the identification of the domains
to use, the constraints and possibly the preference or optimization function to be used.
This is the topic of Part II. The first contribution, by Christian Bessiere, Abderrazak

Daoudi, Emmanuel Hebrard, George Katsirelos, Nadjib Lazaar, Younes Mechqrane,
Nina Narodytska, Claude-Guy Quimper, and Toby Walsh, discusses an algorithm that
acquires constraints by querying the user. The contribution by Nicolas Beldiceanu and
Helmut Simonis describes a system for generating finite domain constraint models
based on a global constraint catalog. The contribution by Luc De Raedt, Anton Dries,
Tias Guns, and Christian Bessiere investigates the problem of learning constraint
satisfaction problems from an inductive logic programming perspective. The contri-
bution by Andrea Passerini discusses Learning Modulo Theories, a novel learning
framework capable of dealing with hybrid domains.

The second challenge is that once the model is known, it needs to be solved.
Reformulating models, optimizing the parameters of the solver, or considering alter-
native solvers is needed to solve the problem efficiently. Hints on how to improve a
model and the best technique for solving it can be obtained by analyzing data collected
during the run of solvers, or data collected from user studies. Part III reports on a
number of techniques for model reformulation and solver optimization, that is: tech-
niques for learning how to find solutions faster and more easily. In this part, a con-
tribution by Lars Kotthoff provides a survey of algorithm selection techniques.
Subsequently, Barry Hurley, Lars Kotthoff, Yuri Malitsky, Deepak Mehta, and Barry
O’Sullivan present the Proteus portfolio solver and several improvements to portfolio
techniques. Finally, Amine Balafrej, Christian Bessiere, Anastasia Paparrizou, and
Gilles Trombettoni present techniques that adapt the level of consistency ensured by a
solver during the search.

Part IV reports on the use of constraints and CP within a DM and ML context. This
is motivated by the observation that many DM and ML tasks are essentially constraint
satisfaction and optimization problems and that, therefore, they may benefit from CP
principles and techniques. By specifying the constraints and optimisation criteria
explicitly, DM and ML problem specifications become declarative and can potentially
be solved by CP systems. Furthermore, several high-level modeling languages have
been developed within CP that can potentially be applied or extended to ML and DM.
The contribution by Anton Dries, Tias Guns, Siegfried Nijssen, Behrouz Babaki,
Thanh Le Van, Benjamin Negrevergne, Sergey Paramonov, and Luc De Raedt intro-
duces MiningZinc, a unifying framework and modeling language with associated
solvers for DM and CP. Subsequently, Valerio Grossi, Tias Guns, Anna Monreale,
Mirco Nanni, and Siegfried Nijssen show how many clustering problems can be for-
malized as constraint optimization problems.

Finally, Part V takes a more practical perspective. The first chapter by Christian
Bessiere, Luc De Raedt, Tias Guns, Lars Kotthoff, Mirco Nanni, Siegfried Nijssen,
Barry O’Sullivan, Anastasia Paparrizou, Dino Pedreschi, and Helmut Simonis reports
on the iterative approach to inductive CP. The key idea is that the CP and ML com-
ponents interact with each other and with the world in order to adapt the solutions to
changes in the world. This is an essential need in problems that change under the effect
of time, or problems that are influenced by the application of a previous solution. It is
also very effective for problems that are only partially specified and where the ML
component learns from observation of applying a partial solution, e.g., in the case of
constraint acquisition. In addition, it reports on a number of applications of inductive
CP in the areas of carpooling (with a contribution by Mirco Nanni, Lars Kotthoff,

VI Preface

Riccardo Guidotti, Barry O’Sullivan, and Dino Pedreschi), health care (with a con-
tribution by Barry Hurley, Lars Kotthoff, Barry O’Sullivan, and Helmut Simonis), and
energy (with a contribution by Barry Hurley, Barry O’Sullivan, and Helmut Simonis).

The editors would like to thank the European Union for supporting the EU FET FP7
ICON project, the reviewers of the project, Alan Frisch, Bart Goethals, and Francesca
Rossi, and the project officer Aymard de Touzalin for their constructive feedback and
support, all participants of the ICON project for their contributions (Behrouz Babaki,
Amine Balafrej, Remi Coletta, Abderrazak Daoudi, Anton Dries, Valerio Grossi,
Riccardo Guidotti, Tias Guns, Barry Hurley, Nadjib Lazaar, Yuri Malitsky, Younes
Mechqrane, Wannes Meert, Anna Monreale, Benjamin Negrevergne, Anastasia
Paparrizou, Sergey Paramanov, Andrea Romei, Salvatore Ruggiero, Helmut Simonis,
and Franco Turini), as well as the participants of the Dagstuhl seminars 11201 and
14411 and the Cocomile workshop series. Furthermore, they are grateful to all
reviewers of chapters in this book.

September 2016 Christian Bessiere
Luc De Raedt
Lars Kotthoff

Siegfried Nijssen
Barry O’Sullivan
Dino Pedreschi

Preface VII

Reviewers

Blockeel, Hendrik KU Leuven, Belgium
Dao, Thi-Bich-Hanh Université d’Orléans, France
Davidson, Ian UC Davis, USA
De Causmaecker, Patrick KU Leuven, Belgium
Dries, Anton KU Leuven, Belgium
Frisch, Alan University of York, UK
Gent, Ian University of St. Andrews, UK
Guns, Tias KU Leuven, Belgium
Hoos, Holger University of British Columbia, Canada
Lazaar, Nadjib Université de Montpellier, France
Mauro, Jacopo University of Oslo, Norway
Nanni, Mirco ISTI - CNR, Italy
Nightingale, Peter University of St. Andrews, UK
Passerini, Andrea Università degli Studi di Trento, Italy
Pearson, Justin Uppsala University, Sweden
Simonis, Helmut University College Cork, Ireland
Tack, Guido Monash University, Australia
Vanschoren, Joaquin Technische Universiteit Eindhoven, The Netherlands
Vrain, Christel Université d’Orléans, France
Zelezny, Filip Czech Technical University in Prague, Czech Republic

Contents

Background

Introduction to Combinatorial Optimisation in Numberjack. 3
Barry Hurley and Barry O’Sullivan

Data Mining and Constraints: An Overview . 25
Valerio Grossi, Dino Pedreschi, and Franco Turini

Learning to Model

New Approaches to Constraint Acquisition. 51
Christian Bessiere, Abderrazak Daoudi, Emmanuel Hebrard,
George Katsirelos, Nadjib Lazaar, Younes Mechqrane,
Nina Narodytska, Claude-Guy Quimper, and Toby Walsh

ModelSeeker: Extracting Global Constraint Models
from Positive Examples . 77

Nicolas Beldiceanu and Helmut Simonis

Learning Constraint Satisfaction Problems: An ILP Perspective. 96
Luc De Raedt, Anton Dries, Tias Guns, and Christian Bessiere

Learning Modulo Theories . 113
Andrea Passerini

Learning to Solve

Algorithm Selection for Combinatorial Search Problems: A Survey 149
Lars Kotthoff

Advanced Portfolio Techniques. 191
Barry Hurley, Lars Kotthoff, Yuri Malitsky, Deepak Mehta,
and Barry O’Sullivan

Adapting Consistency in Constraint Solving . 226
Amine Balafrej, Christian Bessiere, Anastasia Paparrizou,
and Gilles Trombettoni

Constraint Programming for Data Mining

Modeling in MiningZinc . 257
Anton Dries, Tias Guns, Siegfried Nijssen, Behrouz Babaki, Thanh Le Van,
Benjamin Negrevergne, Sergey Paramonov, and Luc De Raedt

http://dx.doi.org/10.1007/978-3-319-50137-6_1
http://dx.doi.org/10.1007/978-3-319-50137-6_2
http://dx.doi.org/10.1007/978-3-319-50137-6_3
http://dx.doi.org/10.1007/978-3-319-50137-6_4
http://dx.doi.org/10.1007/978-3-319-50137-6_4
http://dx.doi.org/10.1007/978-3-319-50137-6_5
http://dx.doi.org/10.1007/978-3-319-50137-6_6
http://dx.doi.org/10.1007/978-3-319-50137-6_7
http://dx.doi.org/10.1007/978-3-319-50137-6_8
http://dx.doi.org/10.1007/978-3-319-50137-6_9
http://dx.doi.org/10.1007/978-3-319-50137-6_10

Partition-Based Clustering Using Constraint Optimization 282
Valerio Grossi, Tias Guns, Anna Monreale, Mirco Nanni,
and Siegfried Nijssen

Showcases

The Inductive Constraint Programming Loop . 303
Christian Bessiere, Luc De Raedt, Tias Guns, Lars Kotthoff,
Mirco Nanni, Siegfried Nijssen, Barry O’Sullivan, Anastasia Paparrizou,
Dino Pedreschi, and Helmut Simonis

ICON Loop Carpooling Show Case. 310
Mirco Nanni, Lars Kotthoff, Riccardo Guidotti, Barry O’Sullivan,
and Dino Pedreschi

ICON Loop Health Show Case . 325
Barry Hurley, Lars Kotthoff, Barry O’Sullivan, and Helmut Simonis

ICON Loop Energy Show Case . 334
Barry Hurley, Barry O’Sullivan, and Helmut Simonis

Author Index . 349

XII Contents

http://dx.doi.org/10.1007/978-3-319-50137-6_11
http://dx.doi.org/10.1007/978-3-319-50137-6_12
http://dx.doi.org/10.1007/978-3-319-50137-6_13
http://dx.doi.org/10.1007/978-3-319-50137-6_14
http://dx.doi.org/10.1007/978-3-319-50137-6_15

Background

Introduction to Combinatorial Optimisation
in Numberjack

Barry Hurley(B) and Barry O’Sullivan

Insight Centre for Data Analytics, Department of Computer Science,
University College Cork, Cork, Ireland

{barry.hurley,barry.osullivan}@insight-centre.org

Abstract. This chapter presents an introduction to combinatorial
optimisation in the context of the high-level modelling platform, Num-
berjack. The process of developing an effective model for a combinatorial
problem is presented, along with details on how such problems can be
solved using three of the most prominent solution paradigms.

1 Introduction

Combinatorial optimisation problems arise in many important real-world appli-
cations such as scheduling, planning, configuration, rostering, timetabling, vehi-
cle routing, network design, bioinformatics, and many more. Intelligent, auto-
mated approaches to these problems can provide high quality solutions from a
number of perspectives such as sustainability, energy efficiency, cost, time, etc.,
and can scale to tackle large problems far beyond the reach of manual methods.
Optimisation technologies have been used to design a fibre optical network for
entire countries, minimising the amount of cable to be laid, while also maintain-
ing certain levels of redundancy [40]; to design electricity, water, and data net-
works [50]; to schedule scientific experiments on the Rosetta-Philae mission [49];
assign gates to airplanes [51]; as well as numerous timetabling, scheduling, and
configuration applications [47,54].

There exist a number of alternative approaches to solve combinatorial prob-
lems, three of the most prominent methods being Constraint Programming
(CP) [47], Boolean Satisfiability (SAT) [10], and Mixed Integer Programming
(MIP) [56]. These techniques provide a generic platform to tackle a broad range
of problems, from simple puzzles to large scale industrial applications. They pro-
vide a framework upon which real-world problems can be specified declaratively,
largely relieving the user of the task of specifying how a solution should be found.

It is generally possible to solve the same problem with any of these methods,
however they differ in terms of problem representation and solution methodology.
In a nutshell, in the constraint programming paradigm variables take their values
from finite sets of possibilities, with solutions typically found using a combination
of systematic backtracking search and polynomial-time inference algorithms that
reduce the size of the search space. A satisfiability problem is defined in terms
of Boolean variables and a single form of constraint, namely a disjunction of
c© Springer International Publishing AG 2016
C. Bessiere et al. (Eds.): Data Mining and Constraint Programming, LNAI 10101, pp. 3–24, 2016.
DOI: 10.1007/978-3-319-50137-6 1

4 B. Hurley and B. O’Sullivan

Boolean variables or their negations. Instances are also solved using backtracking
search, using unit-propagation for inference, as well as learning new clauses when
failures are encountered. The mixed integer programming problem is defined by
a set of linear expressions over integer and real-valued variables. Solutions are
typically found by branch and bound search, using linear relaxations to make
decisions, and the generation of cutting planes to prune the search space.

It is often not clear which approach is best for a particular problem, thus
we may employ a higher-level modelling language to aide in the process. Mod-
elling platforms such as Numberjack1 [29], MiniZinc [42], and Essense [21] offer
the user the ability to declare their model in a high-level language and the
framework will handle the interface and encodings to the various paradigms.
This enables rapid prototyping of different models with numerous solvers. This
chapter presents an introduction to combinatorial optimisation, with examples
given in Numberjack’s modelling language.

The following sections introduce various facets of combinatorial optimisation.
First, Sect. 2 introduces the basic building blocks of variables, constraints, and
inference, as well as giving examples of how effective models can be declared
in a modelling framework such as Numberjack. Section 3 introduces three of the
most prominent approaches for solving combinatorial problems. Some underlying
details of systematic search methods and their associated heuristics are detailed
in Sect. 4.

2 Modelling Using Numberjack

Numberjack is a library, written in Python, which allows the user to model and
solve combinatorial optimisation problems. It provides a common interface to a
number of underlying C/C++ solvers seamlessly and efficiently. The remainder
of this section details the process of building an effective solution to combinato-
rial problems.

A combinatorial optimisation model of a problem consists of a declarative
specification, separating in so far as possible the formulation and the search
strategy. However, modelling a problem effectively can be seen as an art in
itself. The difficulty lies in producing a solvable model, i.e. one that quickly
finds optimal solutions or determines that none exist. Naturally, there are many
alternative models for a single problem, often it is not clear which one is best.

The basic process of developing a model consists of first defining what con-
stitutes the variables and their corresponding domains, i.e. what decisions need
to be made and what are the possible outcomes that can be taken for each one.
Next, the constraints on the relationships between the variables must be defined.
If some criterion is to be optimised, an objective function needs to be specified.
Finally, if the model is well defined it can be passed off directly to a solver which
will search for a (optimal) solution. Often, we may need to specify some heuris-
tics for how the solver should perform the search, such as the variable or value
ordering before the solver can effectively solve the problem.
1 http://numberjack.ucc.ie/.

http://numberjack.ucc.ie/

Introduction to Combinatorial Optimisation in Numberjack 5

Fig. 1. Abstract process of modelling a problem.

For a user, the process of developing a suitable model often requires a number
of iterations, depicted in Fig. 1. Two common issues arise in the development of
a solution: the model either does not accurately represent the problem, or a
solution is not found by the solver in reasonable time. The former is more of a
real-world problem requiring the assistance of a domain expert, where eliciting
the true constraints of the problem, which may not even be well understood, is a
challenge. The latter can pose a larger challenge from a number of perspectives
and may require the input of an expert in combinatorial optimisation.

Many different viewpoints can be taken in modelling a problem, so it can
be easy to come up with a single model, but it may not necessarily be an effi-
cient model. Important choices are to be made such as what are the variables,
what are their domains, and what restrictions should be stated between them.
Such decisions naturally affect the form of constraints which can be applied and
unquestionably the effectiveness of the solver in finding a solution. Empirical
performance may not be clear until it is actually evaluated.

Furthermore, solvers vary in terms of their capabilities, e.g. despite the hun-
dreds of global constraints that have been developed [6], each solver typically
implements a relatively small subset. Thus, the choice of which solver to use
may be dictated by the global constraints required for a problem. Modelling
languages lift the limitation of developing a model using a single solver. Instead,
the model is implemented in a high-level solver-independent language that can
be translated or encoded for a number of solvers. Nevertheless, these systems
still rely on the user to produce a good model of their problem.

The next sections describe in more detail the primary components of a com-
binatorial optimisation model.

2.1 Variables

The variables constitute a fundamental component of a combinatorial problem.
They are each represented by the finite set of values from which they can be
assigned, often defined by a lower and upper bound. Typically these are restricted
to integer values but some extensions do consider real-valued, set [24,58], and
graph [16,17] variables. Boolean variables can take the values true or false, but

6 B. Hurley and B. O’Sullivan

are often interpreted interchangeably as 1 and 0, respectively. The ultimate task
is to assign each variable to a value from its domain. The product of the variable
domains defines the search space. Thus, it is important that each domain is
defined as tightly as is permissible.

Some examples of how variables may be declared in Numberjack are given
below. The VarArray and Matrix constructs serve as convenience methods for
declaring groups of related variables.

Variable()
Variable(’x’)
Variable(u)
Variable(l, u)
Variable(alist)

VarArray(N)
VarArray(N, u)
VarArray(N, l, u)

Matrix(N, M)
Matrix(N, M, l, u)

Boolean variable
Boolean variable called ‘x’
Variable with domain of [0..u−1]
Variable with domain of [l..u]
Variable with domain specified as a list

Array of N Boolean variables
Array of N variables with domains [0..u−1]
Array of N variables with domains [l..u]

N x M matrix of Boolean variables
N x M matrix of variables with domains [l..u]

2.2 Constraints

Constraints define relationships between the variables, forbidding invalid solu-
tions to the problem. A unary constraint is the simplest form of constraint
involving a single variable and is satisfied by preprocessing the domain of the
variable. Binary constraints relate two variables, such as saying they cannot be
equal, and global constraints [6] involve a larger set of variables, modelling more
complex relations. The remainder of this section presents some common binary
constraints, whereas Sect. 2.4 is devoted to the presentation of global constraints.

One of the most basic binary constraints is the disequality constraint which
simply states that two variables must not be assigned the same value, for exam-
ple X �= Y . Inequalities such as 〈<,≤,≥, >〉 state a relationship which must
hold between the respective assignments. In terms of their respective abilities
to narrow the search space, these inequality constraints are stronger than the
disequality constraint.

The tightness of a constraint is a measure of how many assignment tuples
are forbidden, and subsequently how much of the search space is pruned. In
particular, for a disequality constraint, with a tightness of 1

d , we may only infer
that a value may be removed from the domain of the opposite variable when one
of the variables has been assigned, whereas for the inequalities, changes in the
bounds or absence of certain values may reduce the domain of the other variable
in the constraint. Such constraints are trivially specified in Numberjack using
operator overloading, examples of which are presented in Table 1.

The expressivity of these binary constraints may be augmented by using
expressions of the form X + c < Y , where c is a constant. Here, the expression

Introduction to Combinatorial Optimisation in Numberjack 7

Table 1. Example binary constraint definitions in Numberjack.

Constraint Numberjack code

Disequality x != z

Greater than x > y

Less-or-equal y <= z

Logical-or x | y
Logical-and y \& z

X + c becomes a view on the variable X, mirroring the offset domain without
increasing the search space. Such constraints are useful in many scenarios, for
example in scheduling if we would like to express the constraint that task2 starts
after task1 has finished, we might specify a constraint of the form:

task1start + task1duration < task2start

In many applications the model requires knowledge of the satisfiability of a
particular constraint. In this case, we may reify the truth value of a constraint
to a Boolean variable by writing something of the form:

z == (x < y) z <= (x < y) (x == y) != (a == b)

The first statement reifies the less-than relationships between x and y, enforc-
ing that z is 1 iff x is less than y and 0 otherwise. The second example ensures
that z is 0 if x is not less than y, if z is 1 then the less than relationship must hold,
and other relationships are undefined. Finally, the third statement constrains the
two pairs (x, y) and (a, b) such that exactly one pair must be assigned the same
value and one pair must be assigned different values.

2.3 Inference

A central component in solving a CSP involves inferring variable information
based on the constraints and the current state of the search, removing values
from the domains that cannot possibly participate in any solution [38]. Based on
the current partial assignment to variables during search, a value in a domain of
an unassigned variable may, if assigned, violate a constraint then it is said to be
inconsistent. Therefore it can be removed from the domain. No possible extension
of the current assignment allows such a value to participate in a solution. These
values are said to be pruned from the domain and consequently parts of the
search tree will not be explored.

Figure 2 depicts the outcome of performing inference on a Sudoku problem
which has been modelled as a CSP. Figure 2(a) shows the initial state of the
CSP, where each cell corresponds to a single variable and its domain is the
values from 1 to 9. Some cells have been pre-assigned with clues from the input.

8 B. Hurley and B. O’Sullivan

Fig. 2. Example of CP propagation on a Sudoku instance.

Constraints of the problem enforce that cells within each row, column, and 3
by 3 block take unique values, i.e. a series of all-different constraints. Evidently,
where an initial clue is given as input, no cell in the corresponding row, column,
or block may take this value, and so these values can be removed from their
domains. Before we start any search, inference can be performed based on the all-
different constraints, and the information given by the present clues, to remove
inconsistent values in corresponding variables. Figure 2(b) depicts the result of
propagating this knowledge, and values that cannot participate in any solution
are removed from the domains of variables, resulting in a smaller search space.
During search, this process is repeated in circumstances such as when a new
variable has been assigned or backtracking has occurred.

Note that iteratively propagating the constraints to the domains is typi-
cally enough to solve quintessential Sudoku problems. However, the example
Sudoku presented in Fig. 2 requires a combination of search, albeit a very small
amount, and inference to find the complete solution depicted in Fig. 2(c). We
must remark that the Sudoku example depicts a rather simple aspect of consis-
tency, nevertheless it serves to illustrate the concept. Constraint programming
and other combinatorial optimisation systems offer the ability to perform much
more sophisticated reasoning, some of which is discussed in the following section.

Enforcing consistency during search reduces the search space but comes at an
increased computational cost at each node. A trade-off must be made between
pruning the search space and searching at a faster rate. Thus, constraint pro-
gramming offers different levels of consistency that can be enforced, from con-
straint level local consistency to global consistency [9]. Local consistency concerns
individual constraints in isolation, whereas global consistency equates to a com-
plete solution satisfying all constraints. Generally speaking, each additional level
of consistency has the capability to prune larger parts of the search space but
entails a higher computational complexity.

The following definition, from [9], formally defines the concept of generalised
arc consistency for a constraint network.

Introduction to Combinatorial Optimisation in Numberjack 9

Definition 1 ((Generalised) Arc-Consistency ((G)AC)). Given a CSP
network N = 〈X ,D, C〉, a constraint c ∈ C, and a variable Xi ∈ X (c),

• A value vi ∈ D(Xi) is consistent with c in D iff there exists a valid tuple τ
satisfying c such that vi = τ [Xi]. Such a tuple is called a support for (Xi, vi)
on c.

• The domain D is (generalised) arc consistent on c for Xi iff all the values in
D(Xi) are consistent with c in D.

• The network N is (generalised) arc consistent iff D is (generalised) arc con-
sistent for all variables in X on all constraints in C.

• The network N is arc inconsistent if ∅ is the only domain tighter than D
which is (generalised) arc consistent for all variables on all constraints.

2.4 Global Constraints

Global constraints define constraints over an arbitrarily sized set of variables,
presenting many benefits for constraint programming [53]. Notably, they can
succinctly convey complex relationships between variables, allowing for a concise
specification of a problem. More importantly, from a pragmatic perspective,
this enables higher levels of reasoning to be performed by dedicated inference
algorithms, reducing the search space significantly. For example, propagation
for global constraints such as all-different and cardinality constraints can be
achieved in low polynomial time using flow-based algorithms [45,46], much more
efficiently than general purpose consistency algorithms.

To illustrate an example of such reasoning, consider an all-different constraint
over the variables X = {X1, . . . , X5}, with initial domains D(X) = {1, . . . , 5},
declaring that each variable in the set must be assigned a unique value. Suppose
that the domains have been reduced during search to those listed is Fig. 3(a).
Note that the domain of variables {X1,X2,X3} constitute the Hall set {1, 2, 5},
whereby these three variables must each be assigned a unique value from the Hall
set. Thus, any assignment of these values to other variables in the constraint
can never result in a satisfying assignment, so they can be removed from the
domains of the remaining variables, {X4,X5}. Had the all-different constraint
been decomposed into a clique of dis-equalities, then such reasoning could not
have been performed.

The Global Constraint Catalogue [6] collects definitions for all global con-
straints defined in the CP literature, at the time of writing this listing contains

X1 ∈ {1, 2, 5}
X2 ∈ {1, 2, 5}
X3 ∈ {1, 2, 5}
X4 ∈ { 2, 3, 4 }
X5 ∈ {1, 2, 3, 4, 5}

(a) Initial domains.

X1 ∈ {1, 2, 5}
X2 ∈ {1, 2, 5}
X3 ∈ {1, 2, 5}
X4 ∈ { 3, 4 }
X5 ∈ { 3, 4 }

(b) After propagating the
Hall set.

Fig. 3. Example of propagation on a Hall set {1, 2, 5}.

10 B. Hurley and B. O’Sullivan

over 400 constraints and is continually increasing. Such a vast catalogue provides
many opportunities for the application of constraint programming, however one
practical issue faced by users is in identifying which one is appropriate for their
problem.

2.4.1 Example Global Constraints
In practice, most constraint solving libraries only provide implementations for
a small number of those listed in the global constraint catalogue. This section
describes some of the most prominent and widely used global constraints.

Linear Sum. This general expression constrains the dot-product linear combi-
nation of a vector of variables and a vector of coefficients. Mathematically, these
constraints take the form: ∑

i

wi · xi 	 c

where w is a vector of integer or real valued weights, x is a vector of variables,
	 is a relational operator from the set 〈<,≤,=,≥, >〉, and c is a constant.

This is the only constraint type expressible in integer linear programming
but it provides a flexible representation since a number of high-level constraints
can be decomposed or encoded in this form. For example, the constraint x > y
can be written in linear form as x−y > 0. Additionally, since they only deal with
problems in a standard form it enables integer programming solvers to perform
high-levels of reasoning, proving extremely powerful [56].

A linear sum of variables can be expressed in a number of ways in Number-
jack, for example each of the following are equivalent:

2∗a + b + 0.5∗ c + 3∗d == e
Sum([2∗ a , b , 0 .5∗ c , 3∗d]) == e
Sum([a , b , c , d] , [2 , 1 , 0 . 5 , 3]) == e

In general, it is expensive and difficult for a constraint programming solver to
perform a large amount of reasoning on linear sum constraints, particularly if there
is a large number of variables or their domains are large. For example, in a linear
sum with a large number of variables, there is a huge number of possible assignment
permutations in which to check for supports, at least until a number of variables
are fixed. Thus, in practice, their use with constraint programming solvers is often
limited to cases with a small number of variables and small domains.

All-Different. One of the most widely known, intuitive, and well studied global
constraints is the all-different constraint [36,45] which simply specifies that a set
of variables must be assigned distinct values. Such a relation arises in many prac-
tical applications such as resource allocation, e.g. to state that a resource may
not be used more than once at a single time point. An all-different constraint may
be specified in Numberjack simply by passing a list of variables (or a VarArray)
as follows:

AllDiff([x1, x2, x3, x4])
AllDiff(vararray)

Introduction to Combinatorial Optimisation in Numberjack 11

An intuitive application of the all-different constraint is the Sudoku problem, as
illustrated in Fig. 2, whereby each row, column, and 3 × 3 cell is constrained to
take distinct values. Such a condition can be modelled using an all-different for
each row, column, and cell, giving a model with a total of 27 global constraints.

The all-different constraint may also be decomposed into a clique of dis-
equalities between every pair of variables (∀i < j : Xi �= Xj). This decomposition
requires

(
n
2

)
binary constraints for each all-different, equating to a total of 972

(810 unique) binary disequality constraints for the Sudoku problem. However,
this formulation looses the strong propagation that all-different enables, resulting
in a larger search space to be explored.

Global Cardinality. The global cardinality constraint [1] places lower and
upper bounds on the number of occurrences of certain values amongst a set of
variables. The global cardinality constraint models restrictions in applications
such as timetabling when there may be a limit on the number of consecutive
activity types. For example in Numberjack, we can write the following:

myvariablearray = VarArray(10, 1, 5)
Gcc(myvariablearray, {3: [2, 2], 2: [0, 3], 4: [1, 10]})

to state that amongst the variables in ‘myvariablearray’, the value 3 must occur
exactly twice, the value 2 at most three times, and the value 4 at least once.

Element. The element constraint [30] allows indexing into a variable or value
array, at solving time, by the value of another variable. This can provide a very
powerful modelling construct. A simple example of its use in Numberjack is:

myvariablearray = VarArray(10, 1, 20)
indexvar = Variable(10)
y == Element(myvariablearray, indexvar)

This uses the value assigned to ‘indexvar’ as an index into the variable array
‘myvariablearray’, binding the resulting variable to be equal to the variable ‘y’.

Cumulative. The cumulative constraint [2] proves extremely useful in many
scheduling and packing problems. Two significant and important application
areas for constraint programming. For example, in a scheduling scenario with
a given set of tasks, each requiring a specific quantity of resource, the cumula-
tive constraint restricts the total consumption of the resource to not exceed a
predefined limit at each time point. Tasks are allowed to overlap but their cumu-
lative resource consumption must not exceed a predefined fixed limit. Figure 4
illustrates an example schedule of five overlapping tasks on a resource with a
capacity of 5. Given the scheduling of task 1 at time point 0, the earliest task
2 can start is 3 since its resource consumption is 2. Task 4 on the other hand
can also start at 0, since its resource consumption of 1 fits within the remaining
capacity. The cumulative constraint may also be viewed as modelling the packing
of two-dimensional rectangles.

12 B. Hurley and B. O’Sullivan

Fig. 4. Example task assignment on a cumulative resource.

2.5 Optimisation

Numerous industrial applications of combinatorial optimisation require going
beyond a single satisfiable solution. Frequently the interest is in finding good,
or the absolute best, quality solution. For example, we might wish to define the
objective function to minimise cost, wastage, loss, or to maximise profit, yield,
customer satisfaction, and so on. These expressions can intuitively be specified
in Numberjack as follows:

Minimise(openingcosts + supplycosts)
Maximise(Sum(items, weights))

Different approaches are taken to solve such optimisation problems. Con-
straint programming can treat the objective function as another variable, per-
forming branch and bound search on its range. It solves a series of satisfaction
sub-problems, searching for a solution with an objective value below a certain
threshold. On each subsequent call, the threshold is reduced until the problem
is proven unsatisfiable or a resource limit has been exceeded. A satisfiability
solver can similarly be used to solve some optimisation approaches, although
its practicality is limited to problems where the domain of the objective func-
tion is small. Graphical model solvers perform sophisticated reasoning on the
feasibility of bounds and values of local cost functions to tighten bounds on the
objective. The application of the technology tends to be targeted at small, highly
non-linear objective functions. Mixed integer programming solvers are most nat-
urally suited to solving (linear) optimisation problems. The linear relaxations at
their core yields effective lower-bounds. Critically, a MIP solver also examines
the dual of the problem, yielding an upper-bound. Combining the two gives a
precise indication of the range within which the optimal solution lies; when the
two bounds are equal, optimality has been proven.

3 Solving Technologies

This section presents a more formal description of the aforementioned approaches
to solving combinatorial problems.

Introduction to Combinatorial Optimisation in Numberjack 13

3.1 Constraint Programming

Constraint programming problems are defined by a tuple 〈X ,D, C〉, defining
the variables, domains, and constraints respectively. A variable Xi ∈ X has a
domain of possible assignments from D, denoted by D(Xi) ∈ D. Constraints in C
restrict the set of values which can be assigned to interconnected variables of the
problem. For a given constraint c ∈ C, we will refer to the relevant variables by
the set X(c), i.e. the scope of the constraint. In a binary constraint satisfaction
problem, whereby ∀c ∈ C : |X(c)| ≤ 2, we may refer to a constraint between
variables Xi and Xj by cij . The graph composed of nodes representing the
variables and (hyper-)edges between the nodes representing the scopes of each
constraint is often referred to as the constraint network.

In so far as is possible, constraint programming attempts to separate the
definition of a problem from the solving process, to the extent that it is said
to represent the holy grail of programming: “the user states the problem, the
computer solves it” [19]. A solution to a CSP consists of a mapping from each
variable to one of the values in its domain such that all constraints are satisfied.
Solutions are typically found using a combination of backtracking-style search
and inference; which are covered in Sects. 4 and 2.3 respectively.

3.2 Satisfiability

The satisfiability problem (SAT) [10] is one of the most prominent and long-
standing areas of study in computer science, most notably by being the first
problem to be proven NP-complete and lying at the heart of the P ?= NP
question [14]. The problem consists of a set of Boolean variables and a proposi-
tional formula over these variables. The task is to decide whether or not there
exists a truth assignment to the variables such that the propositional formula
evaluates to true, and, if this is the case, to find this assignment.

SAT instances consist of a propositional logic formula, usually expressed in
conjunctive normal form (CNF). The representation consists of a conjunction of
clauses, where each clause is a disjunction of literals. A literal is either a Boolean
variable or its negation. Each clause is a disjunction of its literals and the formula
is a conjunction of each clause. The following SAT formula is in CNF:

(x1 ∨ x2 ∨ ¬x4) ∧ (¬x2 ∨ ¬x3) ∧ (x3 ∨ x4)

This instance consists of four SAT variables. One assignment to the variables
which would satisfy the above formula would be to set x1 = true, x2 = false,
x3 = true, and x4 = true.

3.3 Mixed Integer Programming

The mixed integer programming (MIP) [56] problem consists of a set of linear
constraints over integer and real-valued variables, where the goal is to find an

14 B. Hurley and B. O’Sullivan

assignment to the variables minimising a linear objective function. More formally,
a MIP problem takes the form:

min cx + dy (1)
s.t. Ax + By ≥ 0 (2)

x, y ≥ 0 (3)
y integer (4)

where x and y are two vectors of real-valued and integer variables, respectively. c
and d are vectors of coefficients defining the objective function to be minimised.
The matrices A and B represent coefficients of a set of linear constraints.

Analogous to the constraint and satisfiability solving techniques seen in pre-
vious sections, modern techniques for solving a mixed integer programming prob-
lems consist of a combination of search and various forms of inference. Firstly,
a number of pre-solving techniques are applied which rewrite and reduce some
parts of the constraints. This maintains the same form of problem, while gener-
ally resulting in a reduced, tighter problem.

Subsequently, the space of solutions is explored using branch and bound
search. At each node in the search tree, the integrality constraints on vari-
ables in y are relaxed, the resulting formulation, namely the LP relaxation, is
solved to optimality using linear programming techniques such as the simplex
algorithm [41]. If it happens that the solution also satisfies the integrality con-
straints, then a feasible solution has been found. The best integer solution found
during search is called the incumbent and its objective value provides an upper-
bound on the optimal solution value.

In practice however, an integer solution to the LP relaxation rarely occurs
and so the fractional solution is used to guide the search. Furthermore, the
objective value of the non-integral solution also provides a lower-bound on the
solution of the integral problem. The distance between the best lower and upper
bound is deemed the optimality gap, when its value reaches zero, optimality has
been proved. The search procedure then branches on one of the y variables for
which a non-integral value was assigned. For example, if integer variable yi was
assigned the value 2.8 in the LP relaxation solution, then two sub-problems are
created with constraints yi ≤ 2 and yi ≥ 3 respectively. If the solution to the
LP relaxation in any of the resulting sub-problems is infeasible or is greater
than the incumbent, then that node can be dropped and another node explored.
This process is repeated recursively until optimality is proven or the problem is
proved infeasible.

3.4 Choice Is Good

As the previous sections have outlined, the solution technologies for constraint
programming, satisfiability, and mixed integer programming problems are all
operationally different. Specifically: CP uses constraint propagation with back-
tracking search; SAT utilises unit-propagation, clause learning, and search; and

Introduction to Combinatorial Optimisation in Numberjack 15

MIP exploits linear relaxations, cutting planes, with branch and bound search.
Often, it is not clear which solution technology is best suited for a particular
problem so it can be worthwhile to experiment with different approaches. For-
tunately, the user does not need to manually produce a different model for each
approach since many problems can be encoded between CP, SAT, and MIP; a
process which can be significantly simplified by using modelling frameworks. The
following sections illustrate the performance differences between approaches on
some example problems.

3.4.1 Example: Warehouse Location Problem
The Warehouse Location Problem [31] considers a set of existing shops and
a candidate set of warehouses to be opened, the problem is to choose which
warehouses are to be opened and consequently the respective shops which each
one will supply. There is a cost associated with opening each warehouse, as well
as a supply cost for each warehouse-shop supply pair, the objective being to
minimise the total cost of warehouse operations and supply costs. A complete
Numberjack model for the warehouse location problem is given in Fig. 5.

Table 2 compares the performance of a mixed integer programming solver
and a constraint programming solver, namely SCIP and Mistral respectively, on
some instances of the Warehouse Location Problem. SCIP is able to solve each
of instance to optimality very quickly, whereas the CP solver takes over one hour
of CPU-time to find solutions of worse quality. In this case, the CP solver is not
able to perform much reasoning on the objective function for this problem, a
weighted linear sum, whereas the MIP solver is able to produce tight bounds
very quickly and narrow the search.

3.4.2 Example: Highly Combinatorial Puzzles
We compare a constraint programming, a satisfiability, and a mixed integer
programming solver on some benchmarks of two arithmetic puzzles. Specifically,
constructing a Costas Array and constructing a Golomb ruler of minimal size.
Both of these problems are parameterised by a single value specifying the size
of the instance. The Costas Array problem [15] is to place n points on an n × n
board such that each row and column contains only one point, and the pairwise
distances between points is also distinct. This can be modelled using a vector
of n variables to decide the column of each point, and enforcing all-different
constraints on the vector of variables and on the triangular distance matrix. A
Golomb ruler [52] is defined by placing a set of m marks at integer positions
on a ruler such that the pairwise differences between marks are distinct. The
objective is to find rulers of minimal length. Numberjack models for the Costas
Array and Golomb Ruler problems are presented in Figs. 6 and 7 respectively.
Problems such as these are not limited to academic interest but do map to many
real world applications.

Table 3 illustrates the empirical performance differences between CP, SAT,
and MIP approaches on these problems. Here, the constraint programming solver
(Mistral) is very effective. The satisfiability solver performs comparably well on

16 B. Hurley and B. O’Sullivan

1 model = Model()

3 # 0/1 for each warehouse to decide which ones to open
4 WareHouseOpen = VarArray(data.NumberOfWarehouses)

6 # 0/1 matrixfor each shop (row) decide which warehouse (col) will supply it
7 ShopSupplied = Matrix(data.NumberOfShops, data.NumberOfWarehouses)

9 # Cost of running warehouses
10 warehouseCost = Sum(WareHouseOpen, data.WareHouseCosts)

12 # Cost of shops using warehouses
13 transpCost = Sum([Sum(varRow, costRow) for varRow, costRow in zip(

ShopSupplied, data.SupplyCost)])

15 # Objective function
16 obj = warehouseCost + transpCost
17 model += Minimise(obj)

19 # Channel from store opening to store supply matrix
20 for col, store in zip(ShopSupplied.col, WareHouseOpen):
21 model += [var <= store for var in col]

23 # Make sure every shop is supplied by one warehouse
24 for row in ShopSupplied.row:
25 model += Sum(row) == 1

27 # Make sure that each warehouse does not exceed it’s supply capacity
28 for col, cap in zip(ShopSupplied.col, data.Capacity):
29 model += Sum(col) <= cap

31 # Load the model with a named solver
32 solver = model.load(”SCIP”)

34 # Ask the solver to solve
35 solver.solve()

37 if solver.is sat():
38 ... # print solution
39 elif solver.is unsat():
40 print ”Unsatisfiable”

Fig. 5. Model of the Warehouse Location Problem in Numberjack.

the Costas array problem, but when dealing with the optimisation problem of
the Golomb ruler, it fails to scale. However, it does outperform the mixed integer
programming solver which performs very poorly on these problems.

Introduction to Combinatorial Optimisation in Numberjack 17

Table 2. Comparison between a mixed integer programming solver (SCIP) and a
constraint programming solver (Mistral) on some instances of the Warehouse Location
Problem.

Instance SCIP Mistral

Objective Nodes Time Objective Nodes Time

cap44 1184690 1 0.84 1468957 10008044 >3600

cap63 1087190 14 1.82 1388391 10683754 >3600

cap71 957125 1 0.69 1297505 11029722 >3600

cap81 811324 1 0.65 1409091 3497095 >3600

cap131 954894 5 5.30 1457632 1281009 >3600

1 model = Model()

3 # N variables with domains 1..N representing the column of point in each row
4 seq = VarArray(N, 1, N)

6 # Points must be placed in distinct columns
7 model += AllDiff(seq)

9 # Each row of the triangular distance matrix contains no repeat distances
10 for i in range(N−2):
11 model += AllDiff([seq[j] − seq[j+i+1] for j in range(N−i−1)])

Fig. 6. Model of the Costas Array Problem in Numberjack.

1 model = Model()

3 # A vector of finite domain variables for the position of each mark
4 marks = VarArray(m, 2∗∗(m−1))

6 # Pairwise distances are distinct
7 distance = [marks[i] − marks[j] for i in range(1, m) for j in range(i)]
8 model += AllDiff(distance)

10 # Symmetry breaking
11 model += marks[0] == 0
12 for i in range(1, m):
13 model += marks[i−1] < marks[i]

15 # Minimise the position of the last mark
16 model += Minimise(marks[−1])

Fig. 7. Model of the Golomb Ruler Problem in Numberjack.

18 B. Hurley and B. O’Sullivan

Table 3. Performance of a constraint programming, satisfiability, and mixed integer
programming solver on two arithmetic puzzles of increasing size. Values are CPU time
in seconds, ‘-’ represents a timeout, and ‘M’ a memory limit of 2 GB exceeded.

Instance Mistral MiniSat SCIP

Costas (11) 0.0 0.0 27.0

Costas (12) 0.0 0.0 166.0

Costas (13) 0.0 0.0 286.0

Costas (14) 1.0 0.0 1065.0

Costas (15) 9.0 0.0 2564.0

Costas (16) 52.0 16.0 -

Costas (17) 562.0 163.0 -

Costas (18) 529.0 677.0 -

Golomb (6) 0.0 0.0 2.0

Golomb (7) 0.0 0.0 17.0

Golomb (8) 0.0 2.0 59.0

Golomb (9) 0.0 34.0 1778.0

Golomb (10) 3.0 M -

Golomb (11) 133.0 M -

Golomb (12) 3006.0 M M

4 Systematic Search

Chronological backtracking search plays a central role in the solution process
for combinatorial problems. Nodes in the search correspond to variables, and
branches to assignments, thus the search explores the tree of possible partial
solutions. Figure 8 illustrates a partial example of the search tree generated by
backtracking search. Initially, from the root node, the variable X is branched on,
taking one branch for each possible value in its domain.

X

Y

0

Y

1

Y

2

Z

1

Z

2

Fig. 8. An partial example of the search tree generated by backtracking search.

Introduction to Combinatorial Optimisation in Numberjack 19

Modern constraint programming solvers typically perform binary-branching
on the assignment or removal of a value from the domain. The process of main-
taining arc-consistency (MAC) [48] during search has been shown to be highly
effective. This consists of making the initial CSP arc-consistent before starting
search, then again after every assignment and every backtrack. A domain wipe-
out occurs when a variable has no values remaining in its domain. When this
occurs search must backtrack and explore a different path. A solution has been
found when all variables have been assigned a value in their domain which is
globally consistent with the constraints.

Notably, if a bad decision is made early in the search, then the resulting
sub-tree may be unsatisfiable. It may take exponential time for the search to
prove that no solution exists in the sub-tree, a refutation, before backtracking
to the bad decision node [32]. The thrashing phenomenon occurs when the cur-
rent partial assignment cannot be extended to a solution but search continues
backtracking on the remaining variables, trying all possible values when the real
source of inconsistency is a bad decision higher up the tree.

To avoid such worst-case behaviour, a number of methods such as randomised
restarting, back-jumping, and explanation-based search have been proposed.
Nevertheless, an important decision to be made arises concerning what order
the tree should be explored. These topics are discussed in the following sections.

4.1 Search Heuristics in Constraint Programming

Two closely-related decisions which are vital for success are the choice of variable
to branch on and the subsequent value it will be assigned. These decisions have a
dramatic affect on the size of the search tree that will be explored. Interestingly,
an oracle proposing the value ordering could lead search directly to a solution
without backtracking (if the problem is satisfiable), regardless of the variable
ordering. In practice however, such an oracle is implausible so heuristic methods
must be used.

The CSP community has devised a number of generic, problem independent
heuristics for users to choose from. Options range from static heuristics such a
selecting the variables in order of their domain size or degree of connectivity in
the constraint-graph, to dynamic heuristics based on the activity of the solver
during search such as weighted heuristics [11], and impact-based [44] to name
a few.

To avoid bad decisions early in the search tree, the variable ordering heuristic,
in general, follows a fail-first principle [28] whereby variables likely to lead to
failure should be chosen first. Effort should be focused on difficult parts of the
problem likely to lead to failure, which should ideally occur early in the search.
Value ordering heuristics on the other hand try to select the most promising
value, one most likely to lead to a solution [22].

Choosing an effective heuristic is a highly problem dependant task, often
requiring intimate knowledge of the underlying technology, an undertaking often
beyond the reach of many users. Automating such a task, simplifying the bar-
rier to entry for users, has been proposed as one of the grand challenges for

20 B. Hurley and B. O’Sullivan

constraint programming [20]. One approach to this is to use a machine learning
model to automatically select the heuristic based on instance specific features
[12,23,35,39].

4.2 Restarting and Randomness

In practice, the search procedure will encounter many failures and have to back-
track. As mentioned previously, one risk occurs if a bad decision has been made
early in the search process and proving that no solution exists in the sub-tree
may take exponential time. One approach to avoiding such behaviour is to restart
the search from the root node after a pre-defined limit on the number of failures
has been reached [37].

To maintain the completeness of the search process, solvers adopt a restarting
strategy whereby the failure limit eventually tends towards infinity. A restart
strategy is defined by a sequence 〈t1, t2, t3, . . .〉 whereby each ti specifies the limit
on the number of failures for a particular run of the algorithm. Once the failure
limit ti is reached, the search is restarted from the root node with the new limit
of ti+1.

Two standard restart strategies are based on the Luby and geometric
sequences. The Luby [37] sequence has the form 〈1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2,
4, . . .〉. In the context of Las Vegas algorithms [5] it is proven to be universally
optimal, achieving a runtime that is only a logarithmic factor from an optimal
restart strategy where the runtime distribution of the underlying algorithm is
fully known, and no other universal strategy can do better by more than a con-
stant factor [37]. Alternatively, the geometric [55] sequence increases the cutoff
by a constant factor between each run.

Restarting is typically combined with randomisation in the variable and value
heuristics to avoid repeatedly exploring the same search space. Such stochastic
behaviour gives rise to solvers exhibiting a distribution of runtimes. In some
cases, modelled by heavy- and fat-tailed distributions [26], possibly with infinite
mean and variance. These distributions capture a non-negligible fraction of runs
far to the right or left of the median, runs taking extremely long. Rapid ran-
domised restarting [25,27] has been shown to eliminate heavy-tails to the right of
the median and can even take advantage of heavy-tails to the left of the median.

5 Final Remarks

This chapter has presented an introduction to three areas of combinatorial opti-
misation, specifically constraint programming, satisfiability, and mixed integer
programming. The contrasting approaches that each of these paradigms take to
solving such problems is presented along with examples using Numberjack.

One of the underlying difficulties for new users of these technologies is in
producing an effective solution. Some progress has been made to alleviate this
burden, such as the Constraint Seeker [7] which identifies and ranks global
constraints satisfying a given solution vector. The ModelSeeker [8] extends

Introduction to Combinatorial Optimisation in Numberjack 21

this to identify complete global constraint models satisfying a set of solutions.
Conacq [13] interactively learns a constraint network by proposing partial solu-
tions to the user. Automated Configuration tools help find good parameter-
isations of a solver, helping boost performance on problem classes [4,18,34].
Portfolio approaches unite the complimentary strengths of a collection of
solvers [3,33,43,57], making decisions on an instance specific basis of which solver
to be used.

References

1. Tourbier, Y., Oplobedu, A., Marcovitch, J., CHARME: un langage industriel de
programmation par contraintes, illustr par une application chez Renault. In: Pro-
ceedings of the Ninth International Workshop on Expert Systems and their Appli-
cations, pp. 55–70 (1989)

2. Aggoun, A., Beldiceanu, N.: Extending CHIP in order to solve complex scheduling
and placement problems. In: JFPL 1992, 1éres Journées Francophones de Pro-
grammation Logique, p. 51 (1992)

3. Amadini, R., Gabbrielli, M., Mauro, J.: A multicore tool for constraint solving.
In: Proceedings of the Twenty-Fourth International Joint Conference on Artificial
Intelligence, IJCAI 2015, pp. 232–238 (2015)

4. Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for the
automatic configuration of algorithms. In: Gent, I.P. (ed.) CP 2009. LNCS, vol.
5732, pp. 142–157. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04244-7 14

5. Babai, L.: Monte-carlo algorithms in graph isomorphism testing. Technical report
DMS 79–10, Université de Montréal (1979)

6. Beldiceanu, N., Carlsson, M., Rampon, J.-X.: Global constraint catalog. Technical
report SICS-T 2005/08-SE (2005)

7. Beldiceanu, N., Simonis, H.: A constraint seeker: finding and ranking global con-
straints from examples. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 12–26.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-23786-7 4

8. Beldiceanu, N., Simonis, H.: A model seeker: extracting global constraint models
from positive examples. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 141–
157. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33558-7 13

9. Bessiere, C.: Constraint propagation. In: Handbook of Constraint Programming,
pp. 29–83 (2006)

10. Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.): Handbook of Satis-
fiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press,
Amsterdam (2009)

11. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search
by weighting constraints. In: Proceedings of the 16th Eureopean Conference on
Artificial Intelligence, ECAI 2004, pp. 146–150 (2004)

12. Chu, G., Stuckey, P.J.: Learning value heuristics for constraint programming. In:
Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 108–123. Springer, Heidelberg
(2015). doi:10.1007/978-3-319-18008-3 8

13. Coletta, R., Bessiére, C., O’Sullivan, B., Freuder, E.C., O’Connell, S., Quinque-
ton, J.: Semi-automatic modeling by constraint acquisition. In: Rossi, F. (ed.) CP
2003. LNCS, vol. 2833, pp. 812–816. Springer, Heidelberg (2003). doi:10.1007/
978-3-540-45193-8 58

http://dx.doi.org/10.1007/978-3-642-04244-7_14
http://dx.doi.org/10.1007/978-3-642-23786-7_4
http://dx.doi.org/10.1007/978-3-642-33558-7_13
http://dx.doi.org/10.1007/978-3-319-18008-3_8
http://dx.doi.org/10.1007/978-3-540-45193-8_58
http://dx.doi.org/10.1007/978-3-540-45193-8_58

22 B. Hurley and B. O’Sullivan

14. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the
3rd Annual ACM Symposium on Theory of Computing, pp. 151–158 (1971)

15. Costas, J.P.: A study of a class of detection waveforms having nearly ideal range -
doppler ambiguity properties. Proc. IEEE 72(8), 996–1009 (1984)

16. Dooms, G.: The CP(Graph) computation domain in constraint programming.
Ph.D. thesis, Université catholique de Louvain, Faculté des sciences appliquées
(2006)

17. Fages, J.-G.: Exploitation de structures de graphe en programmation par con-
traintes. (On the use of graphs within constraint-programming). Ph.D. thesis, École
des mines de Nantes, France (2014)

18. Fitzgerald, T., Malitsky, Y., O’Sullivan, B., Tierney, K.: ReACT: real-time algo-
rithm configuration through tournaments. In: Proceedings of the Seventh Annual
Symposium on Combinatorial Search, SOCS 2014 (2014)

19. Freuder, E.C.: In pursuit of the holy grail. Constraints 2(1), 57–61 (1997)
20. Freuder, E.C., O’Sullivan, B.: Grand challenges for constraint programming. Con-

straints 19(2), 150–162 (2014)
21. Frisch, A.M., Harvey, W., Jefferson, C., Mart́ınez-Hernández, B., Miguel, I.:

Essence: a constraint language for specifying combinatorial problems. Constraints
13(3), 268–306 (2008)

22. Geelen, P.A.: Dual viewpoint heuristics for binary constraint satisfaction problems.
In: Proceedings of the 10th European Conference on Artificial Intelligence, ECAI
1992, pp. 31–35. Wiley (1992)

23. Gent, I.P., Jefferson, C., Kotthoff, L., Miguel, I., Moore, N.C.A., Nightingale, P.,
Petrie, K.E.: Learning when to use lazy learning in constraint solving. In: Proceed-
ings of the 19th European Conference on Artificial Intelligence, ECAI 2010, pp.
873–878 (2010)

24. Gervet, C.: Set intervals in constraint-logic programming: definition and imple-
mentation of a language. Ph.D. thesis, Université de France-Compté (1995)

25. Gomes, C.P., Sabharwal, A.: Exploiting runtime variation in complete solvers. In:
Handbook of Satisfiability, pp. 271–288 (2009)

26. Gomes, C.P., Selman, B., Crato, N., Kautz, H.: Heavy-tailed phenomena in satis-
fiability and constraint satisfaction problems. J. Autom. Reason. 24(1–2), 67–100
(2000)

27. Gomes, C.P., Selman, B., Kautz, H.A.: Boosting combinatorial search through
randomization. In: Proceedings of the 15th National Conference on Artificial Intel-
ligence, AAAI 1998, pp. 431–437 (1998)

28. Haralick, R.M., Elliott, G.L.: Increasing tree search efficiency for constraint satis-
faction problems. Artif. Intell. 14(3), 263–313 (1980)

29. Hebrard, E., O’Mahony, E., O’Sullivan, B.: Constraint programming and com-
binatorial optimisation in numberjack. In: Lodi, A., Milano, M., Toth, P. (eds.)
CPAIOR 2010. LNCS, vol. 6140, pp. 181–185. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-13520-0 22

30. Van Hentenryck, P., Carillon, J.-P., Generality versus specificity: an experience
with AI and OR techniques. In: Proceedings of the 7th National Conference on
Artificial Intelligence, AAAI 1988, pp. 660–664 (1988)

31. Hnich, B.: CSPLib problem 034: Warehouse location problem. http://www.csplib.
org/Problems/prob034

32. Hulubei, T., O’Sullivan, B.: The impact of search heuristics on heavy-tailed behav-
iour. Constraints 11(2–3), 159–178 (2006)

http://dx.doi.org/10.1007/978-3-642-13520-0_22
http://dx.doi.org/10.1007/978-3-642-13520-0_22
http://www.csplib.org/Problems/prob034
http://www.csplib.org/Problems/prob034

Introduction to Combinatorial Optimisation in Numberjack 23

33. Hurley, B., Kotthoff, L., Malitsky, Y., O’Sullivan, B.: Proteus: a hierarchical portfo-
lio of solvers and transformations. In: Simonis, H. (ed.) CPAIOR 2014. LNCS, vol.
8451, pp. 301–317. Springer, Heidelberg (2014). doi:10.1007/978-3-319-07046-9 22

34. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol.
6683, pp. 507–523. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25566-3 40

35. Kotthoff, L., Gent, I.P., Miguel. I.: A preliminary evaluation of machine learn-
ing in algorithm selection for search problems. In: Proceedings of the 4th Annual
Symposium on Combinatorial Search, SOCS 2011 (2011)

36. Laurière, J.-L.: A language and a program for stating and solving combinatorial
problems. Artif. Intell. 10(1), 29–127 (1978)

37. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of las vegas algorithms.
Inf. Process. Lett. 47(4), 173–180 (1993)

38. Mackworth, A.K.: Consistency in networks of relations. Artif. Intell. 8(1), 99–118
(1977)

39. Mehta, D., O’Sullivan, B., Kotthoff, L., Malitsky, Y.: Lazy branching for constraint
satisfaction. In: Proceedings of the 25th International Conference on Tools with
Artificial Intelligence, ICTAI 2013, pp. 1012–1019 (2013)

40. Mehta, D., O’Sullivan, B., Quesada, L., Ruffini, M., Payne, D.B., Doyle, L.: Design-
ing resilient long-reach passive optical networks. In: Proceedings of the 23rd Con-
ference on Innovative Applications of Artificial Intelligence, IAAI 2011 (2011)

41. Murty, K.G.: Linear Programming. Wiley, Hoboken (1983)
42. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.:

MiniZinc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP
2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-74970-7 38

43. O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using case-
based reasoning in an algorithm portfolio for constraint solving. In: Irish Confer-
ence on Artificial Intelligence and Cognitive Science (2008)

44. Refalo, P.: Impact-based search strategies for constraint programming. In: Wallace,
M. (ed.) CP 2004. LNCS, vol. 3258, pp. 557–571. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-30201-8 41

45. Régin, J.-C.: A filtering algorithm for constraints of difference in csps. In: Pro-
ceedings of the 12th National Conference on Artificial Intelligence, AAAI 1994,
pp. 362–367 (1994)

46. Régin, J.-C.: Generalized arc consistency for global cardinality constraint. In: Pro-
ceedings of the 8th Innovative Applications of Artificial Intelligence Conference,
IAAI 1996, pp. 209–215 (1996)

47. Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming. Foun-
dations of Artificial Intelligence. Elsevier, New York (2006)

48. Sabin, D., Freuder, E.C.: Contradicting conventional wisdom in constraint satis-
faction. In: Proceedings of the 11th European Conference on Artificial Intelligence,
ECAI 1994, pp. 125–129. Springer, Heidelberg (1994)

49. Simonin, G., Artigues, C., Hebrard, E., Lopez, P.: Scheduling scientific experiments
on the rosetta/philae mission. In: Milano, M. (ed.) Principles and Practice of Con-
straint Programming. LNCS, vol. 7514, pp. 23–37. Springer, Heidelberg (2012)

50. Simonis, H.: Constraint applications in networks. In: Handbook of Constraint Pro-
gramming, pp. 875–903 (2006)

51. Simonis, H.: Models for global constraint applications. Constraints 12(1), 63–92
(2007)

http://dx.doi.org/10.1007/978-3-319-07046-9_22
http://dx.doi.org/10.1007/978-3-642-25566-3_40
http://dx.doi.org/10.1007/978-3-540-74970-7_38
http://dx.doi.org/10.1007/978-3-540-74970-7_38
http://dx.doi.org/10.1007/978-3-540-30201-8_41

24 B. Hurley and B. O’Sullivan

52. van Beek, P.: CSPLib problem 006: Golomb rulers. http://www.csplib.org/
Problems/prob006

53. van Hoeve, W.-J., Katriel, I.: Global constraints. In: Handbook of Constraint
Programming. Foundations of Artificial Intelligence, vol. 2, pp. 169–208. Elsevier
(2006)

54. Wallace, M.: Practical applications of constraint programming. Constraints 1(1/2),
139–168 (1996)

55. Walsh, T.: Search in a small world. In: Proceedings of the 16th International Joint
Conference on Artificial Intelligence, IJCAI 1999, pp. 1172–1177 (1999)

56. Wolsey, L.A.: Integer Programming. Wiley-Interscience, New York (1998)
57. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: portfolio-based algo-

rithm selection for SAT. J. Artif. Intell. Res. 32, 565–606 (2008)
58. Yip, Y.K.J.: The length-lex representation for constraint programming over sets.

Ph.D. thesis, Brown University (2011)

http://www.csplib.org/Problems/prob006
http://www.csplib.org/Problems/prob006

Data Mining and Constraints: An Overview

Valerio Grossi(B), Dino Pedreschi, and Franco Turini

Department of Computer Science, University of Pisa,
Largo B. Pontecorvo, 3, 56127 Pisa, Italy

{vgrossi,pedre}@di.unipi.it, turini@unipi.it

Abstract. This paper provides an overview of the current state-of-the-
art on using constraints in knowledge discovery and data mining. The
use of constraints requires mechanisms for defining and evaluating them
during the knowledge extraction process. We give a structured account of
three main groups of constraints based on the specific context in which
they are defined and used. The aim is to provide a complete view on
constraints as a building block of data mining methods.

1 Introduction

Data mining extracts synthetic models from datasets. Data are represented by
collections of records characterizing data with respect to several dimensions.
The use of constraints may be useful in the data mining process in at least
three ways: (i) filtering and organizing the dataset before applying data mining
methods; (ii) improving the performance of data mining algorithms by reducing
the search space and focusing the search itself; and (iii) reasoning on the results
of the mining step for sharpening them and presenting a more refined view of
the extracted models.

The integration of constraints in data mining tasks has rapidly emerged as a
challenging topic for the research community. A large number of ad-hoc exten-
sions of mining algorithms use constraints for improving the quality of their
results. The use of constraints requires a way for defining and satisfying them
during the knowledge extraction process. This point is crucial both for the qual-
ity of the extracted data mining models, and for the scalability of the entire
process. On the one hand, an analyst can define the knowledge extraction phase
where a constraint must be satisfied. On the other hand, an optimizer is required
to understand where a constraint must be satisfied inside the process flow, in
an automatic way. Moreover, mining algorithms must be rewritten for satisfying
constraints directly into model extraction.

The amount of data in our world has been exploding. This chapter ends
offering the user a glimpse at the future by considering the emerging phenomenon
of big data. With big data traditional analysis tools cannot be used because of
the massive volume of data gathered by automated collection tools, there are
already promising line researches addressing this issue.

Furthermore, this chapter represents a solid scientific basis for several
advanced techniques developed inside the ICON project and outlined in this book.
c© Springer International Publishing AG 2016
C. Bessiere et al. (Eds.): Data Mining and Constraint Programming, LNAI 10101, pp. 25–48, 2016.
DOI: 10.1007/978-3-319-50137-6 2

26 V. Grossi et al.

For example the reader can examine in depth the use of a constraint language
for defining data mining tasks considering the Chapter “Modeling Data Min-
ing Problems in MiningZinc”, or study clustering problems via constraints opti-
mization reading the Chapter “Partition-Based Clustering using Constraints
Optimization”.

For these aims, Sect. 2 provides an introduction to data mining and proposes
several references useful to understand how the basic data mining concepts can
be extended by using constraints. Section 3 reviews the use of constraints in
data mining, introducing three different dimensions on which constraints can be
classified. Finally, Sect. 4 draws some conclusions.

2 Data Mining

Today, data mining is both a technology that blends data analysis methods with
sophisticated algorithms for processing large data sets, and an active research
field that aims at developing new data analysis methods for novel forms of data.
On the one hand, data mining tools are now part of mature data analysis systems
and have been successfully applied to problems in various commercial and scien-
tific domains. On the other hand, the increasing heterogeneity and complexity
of new forms of data, such as those arriving from medicine, biology, the Web,
Earth observation systems, call for new forms of patterns and models, together
with new algorithms to discover such patterns and models efficiently.

Data mining is originally defined as the process of automatically discovering
useful information in large data repositories. Traditionally, data mining is only
a step of knowledge discovery in databases, the so-called KDD process for con-
verting raw data into useful knowledge. The KDD process consists of a series
of transformation steps: data preprocessing, which transforms the raw source
data into an appropriate form for the subsequent analysis. Actual data mining,
which transforms the prepared data into patterns or models, and postprocessing
of mined results, which assesses validity and usefulness of the extracted patterns
and models, and presents interesting knowledge to the final users - business
analysts, scientists, planners, etc. – by using appropriate visual metaphors or
integrating knowledge into decision support systems.

The three most popular data mining techniques are predictive modelling,
cluster analysis and association analysis. In predictive modelling (Sect. 2.1), the
goal is to develop classification models capable of predicting the value of a class
label (or target variable) as a function of other variables (explanatory variables);
the model is learnt from historical observations, where the class label of each
sample is known: once constructed, a classification model is used to predict the
class label of new samples whose class is unknown, as in forecasting whether a
patient has a given disease based on the results of medical tests.

In association analysis, also called pattern discovery, the goal is precisely to
discover patterns that describe strong correlations among features in the data
or associations among features that occur frequently in the data (see Sect. 2.3).
Often, the discovered patterns are presented in the form of association rules:

Data Mining and Constraints: An Overview 27

useful applications of association analysis include market basket analysis, i.e.
the task of finding items that are frequently purchased together, based on point-
of-sale data collected at cash registers.

Finally, in cluster analysis (Sect. 2.2), the goal is to partition a data set into
groups of closely related data in such a way that the observations belonging
to the same group, or cluster, are similar to each other, while the observations
belonging to different clusters are not. Clustering can be used, for instance, to
find segments of customers with a similar purchasing behaviour or categories of
documents pertaining to related topics.

2.1 Predictive Modelling or Classification

Classification is one of the most popular approaches for mining useful informa-
tion. The aim is to predict the behavior of new elements (classification phase),
given a set of past and already classified instances. The process of classifying
new data begins from a set of classified elements, and tries to extract some regu-
larities from them (training phase) [WFH11,TSK06,HK12]. The model employs
a set of input data called training set where the class label for each instance is
provided. The process of classifying new data starts from a training set, and tries
to extract some regularities from them. Classification is an example of supervised
learning.

Based on the way learners actually subdivide the above-mentioned phases,
they are categorized into two classes, namely eager learners or lazy learners. For
example, decision trees or rule-based learners are examples of eager approaches.
In this category, most of the computing resources are spent to extract a model,
but once a model has been built, classifying a new object is a rather fast process.

By contrast, lazy learners, such as nearest-neighbour classifiers do not require
an explicit model building phase, but classifying a test example can be very
expensive, since the element to classify must be compared with all the samples
in the training set. In the following, we provide a short description of the most
popular classifiers available in the literature.

Decision Trees. The model has the form of a tree, where each node contains
a test on an attribute, each branch from a node corresponds to a possible out-
come of the test, and each leaf contains a predicted class label [Mor82]. Decision
tree induction often uses a greedy top-down approach which recursively replaces
leaves by test nodes, starting from the root. The attribute associated to each
node is chosen through the comparison of all the available attributes, and the
selection of the best one is based on some heuristic measures. Several impurity
measures are available in the literature [Qui86,Qui93,BFOS84]. Typically, the
measures developed are based on the degree of impurity of the child nodes. The
lower is the value, the more skewed is the class distribution. The extraction
procedure continues until a termination condition is satisfied.

The Hunt’s algorithm represented in Algorithm1 is the basis of several
popular decision tree learners including ID3 [Qui86], CART [BFOS84], C4.5
[Qui93,Qui96] and EC4.5 [Rug02]. The cited approaches assume that all training

28 V. Grossi et al.

Algorithm 1. The Hunt’s algorithm - DecisionTree(TS, A)
Require: Training set TS, an attribute set A
Ensure: Decision tree
1: if stoppingCondition(TS, A) = true then
2: leaf ← createLeaf(TS) //given TS determines the class label to assign a leaf

node
3: return leaf
4: else
5: root ← createNode()
6: root.testCondition ← findBestSplit(TS, A)
7: TS i ← splitData(root.testCondition) //given the test condition splits TS in sub-

sets
8: for each TS i do
9: root.child i ← DecisionTree(TS i, A)

10: end for
11: end if
12: return root

examples can be simultaneously stored in main memory, and thus have a limited
number of examples from which they can learn. [LLS00] shows a comparison of
complexity, training time and prediction accuracy of main memory classification
algorithms, including decision trees. In several cases, training data can exceed
the main memory capability. In order to avoid this limitation, disk-based deci-
sion tree learners, such as SLIQ [MAR96] and SPRINT [SAM96], assume the
examples to be stored on disk, and are learned by repeatedly reading them in a
sequence. More recently, new data structures and algorithms have been defined
to tackle the classification problem in stream environments, also using decision
trees [GT12,GS11].

Bayesian Approaches. In many situations, the relationship between the
attributes and the class variable cannot be deterministic. This situation typically
occurs in the presence of noisy data, or when external factors affecting classifi-
cation, not included in our analysis, arises. Based on Bayes theorem, Bayesian
classifiers are robust to isolate noisy points and irrelevant attributes.

A popular approach of Bayesian classification is näıve Bayes. This kind
of classifier estimates the class-conditional probability, by assuming that the
attributes are conditionally independent. To classify a record, the algorithm
computes the posterior probability of a class value using Bayes theorem, and
returns the class that maximizes this probability value. The way of computing
class-conditional distribution varies in the presence of categorical or continuous
attributes. In the first case, the conditional probability is estimated using the
fraction of training samples with a specific class label considering an attribute
value. By contrast, continuous attributes must be discretized, or a Gaussian
distribution is typically chosen to compute the class-conditional probability.

Detailed discussions on Bayesian classifiers can be found in [DH73,Mic97,
WK91]. An analysis of the accuracy of näıve Bayes classifiers without class

Data Mining and Constraints: An Overview 29

Algorithm 2. The k -nearest neighbour algorithm
Require: Training set TS, the number of nearest neighbour k
Ensure: Set of k nearest neighbours
1: for each test example z = (x′,y′) do do
2: Distance(x′, x) ← compute the distance between z and every training element

(x, y) ∈ TS
3: TS s ← Select the k closest training example to z
4: class ← FindClass(TSs)
5: return class
6: end for

conditional independence hypothesis is available in [DP96], while [Jen96] pro-
vides a first overview of Bayesian networks.

Nearest Neighbour. This kind of classifier belongs to the family of lazy learners.
In this case, every training example is viewed as a point in a multidimensional
space, defined on the number of the available attributes.

As shown in Algorithm 2, given an element to classify, the call label is chosen
based on the label of element neighbours selected by a proximity measure. In this
case, specific training instances are employed to provide a prediction, without
providing any model derived from data. Every training example is viewed as
a point in a multidimensional space, defined on the number of the available
attributes. In real applications only k points, that are closest to the element
to classify are selected to decide the class label to return. The crucial aspect
is to select the measures of proximity, that similarly to clustering are based on
attribute types and special issues to solve. Due to its nature these models are
rather sensible to noisy data and the prediction accuracy is highly influenced by
the data preprocessing step and proximity measure.

With respect to decision trees, nearest-neighbor classifier provides a more
flexible model representation. It produces arbitrarily-shaped boundaries, while
decision trees are typically constrained to rectilinear decision boundaries
[TSK06,HK12].

Support Vector Machine. This kind of approaches has its root in statistical
learning theory. They have been successfully employed in many real applications,
including handwritten digit recognition, and text categorization among others.

The main idea of this method is representing the decision boundary using a
subset of training examples, known as support vectors. A support vector machine
constructs a hyperplane (or set of hyperplanes) in a multi-dimensional space,
which can be used for classification, regression, or other tasks. Essentially, given
a set of possible hyperplanes (implicitly defined in the data), the classifier selects
one hyperplane for representing its decision boundary, based on how well they
are expected to perform on test examples. A support vector approach is typically
described as linear or non-linear. The former involves a linear decision boundary
to split the training objects into respective classes [ABR64]. Non-linear models

30 V. Grossi et al.

try to compute a boundary for separating objects that cannot be represented
by a linear model [BGV92]. The trick is to transform the data from its original
space into a new space that can be divided by a linear bound. In the literature
several approaches are available for learning a support vector model [CV95,
Bur98,SC08].

2.2 Clustering

Clustering is the process of partitioning a set of data objects into subsets without
any supervisory information such as data labels. Each subset is a cluster, such
that objects in a cluster are similar to one another, yet dissimilar to objects in
other clusters. The set of clusters resulting from a cluster analysis can be referred
to as a clustering [WFH11,TSK06,HK12]. Clustering can lead to the discovery
of previously unknown groups within the data. Examples of data objects include
database records, graph nodes, a set of features describing individuals or images.
Because there is no a priori knowledge about the class labels, clustering is also
called unsupervised learning. Cluster analysis is used in a wide range of applica-
tions such as: business intelligence, image pattern recognition, web analysis, or
biology.

The following general aspects are orthogonal characteristics in which cluster-
ing methods can be compared:

• the partitioning criteria: all the clusters are at the same level vs. parti-
tioning data objects hierarchically, where clusters can be formed at different
semantic levels.

• separation of clusters: methods partitioning data objects into mutually
exclusive clusters vs. a data object may belong to more than one cluster.

• similarity measure: similarity measures play a fundamental role in the
design of clustering methods. Some methods determine the similarity between
two objects by the distance between them vs. the similarity may be defined
by connectivity based on density or contiguity.

• clustering space: the entire given data space vs. subspace clustering.

The literature proposes several ways to compute and represent a cluster. The
partition method is based on prototypes and is one of the most widely studied
and applied approaches. In this case, every cluster is selected and represented by
a prototype called centroid (e.g. K-means and K-medoid). Prototype-based tech-
niques tend to consider the region only based on a distance value from a center.
This approach typically provides clusters having globular shapes. Hierarchical-
clustering is a method of cluster analysis which seeks to build a hierarchy of
clusters. Also this kind of clustering is typically based on distance measures, but
in this case, we permit clusters to have subclusters thus forming a tree. Each
cluster i.e. a node in the tree, is the union of its subclusters, and the root of the
tree is the cluster containing all the objects. The class of approaches for hierar-
chical clustering can be found under the agglomerative hierarchical clustering.
BIRCH [ZRL96] is a famous example of hierarchical clustering algorithm.

Data Mining and Constraints: An Overview 31

Algorithm 3. The k -means algorithm
Require: Set of points P
Ensure: Set of k clusters
1: repeat
2: Form k clusters by assigning each point pi ∈ P to the closest centroid
3: centroids ← Recompute the centroid of each cluster
4: until centroids do not change

Density-based approaches work also with non-globular regions and they are
designed for discovering dense areas surrounded by areas with low density (typi-
cally formed by noise or outliers). In this context a cluster consists of all density-
connected objects, which can form a cluster of an arbitrary shape. DBSCAN
[EKSX96] and its generalization OPTICS [ABKS99] are the most popular den-
sity based clustering methods. In several situations spectral and/or graph-based
clustering are proposed for solving problems when the available information is
encoded as a graph. If the data is represented as a graph, where the nodes are
objects and the links represent connections among objects, then a cluster should
be redefined as a connected component, i.e. a group of objects that are connected
to one another, but that have no connection to objects outside the group. An
important example of graph-based clusters are contiguity-based clusters, where
two objects are connected only if they are within a specified distance of each
other. This implies that each object in a contiguity-based cluster is closer to
some other object in the cluster than to any point in a different cluster.

Finally, Fig. 1, taken from [HK12], summarizes the main characteristics
related to the different clustering approaches considering the three main cluster-
ing methods proposed above. For each method, the figure highlights the specific
features and the most well-known and basic algorithms widely studied in the
literature. Finally, Fig. 1, taken from [HK12], summarizes the main character-
istics related to the different clustering approaches considering the three main
clustering methods proposed above. For each method, the figure highlights the
specific features and the most well-known and basic algorithms widely studied
in the literature.

Method Specific Features Algorithms
Partitioning Distance based K-means
methods Discover mutual clusters of spherical shape K-medoids

Prototyped-based (mean or medoid) to represent centroid
Hierarchical Hierarchical decomposition BIRCH
methods May incorporate other techniques (e.g. microclustering)

Cannot correct erroneous splits (or merges)
Density-based Find arbitrary shaped clusters DBSCAN
methods Based on concept of dense regions OPTICS

May filter out outliers

Fig. 1. Overview of clustering methods.

32 V. Grossi et al.

2.3 Pattern Discovery

Pattern analysis methods are fundamental in many application domains includ-
ing market basket analysis, medicine, bioinformatics, web mining, network
detection, DNA research. Unlike in predictive models, in pattern discovery
the objective is to discover all patterns of interest. Here, we briefly recall the
basic methods of pattern mining, including frequent itemsets mining (FIM),
association rule mining (ARM) and sequential patterns mining (SPM). See
[ZZ02,HCXY07,Sha09] for past surveys on ARM, and [ME10,CTG12] for sur-
veys on SPM.

Let I = {i1, . . . , in} be a set of distinct literals, called items. An itemset
X is a subset of I. An itemset X has a support, supp(X), in a transactional
database D if s% of the transactions contains the itemset X in D. Given a
user-defined minimum support s, an itemset X such that supp(X) ≥ s is called
frequent itemset. The FIM problem can be stated as follows: given a transaction
database D and a minimum support threshold s, find all the frequent itemsets
from the set of transactions w.r.t. s.

A natural derivation of frequent itemsets is called association rule (AR),
expressing an association between two itemsets. Given X and Y two itemsets,
with X ∩ Y = ∅, an AR is an expression of the form X ⇒ Y . X is called the
body or antecedent, and Y is called the head or consequent of the rule. The
support of an AR X ⇒ Y is supp(X ⇒ Y) = supp(X ∪Y). The confidence of an
AR is conf(X ⇒ Y) = supp(X∪Y)

supp(X) . Given a transaction database D, a minimum
support threshold, s, and a minimum confidence threshold, c, the ARM problem
is to find all the ARs from the set of transactions w.r.t. s and c.

Finally, the concept of sequential pattern is introduced to capture typical
behaviors over time, i.e. behaviors sufficiently repeated by individuals to be
relevant for the decision maker. A sequence S =< X1 . . . Xn > is an ordered
list of itemsets. We say that S is a subsequence of another sequence V =<
Y1 . . . Ym > with n ≤ m, if there exist integers 1 ≤ i1 < · · · < in ≤ m such that
X1 ⊆ Yi1, . . . , Xn ⊆ Yin. We denote with Xi.time the timestamp of the itemset
Xi and with supp(S) the support of S, i.e. the number of tuples containing the
sequence S. Given a sequence database and a minimum support threshold s,
the SPM problem is to find all the sequences from the set of transactions w.r.t.
σ. Sequential patterns are not the only form of patterns that can be mined.
Consider for example the huge literature for gene mining [EZ13].

Different algorithms for FIM have been proposed in the literature [AS94,
HPY00,SON95,Toi96,ZPOL97]. The most popular algorithm is Apriori [AS94].
The approach is outlined in Algorithm4. It is based on a level-wise search process
that makes multiple passes over the data. Initially, it computes the frequent item-
sets of size 1. The core of the algorithm is then a cycle of passes each of them
composed of two main phases: the candidate generation and the support count-
ing. In the former phase, the set of all frequent k-itemsets, Lk, found in the pass
k, is used to generate the candidate itemsets Ck+1. In the latter, data is scanned
to determine the support of candidates. After the support counting, unfrequent
itemsets are dropped, according to the downward closure property. Another algo-

Data Mining and Constraints: An Overview 33

Algorithm 4. The Apriori algorithm
Require: Set of transaction T
Ensure: Frequent itemsets
1: k ← 1
2: Fk ← Find all frequent 1-itemsets
3: repeat
4: k ← k + 1
5: for each transaction t ∈ T do
6: Identify all candidates that belongs to t
7: Compute support counting for each candidate Ct

8: end for
9: Fk ← Extract the frequent k-itemsets

10: until Fk =ø
11: return

⋃
Fk

rithm is the FP-Growth. It allows to reduce the number of transactions to be
processed at each iteration via a divide et impera strategy [HPY00]. Basically,
it divides the search space on a prefix base. After the first scan, the original
problem can be divided into |I| sub-problems, where I is the set of frequent sin-
gletons. Other algorithms based on the splitting of the input data into smaller
datasets, are eclat [ZPOL97] and partition [SON95].

Sequential pattern mining methods can be classified into three classes:
Apriori-based with an horizontal formatting methods; Apriori-based with a ver-
tical formatting methods; projection-based pattern growth methods. The first
class includes the GSP algorithm [SA96] and its derivations. The second class
includes SPADE [Zak01]. The third class is based on the SPAM [AFGY02] and
PrefixSpan algorithms [PHMA+04]. In particular, the latter works by means
of a divide-and-conquer strategy with a single scan on the entire dataset. Each
sequential pattern is treated as a prefix and mined recursively over the corre-
sponding projected database.

Recently, mining frequent structural patterns from graph databases, e.g. web
logs, citation networks, and social networks has become an important research
problem with broad applications. Several efficient algorithms were proposed in
the literature [WWZ+05,IWM00,YH02], ranging from mining graph patterns,
with and without constraints, to mining closed graph patterns.

3 Using Constraints in Data Mining

The integration of constraints in data mining has rapidly emerged as a chal-
lenging topic for the research community. Many ad-hoc extensions of mining
algorithms that use constraints for improving the quality of their results have
been proposed for the different methods introduced along the Sect. 2. The def-
inition and the integration of constraints allows the user to specify additional
information on input data as well as requirements and expected properties of
data mining models in output in a declarative way. For example, the extrac-
tion of association rules typically leads to a large quantity of useless rules.

34 V. Grossi et al.

An approach that extracts the rules by specifying the analyst’s needs can speed
up both the domain experts evaluation of the extracted rules and the extraction
algorithm itself.

The literature proposes several works on using constraints in data mining
tasks. Currently, every mining task has its own way for classifying constraints.
A full view that binds mining tasks to the the objects on which constraints
are defined, is still missing. For this reason, one of the aims of this chapter
is to provide a general framework where a constraint can be classified. In this
perspective, this section provides a description about the dimensions on which
constraints can be classified. This view is based on the main characteristics that
every kind of constraint proposes in its specific mining context.

We introduce the use of constraints considering three dimensions based on
the characteristics that every kind of constraint presents in its specific context:

1. Object Constraints: considers which objects the constraints are applied
to, namely data, models and measures. This kind of constraints is presented
in Sect. 3.1.

2. Hard &Soft Constraints: considers the type of constraints: hard and soft
constraints. Section 3.2 introduces this kind of constraints.

3. Phase-defined Constraints: considers the phases of the knowledge extrac-
tion process, in which the constraints are used, namely pre, mining and post.
Section 3.3 overviews this class of constraints.

Before starting analysing the dimension dealing with the objects constraints,
it is worth noting that the dimensions proposed above are not complementary
or mutually exclusive, but they represent different perspectives on which we can
classify constraints for data mining.

3.1 Object Constraints

We start by analyzing the dimension dealing with the objects constraints are
applied to. Constraints can be defined on data, on the mining model and on
measures. In particular, Sect. 3.1.1 overviews the constraints on data (or items),
while Sect. 3.1.2 overviews the ones on mining models. Finally, Sect. 3.1.3 intro-
duces the constraints defined on measures.

3.1.1 Constraints on Data
Referred to the literature also as constraints on items, this kind of object con-
straint involves specific data attributes. Data constraints require a complete
knowledge about the data attributes and properties in order to define con-
straints on specific data features. Furthermore, they can involve some forms
of background knowledge directly. Examples of constraints on data include the
must and cannot-link in a clustering problem, or consider only the items having
a price higher than a given threshold for pattern mining.

If we consider the classification task the literature in this field has explored
constraints among instances and classes, and among different classes themselves.

Data Mining and Constraints: An Overview 35

This is principally due to the fact that a classifier is extracted from a training set
specifically conceived on the requirements of the classification task. [HPRZ02]
introduces a constrained classification task, where each example is labeled with a
set of constraints relating multiple classes. Every constraint specifies the relative
order of two classes and the goal is to learn a classifier consistent with these con-
straints. As reported in [PF08], in many applications explicit constraints among
the labels can be easily discovered. For example, in the context of hierarchical
classification, the presence of one label in the hierarchy often implies also the
presence of all its ancestors. [TJHA05] proposes a constrained support vector
machine approach. In this work, the authors consider cases where the prediction
is a structured object or consists of multiple dependent constrained variables.
An interesting approach is proposed in [DMM08] in case of a lack of labeled
instances. In this case, the knowledge base is a set of labeled features, and the
authors propose a method for training probabilistic models with labeled fea-
tures (constrained from domain knowledge) from unlabeled instances. Labeled
features are employed directly to constrain the model predictions on unlabeled
instances.

Data constraints for clustering involves the concept of instance-level con-
straints. Well-established approaches on using data constraints for clustering
problems focused on the introduction of instance-level constraints [WCRS01,
WC00]. In this case a domain expert defines constraints that bind a pair of
instances in the same cluster or that avoid that a pair of instances will be assigned
to the same cluster. (i) must-link constraints enforce two instances to be placed
in the same cluster, while (ii) cannot-link constraints enforce two instances
to be in different clusters. Several properties are related to instance-level
constraints [DR06]. Must-link constraints are symmetric, reflexive and transitive.
The latter property enables a system to infer additional must-link constraints.
On the contrary, cannot-links do not have the transitive property. Since must
and cannot-link are relevant for a large amounts of works in the literature, where
several types of constraints based on groups of instances have been defined in
[DR05,DR09,DR07,DDV13], Chap. 1 in [BDW08] reports a detailed definition
of the properties on which they are based.

In pattern mining, data constraints are introduced to specify patterns that
include (or not) specific items. For example, when mining association rules out
of a weblog, one might be interested in only rules having sport pages in the
consequent, and not having shopping pages in the antecedent. In the case of
sequential patterns, one might be interested to patterns that first visit finance,
and then sport or books [PHW07]. There are two principal ways to express data
constraints for pattern mining: (i) by means of a concept hierarchy (i.e. multi-
level constraints) and (ii) weighted pattern mining emerges when considering a
different semantic significance of the items.

Multi-level constraints enables the generalization of items at bottom level
to higher levels of the hierarchy before applying the mining algorithm [SA95].
Methods to integrate multi-level constraints into mining algorithms are intro-
duced in [HF99], in which frequent itemsets are generated one level at a time

36 V. Grossi et al.

of the hierarchy. [SVA97] and [HLN99] can be seen as the first attempts to
integrate multilevel mining directly into the Apriori. More recent works on gen-
eralized rule mining include [ST02] about exploiting the lattice of generalized
itemsets, and [WH11], on using efficient data structures to retrieve item general-
izations. [BCCG12] exploits schema constraints and the opportunistic confidence
constraints to remove uninteresting rules.

Weighted pattern mining has been extensively proposed in frequent itemset
mining and association rule mining, in discussing a new tree structure that is
robust to database modifications [ATJ+12]; in pushing the weight constraint into
pattern growth algorithms [YL05,TSWYng,YSRY12], or into level-wise methods
[WYY00,TM03,LYC08]; in suggesting approximated weighted frequent pattern
mining, as a fault tolerant factor [YR11].

3.1.2 Constraints on the Mining Model
This class of constraints defines specific requirements that an extracted model
should satisfy. This kind of constraint does not involve background knowledge
directly, but it requires a complete knowledge on the characteristics needed by
the output model. For example, they include the extraction of association rules
having a specific set of items in the body and in the head, or discovering clusters
with a minimum number of elements.

Examples of model constraints for classification can be found in [NF07,NF10,
NPS00]. [NPS00] proposes different kinds of constraints, related to the form of a
decision tree, e.g. internal nodes should not have pure class distributions or rules
about the class distribution. [NF10] defines a framework for determining which
model constraints can be pushed into the pattern mining process, proposing an
optimal classifier model. More precisely, [NF10] shows how several categories of
constraints defined for frequent itemset mining, e.g. monotonic, anti-monotonic
and convertible, can be applied in decision tree induction. It highlights the con-
nection between constraints in pattern mining and constraints in decision tree
extraction, developing a general framework for categorizing and managing deci-
sion tree mining constraints.

The algorithms K-means and K-medoid represent a basic approach for forc-
ing clustering models to have specific properties [GMN+15]. In [BBD00,DBB08],
the authors avoid empty clusters by adding k constraints to the clustering
problem requiring that cluster h contains at least τh points. The solution
proposed is equivalent to a minimum cost flow linear network optimization
problem [Ber91]. Another approach for discovering balanced clusters can be
found in [BG08,BG06]. In this case, the introduced constraint requires that the
obtained clusters have a comparable size. The proposed method has three steps:
(i) sampling; (ii) clustering of the sampled set; and (iii) populating and refin-
ing the clusters while satisfying the balancing constraints. Other methods for
constraining the clustering approach to discover balanced clusters can be found
in [SG03]. The authors propose the use of graph partition techniques or hierar-
chical approaches that encourage balanced results while progressively merging
or splitting clusters [BK03,ZG03]. Many papers focus on metric learning driven

Data Mining and Constraints: An Overview 37

by constraints. Distance measure learning and clustering with constraints in K-
means were both considered in [BBM04b], and the result was extended to a
Hidden Markov random field formulation in [BBM04a].

Pattern-model constraints are related to the form, or the structure of the
entire pattern, as well as to relations among items. For example, one might wish
to find patterns that include first visit of a sport page, then a shopping page,
and finally a finance page. In this context, we are searching for meta-rules that
are useful to specify the syntactic form of the patterns [FH95]. These constraints
can be specified using either high-level user interfaces or declarative data min-
ing query languages. Here, we briefly review the usage of regular expressions
(RE) in sequential pattern mining. They are based on the typical RE operators,
such as disjunction and Kleene closure, to constrain the set of items. Then, we
deal with relaxation of constraints. There are several algorithms supporting RE
constraints. SPIRIT [GRS99] is based on an evolution of the GSP algorithm.
RE-Hackle represents RE by means of a tree structure [CMB03]. Prefix-growth
extends the prefix-span approach with several kinds of constraints, among which
RE are included [PHW07].

3.1.3 Constraints on Measures
Measures, e.g. entropy for classification, support and confidence for frequent
itemsets and euclidean distance for clustering, play an important role in data
mining, since they are related to the quality of the model extracted. This class
of constraints specifies a requirement that the computation of a measure should
respect. It involves both the knowledge about data and the knowledge about
the characteristics of a model. For example, if we consider clustering people as
moving objects, the trajectory implementing the shortest distance cannot cross
a wall, or we can constraints a classifier to provide a minimum level of accuracy.

Starting from model constraints for classification, [YG04,VSKSvdH09] deal
with the design of a classifier under constrained performance requirements. In
particular, [VSKSvdH09] enables the user to define a desired classifier perfor-
mance. The work provides a complete analysis when a classifier is constrained to
a desired level of precision (defined as F-measure and/or to tp-/fp-rate related
performance measures). The learned model is adjusted to achieve the desired
performance, abstaining to classifying ambiguous examples in order to guaran-
tee the required level of performance. Furthermore, [VSKSvdH09] studies the
effect on an ROC curve when ambiguous instances are left unclassified. This is
an example when a set of constraints defined on measures clearly influences also
the learned model implicitly. Similarly in [YG04], an ensemble of neural networks
is constrained by a given tp or fp-rate to ensure that the classification error for
the most important class is within a desired limit. The final classifier is tuned by
using a different structure (or architecture), employing different training sam-
ples, and training with a different subset of features for individual classifiers with
respect to phase of employment. In most of the cases model constraints are used
during the model construction phase.

38 V. Grossi et al.

Many papers focus on metric learning driven by constraints for clustering.
Distance measure learning and clustering with constraints in K-means were both
considered in [BBM04b], and the result was extended to a Hidden Markov ran-
dom field formulation in [BBM04a]. In [SJ04], an SVM-like approach is employed
to learn a weighted distance from relative constraints. The method learns a
weighted euclidean distance from constraints by solving a convex optimization
problem similar to SVMs to find the maximum margin weight vector. In this
case, the approach integrates the input points with a set of training constraints
that specify the distance requirements among points. Kumar and Kummamuru
[KK08] proposed to learn an SVaD [KKA04] measure from relative comparisons.
Relative comparisons were first employed in [SJ03] to learn distance measures
using SVMs. The existing results on relative comparisons can be used to solve
clustering problems with relative constraints (since each relative constraint is
equivalent to two relative comparisons).

Besides those expressed on support and confidence, interestingness con-
straints specify thresholds on statistical measures of a pattern. We can find
three kinds of interestingness measures. With time constraints, the user has the
possibility of choosing not only the minimum support, but also time gaps and
window size [SA96,PHW07,MPT09]. The former permits to constrain itemsets
in a pattern to occur neither too close, nor too far w.r.t the time. Considering
recency, frequency and monetary constraints, a model can be used to predict the
behavior of a customer on the basis of history data, with the aim of analyz-
ing how often and recently a customer purchases as well as how much he/she
spends [BW95,WLW10]. Finally aggregate constraints are based on aggregates
of items in a pattern, where the aggregate function can be sum, avg, max, min.
See [ZZNS09] for a recent review on the various interestingness measures.

3.2 Hard and Soft Constraints

The use of constraints enables a mining method to explore only those solu-
tions consistent with users expectations. Constraints may not always improve
the reliability of the extracted model, e.g. data overfitting. Generally, it is not
guaranteed that the use of constraints improves the reliability of the objective
measures. Moreover in some cases constraints can be redundant, e.g. a constraint
which does not affect the search solution space, and/or they can cause conflicts
and introduce inconsistencies on final result.

For example, if we constrain two elements, say a and b, to be in the same
cluster if their distance is lower than a given threshold t1, and, at the same
time, we require that a and b cannot be in the same cluster if their distance is
greater than an additional threshold t2, the satisfaction of these two constraints
could not be solved by any cluster partitioning if t2 is lower than t!. Similarly,
forcing a classifier to provide a desired performance can lead to find empty
solutions since there is not a model extracted from the data that satisfies the
required constraints, e.g. [VSKSvdH09] avoids this situation. The learned model
is adjusted to achieve the desired performance by abstaining to classifying the
most ambiguous example in order to guarantee the required level of performance.

Data Mining and Constraints: An Overview 39

Typically, these events happen when some sets of constraints work well but
some others do not [Dav12]. This aspect requires the use of measures to evaluate
how much a set of constraints is useful. Davidson et al. [DWB06,WBD06] intro-
duce the concepts of informativeness and coherence. In the case of clustering,
the authors define the informativeness as the amount of information in the con-
straint set that the algorithm cannot determine on its own. It is determined by
the clustering algorithm’s objective function (bias) and search preference. While
given a distance matrix, the coherence measures the amount of agreement within
the constraints themselves. The above definitions should be revised in the case
of classification or pattern mining, but their relevance is already clear.

The above observations require that a user can define the way for computing
the measure related to a constraint. Furthermore, the user expresses “how well”
a constraint should be satisfied. Generally, the use of constraints does not nec-
essarily guarantee the achievement of a solution. In order to control this effect
it can be necessary to relax constraints. This leads to the need of offering the
possibility of classifying constraints as either hard or soft, that is relaxable:

• Hard constraint: a constraint is called hard if a model that violates it is
unacceptable. The use of only this class of constraints can involve the discovery
of empty solutions. A hard-constrained algorithm halts when there does not
exist a state that satisfies all the constraints, and it returns no results [OY12].
This situation is common when a large set of constraints is provided as input.

• Soft constraint: a constraint is called soft if even though a model that satis-
fies the constraint is preferable, a solution is acceptable anyway and especially
when no any other (or better) solution is available [BMR97]. Typically, it is
known that some constraints work well for finding the required solution, while
others do not, and in some context where a result is needed in any case, it
is important to select a set of useful constraints that should be considered as
hard, while others can be treated as soft [DWB06].

This dimension is strictly related to the actual definition of a constraint and it
should not be perceived as a rigid categorization. As explained above, there are
some constraints that can be both hard and relaxed as soft based on the problem
and the properties the solution requires.

3.3 Phase-Defined Constraints

Since a data mining task, or more generally a knowledge extraction process, is
based on different iterated phases, constraints can be classified also with respect
to where a knowledge extraction process can evaluate and satisfy the set of
constraints defined by the user.

The pre-processing phase includes data cleaning, normalization, transforma-
tion, feature extraction and selection and its aim is to produce a set of data
for the subsequent processing/mining step. [Pyl99] presents basic approaches for
data pre-processing.

The processing step is the core phase where the actual knowledge extraction
is performed. This is the mining phase where a model is extracted.

40 V. Grossi et al.

Finally, a post-processing step is required to verify if the model extracted
by a data mining algorithm is valid and useful. If a model does not reach the
desired standards, it is necessary to re-run the process and change parameters
of the pre-processing and mining steps.

Given the above observations, techniques for constraint-driven mining can be
roughly classified on the basis of the knowledge extraction phase in which they
are satisfied:

• Pre-processing constraints: are satisfied during the pre-processing phase.
They enable a restriction of the source data to the instances that can only
generate patterns satisfying them.

• Processing/Mining constraints: are directly integrated into the mining
algorithm used for extracting the model. The constraint evaluation in this
case is embedded directly in the mining algorithms, enabling a reduction of
the search space.

• Post-processing constraints: are satisfied either by filtering out patterns
generated by the mining algorithm, or by highlighting only the relevant results
given an interest measure provided by the user.

The phase of the knowledge extraction process where a constraint is satisfied is
the last dimension we introduce. Also in this case, the above definition is useful
to provide a complete picture about the use of constraints for data mining.
Table 1 summarizes the main characteristics related to the different dimensions
of constraints proposed in this chapter. The two main dimensions are the mining
task and the kind of object where a constraint is applied. Furthermore, for each
of the pairs the phase and the type of constraints are presented.

4 Conclusions: Towards New Frontiers of Data Mining

In this chapter, we presented an overview about the use of constraints in data
mining. In particular, we have depicted a general multidimensional view for
driving the reader into the world of constrained data mining. This chapter
shows why the use of constraints is becoming an important and challenging task
for the data mining community, since it requires a radical re-design of existing
approaches in order to define and satisfy constraints during the whole knowledge
extraction process.

Table 1. Main characteristics of the different classes of constraints

Classification Clustering Pattern

Data phase: pre, mining
type: hard

phase: mining
type: hard, soft

phase: pre, min-
ing
type: hard

Model phase: mining, post
type: soft

phase: mining
type: soft, hard

phase: mining
type: hard, soft

Measure phase: mining, post
type: hard, soft

phase: mining
type: hard

phase: mining,
post
type: hard

Data Mining and Constraints: An Overview 41

Even though one of the aims of this chapter is to provide an introduction
on the basic mining models and algorithms, it is worth stating that the basic
concepts introduced along this overview are still valid also for advanced data
mining analysis. We conclude this chapter considering the emerging phenomenon
of big data. The final aim is to provide a set of features related to managing real
data, in order to highlight that basic concepts introduced in the section of this
chapter are actually the building blocks for real complex mining applications.

Often, traditional data analysis tools and techniques cannot be used because
of the massive volume of data gathered by automated collection tools. The
amount of data in our world has been exploding. Science gathers data at an
ever-increasing rate across all scales and complexities of natural phenomena.
New high-throughput scientific instruments, telescopes, satellites, accelerators,
supercomputers, sensor networks and running simulations are generating massive
amounts of scientific data. Companies capture trillions of bytes of information
about their customers, suppliers, and operations. Smart sensing, including envi-
ronment sensing, emergency sensing, people-centric sensing, smart health care,
and new paradigms for communications, including email, mobile phone, social
networks, blogs, Voip, are creating and communicating huge volumes of data.
Sometimes, the non-traditional nature of the data implies that ordinary data
analysis techniques are not applicable.

In this perspective, the challenge is particularly tough: which data mining
tools are needed to master the complex dynamics of people in motion and con-
struct concise and useful abstractions out of large volumes of mobility data is,
by large, an unanswered question. Good news, hence, for researchers willing to
engage in a highly interdisciplinary, highly risky and highly promising area, with
a large potential impact on socially and economically relevant problems.

Big data requests a complete re-design of existing architectures and proposes
new challenges on data management, privacy, and scalability among the other.
Provide the appropriate analytical technology for distributed data mining and
machine learning for big data, and a solid statistical framework adapting stan-
dard statistical data generation and analysis models to big data: once again,
the sheer size and the complexity of big data call for novel analytical methods.
At the same time, the kind of measures provided by the data and the popula-
tion sample they describe cannot be easily modeled through standard statistical
frameworks, which therefore need to be extended to capture the way the data
are generated and collected.

The use of constrained-based tools, from the constraints programming to the
solver, is finally under analysis from the researcher community. In this perspec-
tive, we are sure that the approaches developed along this book, generated from
the experience inside the ICON project, not only represents a base for applying
constrained methods to data mining but they are a first step for integrating a
more versatile definition and formulation of mining approach as optimization
problems by using constraint programming tools also considering the emerging
phenomenon of big data.

42 V. Grossi et al.

References

[ABKS99] Ankerst, M., Breunig, M.M., Kriegel, H.-P., Sander, J.: Optics: ordering
points to identify the clustering structure. In: Proceedings of the 1999
ACM SIGMOD International Conference on Management of Data, SIG-
MOD 1999, pp. 49–60. ACM, New York, NY, USA (1999)

[ABR64] Aizerman, M.A., Braverman, E.A., Rozonoer, L.: Theoretical foundations
of the potential function method in pattern recognition learning. Autom.
Remote Control 25, 821–837 (1964)

[AFGY02] Ayres, J., Flannick, J., Gehrke, J., Yiu, T.: Sequential pattern min-
ing using a bitmap representation. In: Proceedings of the Eighth ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD), pp. 429–435 (2002)

[AS94] Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In:
Proceedings of 20th International Conference on Very Large Data Bases
(VLDB 1994), Santiago de Chile, Chile, 12–15 September, pp. 487–499
(1994)

[ATJ+12] Ahmed, C.F., Tanbeer, S.K., Jeong, B.-S., Lee, Y.-K., Choi, H.-J.: Single-
pass incremental and interactive mining for weighted frequent patterns.
Expert Syst. Appl. 39(9), 7976–7994 (2012)

[BBD00] Bradley, P.S., Bennett, K.P., Demiriz, A.: Constrained k-means clustering.
Technical report, MSR-TR-2000-65, Microsoft Research (2000)

[BBM04a] Basu, S., Bilenko, M., Mooney, R.J.: A probabilistic framework for semi-
supervised clustering. In: Proceedings of the Tenth ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining (KDD),
pp. 59–68 (2004)

[BBM04b] Bilenko, M., Basu, S., Mooney, R.J.: Integrating constraints and metric
learning in semi-supervised clustering. In: Proceedings of the Twenty-First
International Conference on Machine Learning, ICML 2004, p. 11. ACM,
New York (2004)

[BCCG12] Baralis, E., Cagliero, L., Cerquitelli, T., Garza, P.: Generalized association
rule mining with constraints. Inf. Sci. 194, 68–84 (2012)

[BDW08] Basu, S., Davidson, I., Wagstaff, K.L.: Constrained Clustering: Advances
in Algorithms, Theory, and Applications. Chapman and Hall/CRC, Boca
Raton (2008)

[Ber91] Bertsekas, D.P.: Linear Network Optimization - Algorithms and Codes.
MIT Press, Cambridge (1991)

[BFOS84] Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and
Regression Trees. Wadsworth International Group, Belmont (1984)

[BG06] Banerjee, A., Ghosh, J.: Scalable clustering algorithms with balancing
constraints. Data Min. Knowl. Discov. 13(3), 365–395 (2006)

[BG08] Banerjee, A., Ghosh, J.: Clustering with balancing constraints. Con-
strained Clustering: Advances in Algorithms. Theory, and Applications,
pp. 171–200. Chapman and Hall/CRC, Boca Raton (2008)

[BGV92] Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal
margin classifiers. In Proceedings of the Fifth Annual Workshop on Com-
putational Learning Theory, COLT 1992, pp. 144–152. ACM, New York
(1992)

[BK03] Barbará, D., Kamath, C. (eds.): Proceedings of the Third SIAM Interna-
tional Conference on Data Mining, 1–3 May 2003. SIAM, San Francisco
(2003)

Data Mining and Constraints: An Overview 43

[BMR97] Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint solving
and optimization. J. ACM 44(2), 201–236 (1997)

[Bur98] Burges, C.J.C.: A tutorial on support vector machines for pattern recog-
nition. Data Min. Knowl. Discov. 2(2), 121–167 (1998)

[BW95] Bult, J.R., Wansbeek, T.J.: Optimal selection for direct mail. Mark. Sci.
14(4), 378–394 (1995)

[CMB03] Capelle, M., Masson, C., Boulicaut, J.F.: Mining frequent sequential pat-
terns under regular expressions: a highly adaptive strategy for pushing
constraints. In: Proceedings of the Third SIAM International Conference
on Data Mining, pp. 316–320 (2003)

[CTG12] Chand, C., Thakkar, A., Ganatra, A.: Sequential pattern mining: survey
and current research challenges. Int. J. Soft Comput. Eng. (IJSCE) 2(1),
2231–2307 (2012)

[CV95] Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–
297 (1995)

[Dav12] Davidson, I.: Two approaches to understanding when constraints help clus-
tering. In: The 18th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD), pp. 1312–1320 (2012)

[DBB08] Demiriz, A., Bennett, K.P., Bradley, P.S.: Using assignment constraints
to avoid empty clusters in k-means clustering. Constrained Clustering:
Advances in Algorithms. Theory, and Applications, pp. 201–220. Chapman
and Hall/CRC, Boca Raton (2008)

[DDV13] Dao, T.-B.-H., Duong, K.-C., Vrain, C.: A declarative framework for con-
strained clustering. In: Blockeel, H., Kersting, K., Nijssen, S., Železný,
F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol. 8190, pp. 419–434.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-40994-3 27

[DH73] Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley,
New York (1973)

[DMM08] Druck, G., Mann, G.S., McCallum, A.: Learning from labeled features
using generalized expectation criteria. In: Proceedings of the 31st Annual
International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR), pp. 595–602 (2008)

[DP96] Domingos, P., Pazzani, M.J.: Beyond independence: conditions for the
optimality of the simple Bayesian classifier. In: Proceedings of the 13th
International Conference on Machine Learning (ICML 1996), Bari, Italy,
pp. 148–156 (1996)

[DR05] Davidson, I., Ravi, S.S.: Clustering with constraints: feasibility issues and
the k-means algorithm. In: Proceedings of the SIAM International Con-
ference on Data Mining (SDM) (2005)

[DR06] Davidson, I., Ravi, S.S.: Identifying and generating easy sets of constraints
for clustering. In: Proceedings of the Twenty-First National Conference
on Artificial Intelligence and the Eighteenth Innovative Applications of
Artificial Intelligence Conference (AAAI), pp. 336–341 (2006)

[DR07] Davidson, I., Ravi, S.S.: The complexity of non-hierarchical clustering with
instance and cluster level constraints. Data Min. Knowl. Discov. 14(1),
25–61 (2007)

[DR09] Davidson, I., Ravi, S.S.: Using instance-level constraints in agglomerative
hierarchical clustering: theoretical and empirical results. Data Min. Knowl.
Discov. 18(2), 257–282 (2009)

http://dx.doi.org/10.1007/978-3-642-40994-3_27

44 V. Grossi et al.

[DWB06] Davidson, I., Wagstaff, K.L., Basu, S.: Measuring constraint-set util-
ity for partitional clustering algorithms. In: Fürnkranz, J., Scheffer, T.,
Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 115–
126. Springer, Heidelberg (2006). doi:10.1007/11871637 15

[EKSX96] Ester, M., Kriegel, H.-P., Sander, J., Xiaowei, X.: A density-based algo-
rithm for discovering clusters in large spatial databases with noise. In:
Proceedings of the Second International Conference on Knowledge Dis-
covery and Data Mining (KDD), pp. 226–231 (1996)

[EZ13] Elloumi, M., Zomaya, A.Y.: Biological Knowledge Discovery Handbook:
Preprocessing, Mining and Postprocessing of Biological Data, 1st edn.
Wiley, New York (2013)

[FH95] Yongjian, F., Han, J.: Meta-rule-guided mining of association rules in
relational databases. In: Proceedings of the Post-Conference Workshops
on Integration of Knowledge Discovery in Databases with Deductive and
Object-Oriented Databases (KDOOD/TDOOD), pp. 39–46 (1995)

[GMN+15] Grossi, V., Monreale, A., Nanni, M., Pedreschi, D., Turini, F.: Clustering
formulation using constraint optimization. In: Bianculli, D., Calinescu,
R., Rumpe, B. (eds.) SEFM 2015. LNCS, vol. 9509, pp. 93–107. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-49224-6 9

[GRS99] Garofalakis, M.N., Rastogi, R., Shim, K.: SPIRIT: Sequential pattern min-
ing with regular expression constraints. In: Proceedings of 25th Interna-
tional Conference on Very Large Data Bases (VLDB), pp. 223–234 (1999)

[GS11] Grossi, V., Sperduti, A.: Kernel-based selective ensemble learning for
streams of trees. In: Walsh, T. (ed.) IJCAI 2011, Proceedings of the 22nd
International Joint Conference on Artificial Intelligence, Barcelona, Cat-
alonia, Spain, 16–22 July 2011, pp. 1281–1287. IJCAI/AAAI (2011)

[GT12] Grossi, V., Turini, F.: Stream mining: a novel architecture for ensemble-
based classification. Knowl. Inf. Syst. 30(2), 247–281 (2012)

[HCXY07] Han, J., Cheng, H., Xin, D., Yan, X.: Frequent pattern mining: current sta-
tus and future directions. Data Min. Knowl. Discov. 15(1), 55–86 (2007)

[HF99] Han, J., Fu, Y.: Mining multiple-level association rules in large databases.
IEEE Trans. Knowl. Data Eng. 11(5), 798–805 (1999)

[HK12] Han, J., Kamber, M.: Data Mining: Concepts and Techniques, 2nd edn.
Morgan Kaufmann, San Francisco (2012)

[HLN99] Han, J., Lakshmanan, L.V.S., Ng, R.T.: Constraint-based multidimen-
sional data mining. IEEE Comput. 32(8), 46–50 (1999)

[HPRZ02] Har-Peled, S., Roth, D., Zimak, D.: Constraint classification: a new app-
roach to multiclass classification. In: Proceedings of the 13th International
Conference Algorithmic Learning Theory (ALT), pp. 365–379 (2002)

[HPY00] Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate gen-
eration. In: Proceedings of the 2000 ACM SIGMOD International Confer-
ence on Management of Data, Dallas, Texas, USA, 16–18 May, pp. 1–12
(2000)

[IWM00] Inokuchi, A., Washio, T., Motoda, H.: An apriori-based algorithm for min-
ing frequent substructures from graph data. In: Zighed, D.A., Komorowski,
J., Żytkow, J. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 13–23.
Springer, Heidelberg (2000). doi:10.1007/3-540-45372-5 2

[Jen96] Jensen, F.V.: An introduction to Bayesian networks. Springer, New York
(1996)

http://dx.doi.org/10.1007/11871637_15
http://dx.doi.org/10.1007/978-3-662-49224-6_9
http://dx.doi.org/10.1007/3-540-45372-5_2

Data Mining and Constraints: An Overview 45

[KK08] Kumar, N., Kummamuru, K.: Semisupervised clustering with metric learn-
ing using relative comparisons. IEEE Trans. Knowl. Data Eng. 20(4),
496–503 (2008)

[KKA04] Kummamuru, K., Krishnapuram, R., Agrawal, R.: Learning spatially vari-
ant dissimilarity (SVaD) measures. In: Proceedings of the Tenth ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD), pp. 611–616 (2004)

[LLS00] Lin, T.S., Loh, W.Y., Shib, Y.S.: A comparison of prediction accuracy,
complexity, and training time of thirty-tree old and new classification algo-
rithms. Mach. Learn. 40(3), 203–228 (2000)

[LYC08] Li, Y.-C., Yeh, J.-S., Chang, C.-C.: Isolated items discarding strategy for
discovering high utility itemsets. Data Knowl. Eng. 64(1), 198–217 (2008)

[MAR96] Mehta, M., Agrawal, R., Rissanen, J.: SLIQ: A fast scalable classifier for
data mining. In: Proceedings of 5th International Conference on Extending
Database Technology (EBDT 1996), Avignon, France, pp. 18–32 (1996)

[ME10] Mabroukeh, N.R., Ezeife, C.I.: A taxonomy of sequential pattern mining
algorithms. ACM Comput. Surv. 43(1), 3: 1–3: 41 (2010)

[Mic97] Michell, T.: Machine Learning. McGraw Hill, New York (1997)
[Mor82] Moret, B.M.E.: Decision trees and diagrams. Comput. Surv. 14(4), 593–

623 (1982)
[MPT09] Masseglia, F., Poncelet, P., Teisseire, M.: Efficient mining of sequential

patterns with time constraints: reducing the combinations. Expert Syst.
Appl. 36(2), 2677–2690 (2009)

[NF07] Nijssen, S., Fromont, É.: Mining optimal decision trees from itemset lat-
tices. In: Proceedings of the 13th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD), pp. 530–539 (2007)

[NF10] Nijssen, S., Fromont, E.: Optimal constraint-based decision tree induction
from itemset lattices. Data Min. Knowl. Discov. Fromont. 21(1), 9–51
(2010)

[NPS00] Niyogi, P., Pierrot, J.-B., Siohan, O.: Multiple classifiers by constrained
minimization. In: Proceedings of the Acoustics, Speech, and Signal
Processing of 2000 IEEE International Conference on ICASSP 2000, vol.
06, pp. 3462–3465. IEEE Computer Society, Washington, DC (2000)

[OY12] Okabe, M., Yamada, S.: Clustering by learning constraints priorities.
In: Proceedings of the 12th International Conference on Data Mining
(ICDM2012), pp. 1050–1055 (2012)

[PF08] Park, S.H., Furnkranz, J.: Multi-label classification with label constraints.
Technical report, Knowledge Engineering Group, TU Darmstadt (2008)

[PHMA+04] Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal,
U., Hsu, M.: Mining sequential patterns by pattern-growth: the prefixspan
approach. IEEE Trans. Knowl. Data Eng. 16(11), 1424–1440 (2004)

[PHW07] Pei, J., Han, J., Wang, W.: Constraint-based sequential pattern mining:
the pattern growth methods. J. Intell. Inf. Syst. 28(2), 133–160 (2007)

[Pyl99] Pyle, D.: Data Preparation for Data Mining. Morgan Kaufmann Publish-
ers Inc., San Francisco (1999)

[Qui86] Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1, 81–106 (1986)
[Qui93] Quinlan, J.R.: C4.5 Programs for Machine Learning. Wadsworth Interna-

tional Group, Belmont (1993)
[Qui96] Quinlan, J.R.: Improved use of continuous attributes in C4.5. J. Artif.

Intell. Res. 4, 77–90 (1996)

46 V. Grossi et al.

[Rug02] Ruggieri, S.: Efficient C4.5. IEEE Trans. Knowl. Data Eng. 14(2), 438–444
(2002)

[SA95] Srikant, R., Agrawal, R.: Mining generalized association rules. In: Pro-
ceedings of the 21st Conference on Very Large Data Bases (VLDB), pp.
407–419 (1995)

[SA96] Srikant, R., Agrawal, R.: Mining sequential patterns: generalizations and
performance improvements. In: Proceedings of the 5th International Con-
ference on Extending Database Technology (EDBT), pp. 3–17 (1996)

[SAM96] Shafer, J., Agrawal, R., Mehta, M.: Sprint: a scalable parallel classifier for
data mining. In: Proceedings of 1996 International Conference on Very
Large Data Bases (VLDB 1996), Bombay, India, pp. 544–555 (1996)

[SC08] Steinwart, I., Christmann, A.: Support Vector Machines, 1st edn. Springer
Publishing Company, Incorporated, Heidelberg (2008)

[SG03] Strehl, A., Ghosh, J.: Relationship-based clustering and visualization for
high-dimensional data mining. INFORMS J. Comput. 15(2), 208–230
(2003)

[Sha09] Shankar, S.: Utility sentient frequent itemset mining and association rule
mining: a literature survey and comparative study. Int. J. Soft Comput.
Appl. 4, 81–95 (2009)

[SJ03] Schultz, M., Joachims, T.: Learning a distance metric from relative com-
parisons. In: Proceedings of Conference Advances in Neural Information
Processing Systems (NIPS) (2003)

[SJ04] Schultz, M., Joachims, T.: Learning a distance metric from relative com-
parisons. In: NIPS, MIT Press (2004)

[SON95] Savasere, A., Omiecinski, E., Navathe, S.B.: An efficient algorithm for min-
ing association rules in large databases. In: Proceedings of the 21st Interna-
tional Conference on Very Large Data Bases (VLDB), Zurich, Switzerland,
11–15 September 1995, pp. 432–444 (1995)

[ST02] Sriphaew, K., Theeramunkong, T.: A new method for finding generalized
frequent itemsets in generalized association rule mining. In: Proceedings
of the 7th IEEE Symposium on Computers and Communications (ISCC),
pp. 1040–1045 (2002)

[SVA97] Srikant, R., Quoc, V., Agrawal, R.: Mining association rules with item con-
straints. In: Proceedings of the Third International Conference on Knowl-
edge Discovery and Data Mining (KDD), pp. 67–73 (1997)

[TJHA05] Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin
methods for structured and interdependent output variables. J. Mach.
Learn. Res. 6, 1453–1484 (2005)

[TM03] Tao, F., Murtagh, F.: Weighted association rule mining using weighted
support and significance framework. In: Proceedings of the 9th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 661–666 (2003)

[Toi96] Toivonen, H.: Sampling large databases for association rules. In: Pro-
ceedings of the 22nd International Conference on Very Large Data Bases
(VLDB), Mumbai (Bombay), India, 3–6 September, pp. 134–145 (1996)

[TSK06] Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addi-
son Wesley, Boston (2006)

[TSWYng] Tseng, V.S., Shie, B.-E., Wu, C.-W., Philip, S.: Efficient algorithms for
mining high utility itemsets from transactional databases. IEEE Transac-
tions on Knowledge and Data Engineering, forthcoming

Data Mining and Constraints: An Overview 47

[VSKSvdH09] Vanderlooy, S., Sprinkhuizen-Kuyper, I.G., Smirnov, E.N., Jaap van den
Herik, H.: The ROC isometrics approach to construct reliable classifiers.
Intell. Data Anal. 13(1), 3–37 (2009)

[WBD06] Wagstaff, K., Basu, S., Davidson, I.: When is constrained clustering bene-
ficial, and why? In: Proceedings of The Twenty-First National Conference
on Artificial Intelligence and the Eighteenth Innovative Applications of
Artificial Intelligence Conference (AAAI) (2006)

[WC00] Wagstaff, K., Cardie, C.: Clustering with instance-level constraints. In:
Proceedings of the Seventeenth National Conference on Artificial Intelli-
gence and Twelfth Conference on on Innovative Applications of Artificial
Intelligence (AAAI/IAAI), p. 1097 (2000)

[WCRS01] Wagstaff, K., Cardie, C., Rogers, S., Schrödl, S.: Constrained k-means
clustering with background knowledge. In: Proceedings of the Eighteenth
International Conference on Machine Learning, ICML 2001, pp. 577–584.
Morgan Kaufmann Publishers Inc., San Francisco (2001)

[WFH11] Witten, I.H., Frank, E., Hall, M.: Data Mining, Pratical Machine Learning
Tools and Techiniques, 3rd edn. Morgan Kaufmann, San Francisco (2011)

[WH11] Wu, C.-M., Huang, Y.-F.: Generalized association rule mining using an
efficient data structure. Expert Syst. Appl. 38(6), 7277–7290 (2011)

[WK91] Weiss, S.M., Kulikowski, C.A.: Computer Systems That Learn: Classi-
fication and Prediction Methods from Statistics, Neural Nets. Machine
Learning and Expert Systems. Morgan Kaufmann, San Francisco (1991)

[WLW10] Wei, J.-T., Lin, S.-Y., Hsin-Hung, W.: A review of the application of RFM
model. Afr. J. Bus. Manag. 4(19), 4199–4206 (2010)

[WWZ+05] Wang, W., Wang, C., Zhu, Y., Shi, B., Pei, J., Yan, X., Han, J.: Graph-
miner: a structural pattern-mining system for large disk-based graph data-
bases and its applications. In: zcan, F. (ed.) SIGMOD Conference, pp.
879–881. ACM (2005)

[WYY00] Wang, W., Yang, J., Philip, S.: Efficient mining of weighted association
rules (WAR). In: Proceedings of the 6th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 270–274 (2000)

[YG04] Yan, W., Goebel, K.F.: Designing classifier ensembles with constrained
performance requirements. In: Proceedings of SPIE Defense and Security
Symposium, Multisensor Multisource Information Fusion: Architectures,
Algorithms, and Applications 2004, pp. 78–87 (2004)

[YH02] Yan, X., Han, J.: gSpan: Graph-based substructure pattern mining. In:
Proceedings of the 2002 IEEE International Conference on Data Min-
ing, ICDM 2002, p. 721. IEEE Computer Society, Washington, DC, USA
(2002)

[YL05] Yun, U., Leggett, J.J.: WFIM: weighted frequent itemset mining with a
weight range and a minimum weight. In: Proceeding of the 2005 SIAM
International Data Mining Conference, Newport Beach, CA, pp. 636–640
(2005)

[YR11] Yun, U., HoRyu, K.: Approximate weighted frequent pattern mining
with/without noisy environments. Knowl.-Based Syst. 24(1), 73–82 (2011)

[YSRY12] Yun, U., Shin, H., Ho Ryu, K., Yoon, E.: An efficient mining algorithm for
maximal weighted frequent patterns in transactional databases. Knowl.-
Based Syst. 33, 53–64 (2012)

[Zak01] Zaki, M.J.: SPADE: an efficient algorithm for mining frequent sequences.
Mach. Learn. 42(1/2), 31–60 (2001)

48 V. Grossi et al.

[ZG03] Zhong, S., Ghosh, J.: Scalable, balanced model-based clustering. In: Pro-
ceedings of the Third SIAM International Conference on Data Mining,
San Francisco (SDM) (2003)

[ZPOL97] Zaki, M.J., Parthasarathy, S., Ogihara, M., Li, W.: New algorithms for
fast discovery of association rules. In: Proceedings of the Third Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD 1997),
Newport Beach, California, USA, 14–17 August, pp. 283–286 (1997)

[ZRL96] Zhang, T., Ramakrishnan, R., Livny, M.: Birch: an efficient data clustering
method for very large databases. SIGMOD Rec. 25(2), 103–114 (1996)

[ZZ02] Zhang, C., Zhang, S.: Association Rule Mining: Models and Algorithms.
LNCS, vol. 2307. Springer, Heidelberg (2002)

[ZZNS09] Zhang, Y., Zhang, L., Nie, G., Shi, Y.: A survey of interestingness mea-
sures for association rules. In: Proceedings of the Second International
Conference on Business Intelligence and Financial Engineering (BIFE),
pp. 460–463 (2009)

Learning to Model

New Approaches to Constraint Acquisition

Christian Bessiere1(B), Abderrazak Daoudi1,2, Emmanuel Hebrard3,
George Katsirelos4, Nadjib Lazaar1, Younes Mechqrane2, Nina Narodytska5,

Claude-Guy Quimper6, and Toby Walsh7

1 CNRS, University of Montpellier, Montpellier, France
bessiere@lirmm.fr

2 University Mohammed V of Rabat, Rabat, Morocco
3 LAAS-CNRS, Toulouse, France
4 MIAT, INRA, Toulouse, France

5 Samsung Research America, Mountain View, USA
6 Université Laval, Quebec City, Canada

7 NICTA, UNSW, Sydney, Australia

Abstract. In this chapter we present the recent results on constraint
acquisition obtained by the Coconut team and their collaborators. In a
first part we show how to learn constraint networks by asking the user
partial queries. That is, we ask the user to classify assignments to subsets
of the variables as positive or negative. We provide an algorithm, called
QuAcq, that, given a negative example, finds a constraint of the target
network in a number of queries logarithmic in the size of the example. In a
second part, we show that using some background knowledge may improve
the acquisition process a lot. We introduce the concept of generalization
query based on an aggregation of variables into types. We propose a gen-
eralization algorithm together with several strategies that we incorporate
in QuAcq. Finally we evaluate our algorithms on some benchmarks.

1 Introduction

A major bottleneck in the use of constraint solvers is modelling. How does the
user write down the constraints of a problem? Several techniques have been
proposed to tackle this bottleneck. For example, the matchmaker agent [13]
interactively asks the user to provide one of the constraints of the target prob-
lem each time the system proposes an incorrect solution. In Conacq.1 [4,5], the
user provides examples of solutions and non-solutions. Based on these examples,
the system learns a set of constraints that correctly classifies all examples given
so far. This is a form of passive learning. In [16], a system based on inductive
logic programming uses background knowledge on the structure of the prob-
lem to learn a representation of the problem correctly classifying the examples.
A last passive learner is ModelSeeker [3]. Positive examples are provided by

Sections 3 and 4 of this paper describe material published in [9], Sect. 5 describes
material published in [8], and Sect. 6 describes results coming from both of these
two papers.

c© Springer International Publishing AG 2016
C. Bessiere et al. (Eds.): Data Mining and Constraint Programming, LNAI 10101, pp. 51–76, 2016.
DOI: 10.1007/978-3-319-50137-6 3

52 C. Bessiere et al.

the user to the system, which arranges each of them as a matrix and identifies
constraints in the global constraints catalog [2] that are satisfied by particular
subsets of variables in all the examples. Such particular subsets are for instance
rows, columns, diagonals, etc. An efficient ranking technique combined with a
representation of solutions as matrices allows ModelSeeker to find quickly a good
model when a problem has an underlying matrix structure.

By contrast, in an active learner like Conacq.2 [6], the system proposes
examples to the user to classify as solutions or non solutions. Such questions
are called membership queries [1]. Such active learning has several advantages.
It can decrease the number of examples necessary to converge to the target set
of constraints. Another advantage is that the user needs not be a human. It
might be a previous system developed to solve the problem. For instance, the
Normind company has hired a constraint programming specialist to transform
their expert system for detecting failures in electric circuits in Airbus airplanes
into a constraint model in order to make it more efficient and easier to maintain.
As another example, active learning is used to build a constraint model that
encodes non-atomic actions of a robot (e.g., catch a ball) by asking queries of
the simulator of the robot in [18]. Such active learning introduces two computa-
tional challenges. First, how does the system generate a useful query? Second,
how many queries are needed for the system to converge to the target set of
constraints? It has been shown that the number of membership queries required
to converge to the target set of constraints can be exponentially large [7].

In this chapter, we propose QuAcq (for QuickAcquisition), an active learner
that asks the user to classify partial queries. Given a negative example, QuAcq
is able to learn a constraint of the target constraint network in a number of
queries logarithmic in the number of variables. In fact, we identify information
theoretic lower bounds on the complexity of learning constraint networks which
show that QuAcq is optimal on some simple languages. However, even that good
theoretical bounds can be hard to put in practice. For instance, QuAcq requires
the user to classify more than 8000 examples to get the complete Sudoku model.
We then propose a new technique to make constraint acquisition more efficient
in practice by using variable types. In real problems, variables often represent
components of the problem that can be classified in various types. For instance, in
a school time-tabling problem, variables can represent teachers, students, rooms,
courses, or time-slots. Such types are often known by the user. To deal with types
of variables, we introduce a new kind of query, namely, generalization query. We
expect the user to be able to decide if a learned constraint can be generalized
to other scopes of variables of the same type as those in the learned constraint.
We propose an algorithm, GenAcq for generalized acquisition, that asks such
generalization queries each time a new constraint is learned. We propose several
strategies and heuristics to select the good candidate generalization query. We
plugged our generalization functionality into the QuAcq constraint acquisition
system, leading to the g-QuAcq algorithm. We experimentally evaluate the
benefits of our algorithms on several benchmark problems. The results show the

New Approaches to Constraint Acquisition 53

polynomial behavior of QuAcq. They also show that g-QuAcq dramatically
improves the basic QuAcq algorithm in terms of number of queries.

One application for QuAcq and g-QuAcq would be to learn a general pur-
pose model. In constraint programming, a distinction is made between model
and data. For example, in a sudoku puzzle, the model contains generic con-
straints like each subsquare contains a permutation of the numbers. The data,
on the other hand, gives the pre-filled squares for a specific puzzle. As a sec-
ond example, in a time-tabling problem, the model specifies generic constraints
like no teacher can teach multiple classes at the same time. The data, on the
other hand, specifies particular room sizes, and teacher availability for a partic-
ular time-tabling problem instance. The cost of learning the model can then be
amortized over the lifetime of the model. Another advantage of this approach
is that it provides less of a burden on the user. First, it often converges quicker
than other methods. Second, partial queries will be easier to answer than com-
plete queries. Third, as opposed to existing techniques, the user does not need
to give positive examples. This might be useful if the problem has not yet been
solved, so there are no examples of past solutions.

The rest of the paper is organized as follows. Section 2 gives the necessary
definitions to understand the technical presentation. Section 3 presents QuAcq,
the algorithm that learns constraint networks by asking partial queries. In Sect. 4,
we show how QuAcq behaves on some simple languages. Section 5 describes the
generalization algorithm g-QuAcq. In Sect. 5.5, several strategies are presented
to make g-QuAcq more efficient. Section 6 presents the experimental results we
obtained when comparing g-QuAcq to the basic QuAcq and when comparing
the different strategies in g-QuAcq. Section 7 concludes the paper and gives
some directions for future research.

2 Background

The learner and the user need to share some common knowledge to communicate.
We suppose this common knowledge, called the vocabulary, is a (finite) set of n
variables X and a domain D = {D(X1), . . . , D(Xn)}, where D(Xi) ⊂ Z is the
finite set of values for Xi. Given a sequence of variables S ⊆ X, a constraint
is a pair (c, S) (also written cS), where c is a relation over Z specifying which
sequences of |S| values are allowed for the variables S. S is called the scope of
cS . A constraint network is a set C of constraints on the vocabulary (X,D). An
assignment eY on a set of variables Y ⊆ X is rejected by a constraint cS if S ⊆ Y
and the projection eY [S] of e on the variables in S is not in c. An assignment
on X is a solution of C iff it is not rejected by any constraint in C. We write
sol(C) for the set of solutions of C, and C[Y] for the set of constraints from C
whose scope is included in Y .

In addition to the vocabulary, the learner owns a language Γ of bounded
arity relations from which it can build constraints on specified sets of variables.
To simplify the descriptions, we only consider languages closed by conjunction,
that is, languages Γ such that if relations c1 and c2 belong to Γ , then relation

54 C. Bessiere et al.

c1 ∩ c2 also belongs to Γ . Adapting terms from machine learning, the constraint
basis, denoted by B, is a set of constraints built from the constraint language Γ
on the vocabulary (X,D) from which the learner builds the constraint network.
Formally speaking, B = {cS | (S ⊆ X) ∧ (c ∈ Γ) ∧ arity(c) = |S|)}.

A concept is a Boolean function over DX = ΠXi∈XD(Xi), that is, a map
that assigns to each e ∈ DX a value in {0, 1}. A target concept is a concept fT
that returns 1 for e if and only if e is a solution of the problem the user has in
mind. e is called a positive or negative example depending on whether fT (e) = 1
or fT (e) = 0. A membership query ASK(e) takes as input a complete assignment
e in DX and asks the user to classify it. The answer to ASK(e) is “yes” if and
only if fT (e) = 1.

To be able to use partial queries, we have an extra condition on the capa-
bilities of the user. Even if she is not able to articulate the constraints of her
problem, she is able to decide if partial assignments of X violate some require-
ments or not. More formally, we consider that the user has in mind her problem
in the form of a target constraint network. A target constraint network is a net-
work CT such that sol(CT) = {e ∈ DX | fT (e) = 1}. A partial query ASK(eY),
with Y ⊆ X, is a classification question asked of the user, where eY is a partial
assignment in DY = ΠXi∈Y D(Xi). A set of constraints C accepts a partial query
eY if and only if there does not exist any constraint cS in C rejecting eY [S]. The
answer to ASK(eY) is “yes” if and only if CT accepts eY . It is important to
observe that “ASK(eY) = yes” does not mean that eY extends to a solution of
CT , which would put an NP-complete problem on the shoulders of the user. For
any assignment eY on Y , κB(eY) denotes the set of all constraints in B rejecting
eY . A classified assignment eY is called positive or negative example depending
on whether ASK(eY) is “yes” or “no”.

We now define convergence, which is the constraint acquisition problem we
are interested in. We are given a set E of (partial) examples labelled by the
user 0 or 1. We say that a constraint network C agrees with E if C accepts
all examples labelled 1 in E and does not accept those labelled 0. The learning
process has converged on the network CL ⊆ B if CL agrees with E and for every
other network C ′ ⊆ B agreeing with E, we have sol(C ′) = sol(CL). If there
does not exist any CL ⊆ B such that CL agrees with E, we say that we have
collapsed. This happens when CT �⊆ B.

Finally, we define types of variables to be used to generalize constraints.
A type Ti is a subset of variables defined by the user as having a common
property. A variable Xi is of type Ti iff Xi ∈ Ti. A scope S = (X1, . . . , Xk) of
variables belongs to a sequence of types T = (T1, . . . , Tk) (denoted by S ∈ T)
if and only if Xi ∈ Ti for all i ∈ 1..k. Consider T = (T1, . . . , Tk) and T ′ =
(T ′

1, . . . , T
′
k) two sequences of types. We say that T ′ covers T (denoted by T � T ′)

iff Ti ⊆ T ′
i for all i ∈ 1..k. A relation c holds on a sequence of types T if and

only if cS ∈ CT for all S ∈ T . A sequence of types T is maximal with respect to
a relation c if and only if c holds on T and there does not exist T ′ covering T
on which c holds.

New Approaches to Constraint Acquisition 55

Algorithm 1. QuAcq: Acquiring a constraint network CT with partial
queries
1 CL ← ∅;
2 while true do
3 if sol(CL) = ∅ then return “collapse”;

4 choose e in DX accepted by CL and rejected by B ;
5 if e = nil then return “convergence on CL”;
6 if ASK(e) = yes then B ← B \ κB(e) ;
7 else
8 S ← FindScope(e, ∅, X, false);
9 cS ← FindC(S);

10 if cS = nil then return “collapse”;
11 else CL ← CL ∪ {cS};

3 Constraint Acquisition with Partial Queries

We propose QuAcq, a novel active learning algorithm. QuAcq takes as input
a basis B on a vocabulary (X,D). It asks partial queries of the user until it
has converged on a constraint network CL equivalent to the target network
CT , or collapses. When a query is answered yes, constraints rejecting it are
removed from B. When a query is answered no, QuAcq enters a loop (functions
FindScope and FindC) that will end by the addition of a constraint to CL.

3.1 Description of QUACQ

QuAcq (see Algorithm 1) initializes the network CL it will learn to the empty
set (line 1). If CL is unsatisfiable (line 3), the space of possible networks col-
lapses because there does not exist any subset of the given basis B that is able
to correctly classify the examples the user has already been asked. In line 4,
QuAcq computes a complete assignment e satisfying CL but violating at least
one constraint from B. (Observe that for this task, the constraint solver needs to
be able to express the negation of the constraints in B. This is not a problem as
we have only bounded arity constraints in B.) If such an example does not exist
(line 5), then all constraints in B are implied by CL, and we have converged. If
we have not converged, we propose the example e to the user, who will answer
by yes or no. If the answer is yes, we can remove from B the set κB(e) of all
constraints in B that reject e (line 6). If the answer is no, we are sure that e vio-
lates at least one constraint of the target network CT . We then call the function
FindScope to discover the scope S of one of these violated constraints (line
8). FindC will return a constraint of CT whose scope is in S (line 9). If no con-
straint is returned (line 10), this is again a condition for collapsing as we could
not find in B a constraint rejecting one of the negative examples. Otherwise, the
constraint returned by FindC is added to the learned network CL (line 11).

56 C. Bessiere et al.

Algorithm 2. Function FindScope: returns the scope of a constraint in CT

1 function FindScope(in e: example, R, Y : scopes, ask query: Boolean):
scope;

2 begin
3 if ask query then
4 if ASK(e[R]) = yes then B ← B \ κB(e[R]) ;
5 else return ∅;

6 if |Y | = 1 then return Y;
7 split Y into < Y1, Y2 > such that |Y1| = �|Y |/2� ;
8 S1 ← FindScope(e, R ∪ Y1, Y2, true);
9 S2 ← FindScope(e, R ∪ S1, Y1, (S1 �= ∅));

10 return S1 ∪ S2;

The recursive function FindScope (see Algorithm 2) takes as parameters
an example e, two sets R and Y of variables, and a Boolean ask query. An
invariant of FindScope is that e violates at least one constraint whose scope
is a subset of R ∪ Y . A second invariant is that FindScope always returns a
subset of Y that is also the subset of the scope of a constraint violated by e. When
FindScope is called with ask query = false, we already know that R does not
contain the scope of a constraint that rejects e (line 3). If ask qery = true we
ask the user whether e[R] is positive or not (line 4). If yes, we can remove all
the constraints that reject e[R] from the basis, otherwise we return the empty
set because we have no guarantee that any variable of Y belongs to a scope (line
5). We reach line 6 only in case e[R] does not violate any constraint. We know
that e[R ∪ Y] violates a constraint. Hence, if Y is a singleton, the variable it
contains necessarily belongs to the scope of a constraint that violates e[R ∪ Y].
The function returns Y . If none of the return conditions are satisfied, the set
Y is split in two balanced parts (line 7) and we apply a technique similar to
QuickXplain [15] to elucidate the variables of a constraint violating e[R ∪ Y]
in a logarithmic number of steps (lines 8–10). The rationale of lines 8 and 9 is
to quickly find sets R and Y so that e[R] is positive and e[R ∪ Y] is negative.
If Y is a singleton this ensures that the variable in Y belongs to the scope of a
constraint we are looking for. This variable is returned and forced to be in R in
all subsequent calls to FindScope.

The function FindC (see Algorithm 3) takes as parameter Y , the scope on
which FindScope has found that there is a constraint from the target network
CT . FindC first removes from B all constraints with scope Y that are implied by
CL because there is no need to learn them (line 3).1 The set Δ is initialized to all
candidate constraints (line 4). In line 6, an example e is chosen in such a way that
Δ contains both constraints rejecting e and constraints satisfying e. If no such
example exists (line 7), this means that all constraints in Δ are equivalent wrt
CL[Y]. Any of them is returned except if Δ is empty (lines 8–9). If a suitable

1 This operation could proactively be done in QuAcq, just after line 11, but we
preferred the lazy mode as this is a computationally expensive operation.

New Approaches to Constraint Acquisition 57

Algorithm 3. Function FindC: returns a constraint of CT with scope Y

1 function FindC(in Y : scope): constraints;
2 begin
3 B ← B \ {cY | CL |= cY };
4 Δ ← {cY | (cY ∈ B[Y]);
5 while true do
6 choose e in sol(CL[Y]) such that ∃cY , c′

Y ∈ Δ, e |= cY and e �|= c′
Y ;

7 if e = nil then
8 if Δ = ∅ then return nil;
9 else pick cY in Δ; return c;

10 if ASK(e) = yes then
11 B ← B \ κB(e); Δ ← Δ \ κB(e);
12 else
13 if ∃cS ∈ κB(e) | S � Y then
14 return FindC(FindScope(e, ∅, S, false));
15 else Δ ← Δ ∩ κB(e) ;

example was found, it is proposed to the user for classification (line 10). If
classified positive, all constraints rejecting it are removed from B and Δ (line
11). Otherwise we test whether the example e does not violate constraints with
scope strictly included in Y (line 13). If yes, we recursively call FindScope and
FindC to find that smaller arity constraint before the one having scope Y (line
14). If no, we remove from Δ all constraints accepting that example e (line 15)
and we continue the loop of line 5.

3.2 Example

We illustrate the behavior of QuAcq on a simple example. Consider the set
of variables X1, . . . , X5 with domains {1..5}, a language Γ = {=, �=}, a basis
B = {=ij , �=ij | i, j ∈ 1..5, i < j}, and a target network CT = {=15, �=34}.
Suppose the first example generated in line 4 of QuAcq is e1 = (1, 1, 1, 1, 1).

Table 1. The example

Call R Y ASK Return

0 ∅ X1, X2, X3, X4, X5 × X3, X4

1 X1, X2, X3 X4, X5 Yes X4

1.1 X1, X2, X3, X4 X5 No ∅

1.2 X1, X2, X3 X4 × X4

2 X4 X1, X2, X3 Yes X3

2.1 X4, X1, X2 X3 Yes X3

2.2 X4, X3 X1, X2 No ∅

58 C. Bessiere et al.

The trace of the execution of FindScope(e1, ∅,X1 . . . X5, false) is in Table 1.
Each line corresponds to a call to FindScope. Queries are always on the vari-
ables in R. ‘×’ in the column ASK means that the previous call returned ∅,
so the question is skipped. The initial call (call-0 in Table 1) does not ask the
question because the initial call to FindScope has the Boolean ask query set
to false. Y is split in two sets Y1 = {X1,X2,X3} and Y2 = {X4,X5} and the
recursive call-1 is performed with R = Y1 and Y = Y2. As e1[R] is classified as
positive, line 4 of FindScope removes the constraints �=12, �=13 and �=23 from B.
A new split of Y leads to the call-1.1 with R = {X1,X2,X3,X4} and Y = {X5}.
As e1[R] is negative, the empty set is returned in line 5. Call-1.2 (line 9) is per-
formed with R = {X1,X2,X3}, Y = {X4} and ask query = true. It merely
detects that Y is a singleton and thus returns {X4}. Call-1 finishes by returning
{X4} one level above in the recursivity (line 10). Call-2 classifies e1[X4] as posi-
tive and goes down to call-2.1 with R = {X4,X1,X2} and Y = {X3}. In call-2.1,
e1[R] is classified positive. FindScope thus removes constraints �=14 and �=24

from B and returns the singleton {X3}. In call-2.2, e1[R] is classified as negative
with R = {X4,X3} and Y = {X1,X2}. This proves that {X3,X4} is the scope
of a constraint rejecting e1. Empty set is returned by call-2.2. As a result, call-2
returns {X3}, and call-0 returns {X3,X4}. Once the scope (X3,X4) is returned,
FindC requires a single example to return �=34 and prune =34 from B. Sup-
pose the next example generated by QuAcq is e2 = (1, 2, 3, 4, 5). FindScope
will find the scope (X1,X5) and FindC will return =15 in a way similar to the
processing of e1. The constraints =12,=13,=14,=23,=24 are removed from B by
a partial positive query on X1, . . . , X4 and �=15 by FindC. Finally, examples
e3 = (1, 1, 1, 2, 1) and e4 = (3, 2, 2, 3, 3), both positive, will prune �=25, �=35,=45

and =25,=35, �=45 from B respectively, leading to convergence.

3.3 Analysis

We analyse the complexity of QuAcq in terms of the number of queries it can
ask of the user. Queries are proposed to the user in lines 6 of QuAcq, 4 of
FindScope and 10 of FindC.

Proposition 1. Given a basis B built from a language Γ , a target network CT ,
a scope Y , FindC uses O(|Γ |) queries to return a constraint cY from CT if it
exists.

Proof. Each time FindC asks a query, whatever the answer of the user, the size
of Δ strictly decreases. Thus the total number of queries asked in FindC is
bounded above by |Δ|, which itself, by construction in line 4, is bounded above
by the number of constraints from Γ of arity |Y |.
Proposition 2. Given a basis B, a target network CT , an example e ∈ DX \
sol(CT), FindScope uses O(|S| · log |X|) queries to return the scope S of one
of the constraints of CT violated by e.

New Approaches to Constraint Acquisition 59

Proof. FindScope is a recursive algorithm that asks at most one query per
call (line 4). Hence, the number of queries is bounded above by the number of
nodes of the tree of recursive calls to FindScope. We will show that a leaf
node is either on a branch that leads to the elucidation of a variable in the
scope S that will be returned, or is a child of a node of such a branch. When a
branch does not lead to the elucidation of a variable in the scope S that will be
returned, that branch necessarily only leads to leaves that correspond to calls
to FindScope that returned the empty set. The only way for a leaf call to
FindScope to return the empty set is to have received a no answer to its query
(line 5). Let Rchild, Ychild be the values of the parameters R and Y for a leaf
call with a no answer, and Rparent, Yparent be the values of the parameters R
and Y for its parent call in the recursive tree. From the no answer to the query
ASK(e[Rchild]), we know that S ⊆ Rchild but S � Rparent because the parent
call received a yes answer. Consider first the case where the leaf is the left child
of the parent node. By construction, Rparent � Rchild � Rparent ∪ Yparent. As
a result, Yparent intersects S, and the parent node is on a branch that leads to
the elucidation of a variable in S. Consider now the case where the leaf is the
right child of the parent node. As we are on a leaf, if the ask query Boolean is
false, we have necessarily exited from FindScope through line 6, which means
that this node is the end of a branch leading to a variable in S. Thus, we are
guaranteed that the ask query Boolean is true, which means that the left child
of the parent node returned a non empty set and that the parent node is on a
branch to a leaf that elucidates a variable in S.

We have proved that every leaf is either on a branch that elucidates a variable
in S or is a child of a node on such a branch. Hence the number of nodes in
the tree is at most twice the number of nodes in branches that lead to the
elucidation of a variable from S. Branches can be at most log |X| long. Therefore
the total number of queries FindScope asks is at most 2 · |S| · log |X|, which is
in O(|S| · log |X|).
Theorem 1. Given a basis B built from a language Γ of bounded arity con-
straints, and a target network CT , QuAcq uses O(|CT | · (log |X| + |Γ |)) queries
to find the target network or to collapse and O(|B|) queries to prove convergence.

Proof. Each time line 6 of QuAcq classifies an example as negative, the scope
of a constraint cS from CT is found in at most |S| · log |X| queries (Proposition
2). As Γ only contains constraints of bounded arity, either |S| is bounded and cS
is found in O(|Γ |) or we collapse (Proposition 1). Hence, the number of queries
necessary for finding CT or collapsing is in O(|CT |·(log |X|+|Γ |)). Convergence is
obtained once B is wiped out thanks to the examples that are classified positive
in line 6 of QuAcq. Each of these examples necessarily leads to at least one
constraint removal from B because of the way the example is built in line 4.
This gives a total in O(|B|).

60 C. Bessiere et al.

4 Learning Simple Languages

In order to gain a theoretical insight into the “efficiency” of QuAcq, we look
at some simple languages, and analyze the number of queries required to learn
networks on these languages. In some cases, we show that QuAcq will learn
problems of a given language with an asymptotically optimal number of queries.
However, for some other languages, a suboptimal number of queries can be nec-
essary in the worst case. Our analysis assumes that when generating a complete
example in line 4 of QuAcq, the solution of CL maximizing the number of
violated constraints in the basis B is chosen.

4.1 Languages for Which QUACQ is Optimal

Theorem 2. QuAcq learns Boolean networks on the language {=, �=} in an
asymptotically optimal number of queries.

Proof (Sketch). First, we give a lower bound on the number of queries required to
learn a constraint network in this language. Consider the restriction to equalities
only. In an instance of this language, all variables of a connected component must
be equal. This is isomorphic to the set of partitions of n objects, whose size is
given by Bell’s Number :

C(n + 1) =
{

1 if n = 0∑n
i=1

(
n
i

)
C(n − i) if n > 0 (1)

By an information theoretic argument, at least log C(n) queries are required to
learn such a problem. This entails a lower bound of Ω(n log n) since log C(n) ∈
Ω(n log n) (see [12] for the proof). The language {=, �=} is richer and thus
requires at least as many queries.

Second, we consider the query submitted to the user in line 6 of QuAcq and
count how many times it can receive the answer yes and no. The key observa-
tion is that an instance of this language contains at most O(n) non-redundant
constraints. For each no answer in line 6 of QuAcq, a new constraint will even-
tually be added to CL. Only non-redundant constraints are discovered in this
way because the query must satisfy CL. It follows that at most O(n) such queries
are answered no, each one entailing O(log n) more queries through the procedure
FindScope.

Now we bound the number of yes answers in line 6 of QuAcq. The same
observation on the structure of this language is useful here as well. We show in the
complete proof that a query maximizing the number of violations of constraints
in the basis B while satisfying the constraints in CL violates at least
|B|/2�
constraints in B. Thus, each query answered yes at least halves the number of
constraints in B. It follows that the query submitted in line 6 of QuAcq cannot
receive more than O(log n) yes answers. The total number of queries is therefore
bounded by O(n log n).

The same argument holds for simpler languages ({=} and {�=} on Boolean
domains). Moreover, this is still true for {=} on arbitrary domains.

New Approaches to Constraint Acquisition 61

Corollary 1. QuAcq can learn constraint networks with unbounded domains
on the language {=} in an asymptotically optimal number of queries.

4.2 Languages for Which QUACQ Is Not Optimal

First, we show that a Boolean constraint network on the language {<} can
be learnt with O(n) queries. Then, we show that QuAcq requires Ω(n log n)
queries.

Theorem 3. Boolean constraint networks on the language {<} can be learned
in O(n) queries.

Proof. Observe that in order to describe such a problem, the variables can be
partionned into three sets, one for variables that must take the value 0 (i.e.,
on the left side of a < constraint), a second for variables that must take the
value 1 (i.e., on the right side of a < constraint), and the third for unconstrained
variables. In the first phase, we greedily partition variables into three sets, L,R,U
initially empty and standing respectively for Left, Right and Unknown. During
this phase, we have three invariants:

1. There is no x, y ∈ U such that x < y belongs to the target network
2. x ∈ L iff there exists y ∈ U and a constraint x < y in the target network
3. x ∈ R iff there exists y ∈ U and a constraint y < x in the target network

We go through all variables of the problem, one at a time. Let x be the last
variable picked. We query the user with an assignment where x, as well as all
variables in U are set to 0, and all variables in R are set to 1 (variables in L
are left unassigned). If the answer is yes, then there is no constraints between
x and any variable in y ∈ U , hence we add x to the set of undecided variables
U without breaking any invariant. Otherwise we know that x is either involved
in a constraint y < x with y ∈ U , or a constraint x < y with y ∈ U . In order
to decide which way is correct, we make a second query, where the value of x
is flipped to 1 and all other variables are left unchanged. If this second query
receives a yes answer, then the former hypothesis is true and we add x to R,
otherwise, we add it to L. Here again, the invariants still hold.

At the end of the first phase, we therefore know that variables in U have no
constraints between them. However, they might be involved in constraints with
variables in L or in R. In the second phase, we go over each undecided variable
x ∈ U , and query the user with an assignment where all variables in L are set
to 0, all variables in R are set to 1 and x is set to 0. If the answer is no, we
conclude that there is a constraint y < x with y ∈ L and therefore x is added to
R (and removed from U). Otherwise, we ask the same query, but with the value
of x flipped to 1. If the answer is no, there must exists y ∈ R such that x < y
belongs to the network, hence x is added to R (and removed from U). Last, if
both queries get the answer yes, we conclude that x is not constrained. When
every variable has been examined in this way, variables remaining in U are not
constrained.

62 C. Bessiere et al.

Theorem 4. QuAcq does not learn Boolean networks on the language {<}
with a minimal number of queries.

Proof. By Theorem 3, we know that these networks can be learned in O(n)
queries. Such networks can contain up to n − 1 non redundant constraints.
QuAcq learns constraints one at a time, and each call to FindScope takes
Ω(log n) queries. Therefore, QuAcq requires Ω(n log n) queries.

5 Constraint Acquisition with Generalization Queries

In this section we present GenAcq, a generalized acquisition algorithm, The idea
behind this algorithm is, given a constraint cS learned on S, to generalize this
constraint to sequences of types T covering S by asking generalization queries
AskGen(T, c). A generalization query AskGen(T, c) is answered yes by the user
if and only if for every sequence S of variables covered by T the relation c holds
on S in the target constraint network CT .

5.1 Description of GENACQ

The algorithm GenAcq (see Algorithm 4) takes as input a target constraint cS
that has already been learned and a set NonTarget of constraints that are known
not to belong to the target network. GenAcq returns the set of all sequences of
scopes that are maximal with respect to the relation c. GenAcq uses the global
data structure NegativeQ, which is a set of pairs (T, c) for which we know that c
does not hold on all sequences of variables covered by T . cS and NonTarget can
come from any constraint acquisition mechanism or as background knowledge.
NegativeQ is built incrementally by each call to GenAcq. GenAcq also uses
the set Table as local data structure. Table will contain all sequences of types
that are candidates for generalizing cS .

In line 2, GenAcq initializes the set Table to all possible sequences T of types
that contain the scope S of the constraint cS . In line 3, GenAcq initializes the
set G to the sequence S. G will contain the output of GenAcq, that is, the set
of maximal sequences from Table on which c holds. The counter #NoAnswers
counts the number of consecutive times generalization queries have been classi-
fied negative by the user. It is initialized to zero (line 4). #NoAnswers is not
used in the basic version of GenAcq but it will be used in the version with
cutoffs. (In other words, the basic version uses cutoffNo = +∞ in line 8).

The first loop in GenAcq (line 5) eliminates from Table all sequences T
for which we already know the answer to the query AskGen(T, c). In line 6,
GenAcq eliminates from Table all sequences T such that a relation c′ entailed
by c is already known not to hold on a sequence T ′ covered by T (i.e., (T ′, c′)
is in NegativeQ). We can remove such sequences because the absence of c′ on
some scope in T ′ implies the absence of c on some scope in T (see Lemma 1).
In line 7, GenAcq eliminates from Table all sequences T such that we know
from NonTarget that there exists a scope S′ in T such that cS′ does not belong
to CT .

New Approaches to Constraint Acquisition 63

Algorithm 4. GenAcq: returns the maximum generalizations of a
constraint cS
1 function GenAcq(in cS : constraint, NonTarget: set): Generalizations;
2 Table ← {T | S ∈ T} \ {S};
3 G ← {S} ;
4 #NoAnswers ← 0 ;
5 foreach T ∈ Table do
6 if ∃(T ′, c′) ∈ NegativeQ | c ⊆ c′ ∧ T ′ � T then Table ← Table \ {T} ;
7 if ∃cS′ ∈ NonTarget | S′ ∈ T then Table ← Table \ {T} ;

8 while Table �= ∅ ∧ #NoAnswers < cutoffNo do
9 pick T in Table ;

10 if AskGen(T, c) = yes then
11 G ← G ∪ {T} \ {T ′ ∈ G | T ′ � T};
12 Table ← Table \ {T ′ ∈ Table | T ′ � T};
13 #NoAnswers ← 0;

14 else
15 Table ← Table \ {T ′ ∈ Table | T � T ′} ;
16 NegativeQ ← NegativeQ ∪ {(T, c)} ;
17 #NoAnswers + +;

18 return G;

In the main loop of GenAcq (line 8), we pick a sequence T from Table at
each iteration and we ask a generalization query to the user (line 10). If the
user says yes, T is a sequence on which c holds. We put T in G and remove
from G all sequences covered by T , so as to keep only the maximal ones (line
11). We also remove from Table all sequences T ′ covered by T (line 12) to avoid
asking redundant questions later. If the user says no, we remove from Table all
sequences T ′ that cover T (line 15) because we know they are no longer candidate
for generalization of c and we store in NegativeQ the fact that (T, c) has been
answered no. The loop finishes when Table is empty and we return G (line 18).

5.2 Completeness and Complexity

We analyze the completeness and complexity of GenAcq in terms of number of
generalization queries it ask of the user.

Lemma 1. If AskGen(T, c) = no then for any (T ′, c′) such that T � T ′ and
c′ ⊆ c, we have AskGen(T ′, c′) = no.

Proof. Assume that AskGen(T, c) = no. Hence, there exists a sequence S ∈ T
such that cS /∈ CT . As T � T ′ we have S ∈ T ′ and then we know that cS /∈ CT .
As c′ ⊆ c, we also have c′

S /∈ CT . As a result, AskGen(T ′, c′) = no.

Lemma 2. If AskGen(T, c) = yes then for any T ′ such that T ′ � T , we have
AskGen(T ′, c) = yes.

64 C. Bessiere et al.

Proof. Assume that AskGen(T, c) = yes. As T ′ � T , for all S ∈ T ′ we have
S ∈ T and then we know that cS ∈ CT . As a result, AskGen(T ′, c) = yes.

Proposition 3 (Completeness). When called with constraint cS as input, the
algorithm GenAcq returns all maximal sequences of types covering S on which
the relation c holds.

Proof. All sequences covering S are put in Table. A sequence in Table is either
asked for generalization or removed from Table in lines 6, 7, 12, or 15. We know
from Lemma 1 that a sequence removed in line 6, 7, or 15 would necessarily lead
to a no answer. We know from Lemma 2 that a sequence removed in line 12 is
subsumed and less general than another one just added to G.

Proposition 4. Given a learned constraint cS and its associated Table,
GenAcq uses O(|Table|) generalization queries to return all maximal sequences
of types covering S on which the relation c holds.

Proof. For each query on T ∈ Table asked by GenAcq, the size of Table strictly
decreases regardless of the answer. As a result, the total number of queries is
bounded above by |Table|.

5.3 Illustrative Example

Let us take the Lewis Carroll’s Zebra problem to illustrate our generalization
approach. The problem is to find where the zebra lives, given five houses of
five different colors, owned by five men of five different nationalities, having
five different drinks, cigarets, and pets. (See for instance [10] for a complete
description of the Zebra problem.) The Zebra problem has a single solution.
The target network is formulated using 25 variables, partitioned in 5 types of
5 variables each. The ith variable of a given type represents the number of the
house where the ith element of the given type is located. The types are color,
nationality, drink, cigaret, pet, and the trivial type X of all variables. There is a
clique of �= constraints on all pairs of variables of the same non trivial type and
14 additional constraints given in the description of the problem.

Figure 1 shows the variables of the Zebra problem and their types. In
this example, the constraint X2 �= X5 has been learned between the
two color variables X2 and X5. This constraint is given as input of the
GenAcq algorithm. GenAcq computes the Table of all sequences of types
covering the scope (X2,X5). Table = {(X2, color), (X2,X), (color,X5),
(color, color), (color,X), (X,X5), (X, color), (X,X)}. Suppose we pick T =
(X,X5) at line 9 of GenAcq. According to the user’s answer (no in this case),
the Table is reduced to Table = {(X2, color), (X2,X), (color,X5), (color, color),
(color,X)}. As next iteration, let us pick T = (color, color). The user will
answer yes because there is indeed a clique of �= on the color variables.
Hence, (color, color) is added to G and the Table is reduced to Table =
{(X2,X), (color,X)}. If we pick (X2,X), the user answers no and we reduce
the Table to the empty set and return G = {(color, color)}, which means that
the constraint X2 �= X5 can be generalized to all pairs of variables in the sequence
(color, color), that is, (Xi �= Xj) ∈ CT for all (Xi,Xj) ∈ (color, color).

New Approaches to Constraint Acquisition 65

Fig. 1. Variables and types for the Zebra problem.

5.4 Using Generalization in QUACQ

GenAcq is a generic technique that can be plugged into any constraint acqui-
sition system. In this section we present g-QuAcq, a constraint acquisition
algorithm obtained by plugging GenAcq into QuAcq, g-QuAcq is presented
in Algorithm 5.

Algorithm 5. g-QuAcq = QuAcq + GenAcq

1 CL ← ∅, NonTarget ← ∅;
2 while true do
3 if sol(CL) = ∅ then return”collapse”;

4 choose e in DX accepted by CL and rejected by B;
5 if e = nil then return “convergence on CL”;
6 if Ask(e) = yes then
7 B ← B \ κB(e);
8 NonTarget ← NonTarget ∪ κB(e);

9 else
10 cS ← FindC(e,FindScope(e, ∅, X, false));
11 if cS = nil then return “collapse”;
12 else
13 G ← GenAcq(cS , NonTarget);
14 foreach T ∈ G do CL ← CL ∪ {cS′ | S′ ∈ T} ;

g-QuAcq has a structure very similar to QuAcq. It initializes the set
NonTarget and the network CL it will learn to the empty set (line 1). If CL is
unsatisfiable (line 3), the space of possible networks collapses because there does
not exist any subset of the given basis B that is able to correctly classify the

66 C. Bessiere et al.

examples the user has already been asked. In line 4, QuAcq computes a com-
plete assignment e satisfying CL but violating at least one constraint from B. If
such an example does not exist (line 5), then all constraints in B are implied by
CL, and we have converged. If we have not converged, we propose the example
e to the user, who will answer by yes or no (line 6). If the answer is yes, we
can remove from B the set κB(e) of all constraints in B that reject e (line 7)
and we add all these ruled out constraints to the set NonTarget to be used in
GenAcq (line 8). If the answer is no, we are sure that e violates at least one
constraint of the target network CT . We then call the function FindScope to
discover the scope of one of these violated constraints. FindC will select which
one with the given scope is violated by e (line 10). If no constraint is returned
(line 11), this is again a condition for collapsing as we could not find in B a
constraint rejecting one of the negative examples. Otherwise, we know that the
constraint cS returned by FindC belongs to the target network CT . This is
here that the algorithm differs from QuAcq as we call GenAcq to find all the
maximal sequences of types covering S on which c holds. They are returned in
G (line 13). Then, for every sequence of variables S′ belonging to one of these
sequences in G, we add the constraint cS′ to the learned network CL (line 14).

5.5 Strategies

GenAcq learns the maximal sequences of types on which a constraint can be
generalized. The order in which sequences are picked from Table in line 9 of
Algorithm 4 is not specified by the algorithm. As shown on the following example,
different orderings can lead more or less quickly to the good (maximal) sequences
on which a relation c holds. Let us come back to our example on the Zebra
problem (Sect. 5.3). In the way we developed the example, we needed only 3
generalization queries to empty the set Table and converge on the maximal
sequence (color, color) on which �= holds:

1. AskGen((X,X5), �=) = no
2. AskGen((color, color), �=) = yes
3. AskGen((X2,X), �=) = no

Using another ordering, GenAcq needs 8 generalization queries:

1. AskGen((X,X), �=) = no
2. AskGen((X, color), �=) = no
3. AskGen((color,X), �=) = no
4. AskGen((X,X5), �=) = no
5. AskGen((X2,X), �=) = no
6. AskGen((X2, color), �=) = yes
7. AskGen((color,X5), �=) = yes
8 AskGen((color, color), �=) = yes

If we want to reduce the number of generalization queries, we may wonder
which strategy to use. In this section we propose two techniques. The first idea

New Approaches to Constraint Acquisition 67

is to pick sequences in the set Table following an order given by a heuristic that
will try to minimize the number of queries. The second idea is to put a cutoff
on the number of consecutive negative queries we accept to face, leading to a
non complete generalization startegy: the output of GenAcq will no longer be
guaranteed to be the maximal sequences.

Query Selection Heuristics. We propose some query selection heuristics to
decide which sequence to pick next from Table. We first propose optimistic
heuristics, which try to take the best from positive answers:

– max CST: This heuristic selects a sequence T maximizing the number of pos-
sible constraints cS in the basis such that S is in T and c is the relation we try
to generalize. The intuition is that if the user answers yes, the generalization
will be maximal in terms of number of constraints.

– max VAR: This heuristic selects a sequence T involving a maximum number
of variables, that is, maximizing |⋃S∈T S|. The intuition is that if the user
answers yes, the generalization will involve many variables.

Dually, we propose pessimistic heuristics, which try to take the best from
negative answers:

– min CST: This heuristic selects a sequence T minimizing the number of pos-
sible constraints cS in the basis such that S is in T and c is the relation we
try to generalize. The intuition is to maximize the chances to receive a yes
answer. If, despite this, the user answers no, a great number of sequences are
removed from Table (see Lemma 1).

– min VAR: This heuristic selects a sequence T involving a minimum num-
ber of variables, that is, minimizing |⋃S∈T S|. The intuition is to maximize
the chances of a yes answer while focusing on smaller sets of variables than
min CST. Again, a no answer leads to a great number of sequences removed
from Table.

As a baseline for comparison, we define a random selector.

– random: It picks randomly a sequence T in Table.

Using Cutoffs. The idea here is to exit GenAcq before having proved the
maximality of the sequences returned. We put a threshold cutoffNo on the num-
ber of consecutive negative answers to avoid using queries to check unpromis-
ing sequences. The hope is that GenAcq will return near-maximal sequences of
types despite not proving maximality. This cutoff strategy is implemented by set-
ting the variable cutoffNo to a predefined value. In lines 13 and 17 of GenAcq,
a counter of consecutive negative answers is respectively reset and incremented
depending on the answer from the user. In line 8, that counter is compared to
cutoffNo to decide to exit or not.

68 C. Bessiere et al.

6 Experimental Evaluation

We made some experiments to evaluate the behavior of active learning with par-
tial queries (QuAcq) and to test the impact of using generalization (GenAcq).
GenAcq was plugged in QuAcq, leading to g-QuAcq. All the experiments
were done on an Intel Xeon E5462 @ 2.80 GHz with 16 Gb of RAM.

We first present the benchmark problems we used for our experiments. Then,
we report the results of several experiments. The first experiment presents the
performance of QuAcq to learn our benchmark problems. The second one com-
pares the performance of g-QuAcq to the basic QuAcq. The third reports
experiments evaluating the different strategies we proposed (query selection
heuristics and cutoffs) on g-QuAcq. Finally, we evaluate the performance of
g-QuAcq when our knowledge of the types of variables is incomplete.

6.1 Benchmark Problems

Problems Without Types

Random. We generated binary random target networks with 50 variables,
domains of size 10, and m binary constraints. The binary constraints are selected
from the language Γ = {≥,≤, <,>, �=,=}. QuAcq is initialized with the basis B
containing the complete graph of 7350 binary constraints taken from Γ . For den-
sities m = 12 (under-constrained) and m = 122 (phase transition) we launched
QuAcq on 100 instances and report averages.

Golomb Rulers (prob006 in [14]). A Golomb ruler is a set of m marks to put on
a ruler so that the distances between marks are all distinct. This is encoded as a
target network with m variables corresponding to the m marks, and constraints
of varying arity. We learned the target network encoding the 8 mark ruler. We
initialized QuAcq and g-QuAcq with a basis of 55,484 constraints taken from
a language with 24 basic arithmetic and distance constraints with unary, binary,
ternary and quaternary scopes.

Problems with Types

Zebra Problem. Lewis Carroll’s zebra problem has a single solution. The target
network is formulated using 25 variables of domain size of 5 with 5 cliques of �=
constraints and 11 additional constraints given in the description of the problem.
We initialized QuAcq and g-QuAcq with a basis of 6,850 constraints taken
from a language with 24 basic arithmetic and distance constraints with unary,
binary, ternary and quaternary scopes. In g-QuAcq, the variables are given as
the 5 types of 5 variables that naturally occur from the problem description
(color, nationality, pet, cigaret, drink).

New Approaches to Constraint Acquisition 69

Sudoku. The Sudoku logic puzzle is a 9×9 grid pre-filled with some numbers. It
must be completed in such a way that all the rows, all the columns and the 9 non
overlapping 3× 3 squares contain the numbers 1 to 9. The target network of the
Sudoku has 81 variables with domains of size 9 and 810 binary �= constraints on
rows, columns and squares. QuAcq and g-QuAcq are initialized with a basis
B of 6,480 binary constraints from the language Γ = {=, �=}. In this problem,
the types are the 9 rows, 9 columns and 9 squares, of 9 variables each.

Latin Square. The Latin square problem consists of an n × n table in which
each element occurs once in every row and column. For this problem, we use
25 variables with domains of size 5 and 100 binary �= constraints on rows and
columns. Rows and columns are the types of variables (10 types). QuAcq and
g-QuAcq are initialized with a basis of constraints based on the language Γ =
{=, �=}.

Radio Link Frequency Assignment Problem. The RLFAP problem is to provide
communication channels from limited spectral resources [11]. The constraint
model of the instance we selected has 25 variables with domains of size 25
and 125 binary constraints. We have five stations of five terminals (transmit-
ters/receivers), which form five types. We initialized QuAcq and g-QuAcq
with a basis of 1,800 binary constraints taken from a language of 6 arithmetic
and distance constraints.

Purdey [17]. Like Zebra, this problem has a single solution. Four families have
stopped by Purdeys general store, each to buy a different item and paying differ-
ently. Under a set of additional constraints given in the description, the problem
is how can we match family with the item they bought and how they paid for
it. The target network of Purdey has 12 variables with domains of size 4 and
30 binary constraints. Here we have three types of variables, which are family,
bought and paid, each of them contains four variables. We initialized QuAcq
and g-QuAcq with a basis of constraints based on the language Γ = {=, �=}.

6.2 QUACQ Evaluation

To ensure rapid converge, we want a query answered yes to prune B as much as
possible. This is best achieved when the query generated in line 4 of QuAcq is
an assignment violating a large number of constraints in B. We implemented the
max heuristic to generate a solution of CL that violates a maximum number of
constraints from B. However, this heuristic can be time consuming as it solves
an optimization problem. We then added a cutoff of 1 or 10 seconds to the solver
using max, which gives the two heuristics max-1 and max-10 respectively. We
also implemented a cheaper heuristic that we call sol. It simply solves CL and
stops at its first solution violating at least one constraint from B.

Our first experiment was to compare max-1 and max-10 on large problems.
We observed that the performance when using max-1 is not significantly worse in
number of queries than when using max-10. For instance, on the rand 50 10 122,
#Ask = 1074 for max-1 and #Ask = 1005 for max-10. The average time for

70 C. Bessiere et al.

Table 2. Results of QuAcq learning until convergence.

|CL| #Ask #Askc Ask Time

rand 50 10 12 max-1 12 196 34 24.04 0.23

sol 12 286 133 33.22 0.09

rand 50 10 122 max-1 86 1074 94 13.90 0.14

sol 83 1062 120 15.64 0.06

Golomb-8 max-1 83 438 83 5.12 0.85

sol 127 645 132 5.34 0.46

Zebra max-1 60 764 61 10.99 0.29

sol 60 752 61 11.17 0.06

Sudoku 9 × 9 max-1 810 8645 821 20.58 0.16

sol 810 9593 815 20.84 0.06

generating a query is 0.14 s for max-1 and 0.86 s for max-10 with a maximum
of 1 and 10 s respectively. We then chose not to report results for max-10.

Table 2 reports the results obtained with QuAcq to reach convergence using
the heuristics max-1 and sol. We report the size |CL| of the learned network
(which can be smaller than the target network due to redundant constraints),
the total number #Ask of queries, the number #Askc of complete queries (i.e.,
generated in line 4 of QuAcq), the average size Ask of all queries, and the
average time needed to compute a query (in seconds). A first observation is
that max-1 generally requires less queries than sol to reach convergence. This
is especially true for rand 50 10 12, which is very sparse, and Golomb-8, which
contains many redundant constraints. If we have a closer look, these differences
are mainly explained by the fact that max-1 requires significantly less complete
positive queries than sol to totally prune B and prove convergence (22 complete
positive queries for max-1 and 121 for sol on rand 50 10 12). But in general,
sol is not as bad as we could have expected. The reason is that, except on very
sparse networks, the number of constraints from B violated ‘by chance’ with sol
is large enough. The second observation is that when the network contains a lot
of redundancies, max-1 converges on a smaller network than sol. We observed
this on Golomb-8, and other problems not reported here. The third observation
is that the average size of queries is always significantly smaller than the number
of variables in the problem. A last observation is that sol is very fast for all its
queries (see the time column). We can expect it to be usable on even larger
problems.

As a second experiment we evaluated the effect of the size of the basis on
the number of queries. On the zebra problem we initialized QuAcq with bases
of different sizes and stored the number of queries for each run. Figure 2 shows
that when |B| grows, the number of queries follows a logarithmic scale. This is
very good news as it means that learning problems with expressive bases will
scale well.

New Approaches to Constraint Acquisition 71

Fig. 2. QuAcq behavior on different basis sizes for Zebra

QuAcq has two main advantages over learning with membership queries, as
in Conacq. One is the small average size of queries Ask, which are probably
easier to answer by the user. The second advantage is the time to generate
queries. Conacq.2 needs to find examples that violate exactly one constraint
of the basis to make progress towards convergence. This can be expensive to
compute, preventing the use of Conacq.2 on large problems. QuAcq, on the
other hand, can use cheap heuristics like max-1 and sol to generate queries.

6.3 Using Generalization Queries

For all our experiments we report, the total number #Ask of standard queries
asked by the basic QuAcq, the total number #AskGen of generalization queries,
and the numbers #no and #yes of negative and positive generalization queries,
respectively, where #AskGen = #no + #yes. The time overhead of using
g-QuAcq rather than QuAcq is not reported. Computing a generalization
query takes a few milliseconds.

Our first experiment compares QuAcq and g-QuAcq in its baseline ver-
sion, g-QuAcq + random, on our benchmark problems. Table 3 reports the
results. We observe that the number of queries asked by g-QuAcq is dramat-
ically reduced compared to QuAcq. This is especially true on problems with
many types involving many variables, such as Sudoku or Latin square. g-QuAcq
acquires the Sudoku with 260 standard queries plus 166 generalization queries,
when QuAcq acquires it in 8645 standard queries.

Let us now focus on the behavior of our different heuristics in g-QuAcq.
The upper part of Table 4 reports the results obtained with g-QuAcq using

72 C. Bessiere et al.

Table 3. QuAcq vs g-QuAcq.

QuAcq g-QuAcq + random

#Ask #Ask #AskGen

Zebra 764 257 67

Sudoku 8645 260 166

Latin square 1129 117 60

RFLAP 1653 151 37

Purdey 173 82 31

min VAR, min CST, max VAR, and max CST to acquire the Sudoku model.
(Other problems showed similar trends.) The results clearly show that max VAR,
and max CST are very bad heuristics. They are worse than the baseline random.
On the contrary, min VAR and min CST significantly outperform random. They
respectively require 90 and 132 generalization queries instead of 166 for random.
Notice that they all ask the same number of standard queries (260) as they all
find the same maximal sets of sequences for each learned constraint.

The lower part of Table 4 we compare the behavior of our two best heuristics
(min VAR and min CST) when combined with the cutoff strategy. We tried all
values of the cutoff from 1 to 3. A first observation is that min VAR remains the
best whatever the value of the cutoff is. Interestingly, even with a cutoff equal
to 1, min VAR requires the same number of standard queries as the versions of
g-QuAcq without cutoff. This means that using min VAR as selection heuris-
tic in Table, g-QuAcq is able to return the maximal sequences despite being
stopped after the first negative generalization answer. We also observe that
the number of generalization queries with min VAR decreases when the cutoff

Table 4. g-QuAcq with heuristics and cutoff strategy on Sudoku.

Cutoff #Ask #AskGen #yes #no

Random +∞ 260 166 42 124

min VAR 90 21 69

min CST 132 63 69

max VAR 263 63 200

max CST 247 21 226

min VAR 3 260 75 21 54

2 57 21 36

1 39 21 18

min CST 3 626 238 112 126

2 679 231 132 99

1 837 213 153 60

New Approaches to Constraint Acquisition 73

becomes smaller (from 90 to 39 when the cutoff goes from +∞ to 1). By looking
at the last two columns we see that this is the number #no of negative answers
which decreases. The good performance of min VAR + cutoff = 1 can thus be
explained by the fact that min VAR selects first queries that cover a minimum
number of variables, which increases the chances to have a yes answer. Finally,
we observe that the heuristic min CST does not have the same nice characteris-
tics as min VAR. The smaller the cutoff, the more standard queries are needed,
not compensating for the saving in number of generalization queries (from 260
to 837 standard queries for min CST when the cutoff goes from +∞ to 1). This
means that with min CST, when the cutoff becomes too small, GenAcq does
not return the maximal sequences of types where the learned constraint holds.

Table 5. g-QuAcq with random, min VAR, and cutoff = 1 on Zebra, Latin square,
RLFAP, and Purdey.

#Ask #AskGen #yes #no

Zebra Random 257 67 10 57

min VAR 48 5 43

min VAR+ cutoff = 1 23 5 18

L.Square Random 117 60 16 44

min VAR 34 10 24

min VAR+ cutoff = 1 20 10 10

RLFAP Random 151 37 16 21

min VAR 41 14 27

min VAR+ cutoff = 1 22 14 8

Purdey Random 82 31 5 26

min VAR 24 3 21

min VAR+ cutoff = 1 12 3 9

In Table 5, we report the performance of g-QuAcq with random, min VAR
and min VAR + cutoff = 1 on all the other problems. We see that min VAR
+ cutoff = 1 significantly improve the performance of g-QuAcq on all problems.
As in the case of Sudoku, we observe that min VAR + cutoff = 1 does not lead to
an increase in the number of standard queries. This means that on all these prob-
lems min VAR + cutoff = 1 always returns the maximal sequences while asking
less generalization queries with negative answers.

From these experiments we see that g-QuAcq with min VAR + cutoff = 1
leads to tremendous savings in number of queries compared to QuAcq: 257 + 23
instead of 764 on Zebra, 260 + 39 instead of 8645 on Sudoku, 117 + 20 instead
of 1129 on Latin square, 151 + 22 instead of 1653 on RLFAP, 82 + 12 instead of
173 on Purdey.

In our last experiment, we show the effect on the performance of g-QuAcq
of a lack of knowledge on some variable types. We took again our 5 benchmark

74 C. Bessiere et al.

Fig. 3. g-QuAcq on RLFAP when the percentage of provided types increases.

problems in which we have varied the amount of types known by the algorithm.
This simulates a situation where the user does not know that some variables are
from the same type. For instance, in Sudoku, the user could not have noticed
that variables are arranged in columns. Figure 3 shows the number of standard
queries and generalization queries asked by g-QuAcq with min VAR + cutoff = 1
to learn the RLFAP model when fed with an increasingly more accurate knowl-
edge of types. We observe that as soon as a small percentage of types is known

Table 6. g-QuAcq when the percentage of provided types increases.

% of types #Ask #AskGen

Zebra 0 764 0

20 619 12

40 529 20

60 417 27

80 332 40

100 257 48

Sudoku 9 × 9 0 8645 0

33 3583 232

66 610 60

100 260 39

Latin square 0 1129 0

50 469 49

100 117 20

Purdey 0 173 0

33 111 8

66 100 10

100 82 12

New Approaches to Constraint Acquisition 75

(20%), g-QuAcq reduces drastically its number of queries. Table 6 gives the
same information for all other problems.

7 Conclusion

We have proposed QuAcq, an algorithm that learns constraint networks by
asking the user to classify partial assignments as positive or negative. Each time
it receives a negative example, the algorithm converges on a constraint of the
target network in a logarithmic number of queries. We have shown that QuAcq
is optimal on certain constraint languages. Asking the user to classify partial
assignments allows to converge on the target constraint network in a polynomial
number of queries. Furthermore, as opposed to existing techniques, the user does
not need to provide positive examples to converge. This last feature can be very
useful when the problem has not been previously solved. We have also proposed
GenAcq, a technique to make constraint acquisition more efficient in practice
by using information on the types of components the variables in the problem
represent. We have introduced generalization queries. They are asked to the user
to generalize a constraint to other scopes of variables of the same type where
this constraint possibly applies. GenAcq can be called to generalize each new
constraint that is learned. We have proposed several heuristics and strategies to
select the good candidate generalization query. We have plugged GenAcq into
the QuAcq constraint acquisition system, leading to the g-QuAcq version. Our
experimental evaluation shows that generating good queries in QuAcq is not
computationally difficult and that when the basis increases in size, the increase
in number of queries follows a logarithmic shape. These results are promising for
the use of QuAcq on real problems. However, problems with dense constraint
networks require a number of queries that could be too large for a human user.
We have then evaluated the benefit of generalization queries, with and without
complete knowledge on the types of variables. The results show that g-QuAcq
dramatically improves the basic QuAcq algorithm in terms of number of queries.

References

1. Angluin, D.: Queries and concept learning. Mach. Learn. 2(4), 319–342 (1987)
2. Beldiceanu, N., Carlsson, M., Rampon, J.: Global constraint catalog. Technical

report, T2005: 08, Swedish Institute of Computer Science, Kista, Sweden, May
2005

3. Beldiceanu, N., Simonis, H.: A model seeker: extracting global constraint models
from positive examples. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 141–
157. Springer, Heidelberg (2012)

4. Bessiere, C., Coletta, R., Freuder, E.C., O’Sullivan, B.: Leveraging the learning
power of examples in automated constraint acquisition. In: Wallace, M. (ed.) CP
2004. LNCS, vol. 3258, pp. 123–137. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-30201-8 12

http://dx.doi.org/10.1007/978-3-540-30201-8_12
http://dx.doi.org/10.1007/978-3-540-30201-8_12

76 C. Bessiere et al.

5. Bessiere, C., Coletta, R., Koriche, F., O’Sullivan, B.: A SAT-based version space
algorithm for acquiring constraint satisfaction problems. In: Gama, J., Camacho,
R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol.
3720, pp. 23–34. Springer, Heidelberg (2005). doi:10.1007/11564096 8

6. Bessiere, C., Coletta, R., O’Sullivan, B., Paulin, M.: Query-driven constraint acqui-
sition. In: Proceedings of the Twentieth International Joint Conference on Artificial
Intelligence (IJCAI 2007), Hyderabad, India, pp. 44–49 (2007)

7. Bessiere, C., Koriche, F., Lazaar, N., O’Sullivan, B.: Constraint acquisition. Artif.
Intell. (in press)

8. Bessiere, C., Coletta, R., Daoudi, A., Lazaar, N., Mechqrane, Y., Bouyakhf, E.:
Boosting constraint acquisition via generalization queries. In: Proceedings of the
21st European Conference on Artificial Intelligence. Frontiers in Artificial Intelli-
gence and Applications, vol. 263, pp. 99–104. IOS Press, Prague (2014)

9. Bessiere, C., Coletta, R., Hebrard, E., Katsirelos, G., Lazaar, N., Narodytska, N.,
Quimper, C., Walsh, T.: Constraint acquisition via partial queries. In: Proceedings
of the 23rd International Joint Conference on Artificial Intelligence, pp. 475–481.
IJCAI/AAAI, Beijing (2013)

10. Bessiere, C., Cordier, M.: Arc-consistency and arc-consistency again. In: Proceed-
ings of the 11th National Conference on Artificial Intelligence, pp. 108–113. AAAI
Press/The MIT Press, Washington, D.C. (1993)

11. Cabon, B., de Givry, S., Lobjois, L., Schiex, T., Warners, J.P.: Radio link frequency
assignment. Constraints 4(1), 79–89 (1999)

12. De Bruijn, N.: Asymptotic Methods in Analysis. Dover Books on Mathematics.
Dover Publications, New York (1970)

13. Freuder, E.C., Wallace, R.J.: Suggestion strategies for constraint-based match-
maker agents. In: Maher, M., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp.
192–204. Springer, Heidelberg (1998). doi:10.1007/3-540-49481-2 15

14. Gent, I., Walsh, T.: CSPLib: a benchmark library for constraints. http://www.
csplib.org/ (1999)

15. Junker, U.: QUICKXPLAIN: preferred explanations and relaxations for over-
constrained problems. In: Proceedings of the Nineteenth National Conference on
Artificial Intelligence (AAAI 2004), San Jose, CA, pp. 167–172 (2004)

16. Lallouet, A., Lopez, M., Martin, L., Vrain, C.: On learning constraint problems.
In: Proceedings of the 22nd IEEE International Conference on Tools for Artificial
Intelligence (IEEE-ICTAI 2010), Arras, France, pp. 45–52 (2010)

17. Mason, J.: Purdey’s general store. Dell Mag. 54, 10 (1997)
18. Paulin, M., Bessiere, C., Sallantin, J.: Automatic design of robot behaviors through

constraint network acquisition. In: Proceedings of the 20th IEEE International
Conference on Tools for Artificial Intelligence (IEEE-ICTAI 2008), Dayton, OH,
pp. 275–282 (2008)

http://dx.doi.org/10.1007/11564096_8
http://dx.doi.org/10.1007/3-540-49481-2_15
http://www.csplib.org/
http://www.csplib.org/

ModelSeeker: Extracting Global Constraint
Models from Positive Examples

Nicolas Beldiceanu1 and Helmut Simonis2(B)

1 TASC Team (INRIA/CNRS), Mines Nantes, 44307 Nantes, France
Nicolas.Beldiceanu@mines-nantes.fr

2 Insight Centre for Data Analytics, Department of Computer Science,
University College Cork, Cork, Ireland
helmut.simonis@insight-centre.org

Abstract. We describe a system which generates finite domain con-
straint models from positive example solutions, for highly structured
problems. The system is based on the global constraint catalog, pro-
viding the library of constraints that can be used in modeling, and the
Constraint Seeker tool, which finds a ranked list of matching constraints
given one or more sample call patterns.

We have tested the modeler with 230 examples, ranging from 4 to
6,500 variables, using between 1 and 7,000 samples. These examples
come from a variety of domains, including puzzles, sports-scheduling,
packing & placement, and design theory. When comparing against man-
ually specified “canonical” models for the examples, we achieve a hit rate
of 50%, processing the complete benchmark set in less than one hour on
a laptop. Surprisingly, in many cases the system finds usable candidate
lists even when working with a single, positive example.

1 Introduction

In this chapter1 we present the Model Seeker system which generates constraint
models from example solutions. We focus on problems with a regular structure
(this encompasses matrix models [18]), whose models can be compactly repre-
sented as a small set of conjunctions of identical constraints. We exploit this
structure in our learning algorithm to focus the search for the strongest (i.e.
most restrictive) possible model.

In our system we use global constraints from the global constraint catalog [2]
mainly as modeling constructs, and not as a source of filtering algorithms. The
global constraints are the primitives from which our models are created, each
capturing some particular aspect of the overall problem. Using existing work
on global constraints for mixed integer programming [24] or constraint based
local search [20], our results are not only applicable for finite domain constraint
programming, but can potentially reach a wider audience.

The second author is supported by EU FET grant ICON (project number 284715).
1 This chapter is an extended version of reference [8].

c© Springer International Publishing AG 2016
C. Bessiere et al. (Eds.): Data Mining and Constraint Programming, LNAI 10101, pp. 77–95, 2016.
DOI: 10.1007/978-3-319-50137-6 4

78 N. Beldiceanu and H. Simonis

The input format we have chosen consists of a flat vector of integer values,
allowing for different representations of the same problem. We do not force the
user to adapt his input to any particular technology, but rather aim to be able
to handle examples taken from a variety of existing sources.

In our method we extensively use meta-data about the constraints in the
catalog, which describe their properties and their connection. We have added a
number of new, useful information classes during our work, which prove to be
instrumental in recognizing the structure of different models.

The main contribution of this chapter is the presentation of the implemented
Model Seeker tool, which can deal with a variety of problem types at a practical
scale. The examples we have studied use up to 6,500 variables, and deal with
up to 7,000 samples, even though the majority of the problems are restricted to
few, and often unique solution samples. We currently only work with positive
examples, which seems to provide enough information to achieve quite accurate
models of problems. As a side-effect of our work we also have strengthened the
constraint description in the constraint catalog with new categories of meta-data,
in particular to show implications between different constraints.

Our chapter is structured in the following way: We first introduce a running
example, that we will use to explain the core features of our system. In Sect. 2,
we describe the basic workflow in our system, also detailing the types of meta-
data that are used in its different components. We present an overview of our
evaluation in Sect. 3, which is followed by a discussion of related work (Sect. 4),
before finishing with limitations and possible future work in Sect. 5. For space
reasons we can only give an overview of the learning algorithm and the obtained
results. A full description can be found in a companion technical report at http://
4c.ucc.ie/∼hsimonis/modelling/report.pdf.

1.1 A Running Example

As a running example we use the 2010/2011 season schedule of the Bundesliga,
the German soccer championship. The problem representation is based on the
format in http://www.weltfussball.de/alle spiele/bundesliga-2010-2011/, replac-
ing team names with numbers from 1 to 18. The schedule is given as a set of
games on each day of the season. Table 1 shows days 1, 2, 3, 18 and 19 of the
schedule. Each line shows all games of one day; on the first day, team 1 (at home)
is playing against team 2 (away), team 3 (at home) plays team 4, etc. The second
half of the season (days 18–34) repeats the games of the first half, exchanging
the home and away teams, on day 18, for example, team 18 (at home) plays
team 17, team 2 (at home) plays team 1, and so on. Overall, each team plays
each other twice, once at home, and once away in a double round-robin scheme.

As input data we receive the flat vector of numbers, we will reconstruct the
matrix as part of our analysis. Note that for most sports scheduling problems we
will have access to only one example solution, the published schedule for a given
year, schedules from different years encode different teams and constraints, and
are thus incomparable.

http://4c.ucc.ie/~hsimonis/modelling/report.pdf
http://4c.ucc.ie/~hsimonis/modelling/report.pdf
http://www.weltfussball.de/alle_spiele/bundesliga-2010-2011/

ModelSeeker: Extracting Global Constraint Models from Positive Examples 79

Table 1. Bundesliga running example: input data

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

8 1 14 11 4 7 2 15 12 13 6 9 10 3 18 5 16 17

3 14 17 2 13 6 5 12 9 16 11 18 1 4 15 8 7 10

. . .

18 17 2 1 4 3 6 5 10 9 16 15 14 13 12 11 8 7

13 12 11 14 17 16 15 2 9 6 1 8 7 4 5 18 3 10

. . .

2 Workflow

We will now describe how we proceed from the given positive examples to a
candidate list of constraints modeling the problem. The workflow is described
in Fig. 1. Data are shown in green, software modules in blue/bold outline, and
specific global constraint catalog meta-data are shown in yellow/italics. We first
give a brief overview of the modules, and then discuss each step in more detail.

Candidate
Generation

Candidate
Simplification

Meta-Data

Positive Samples

Transformation

Sequence Generation

Argument Creation

Constraint Seeker Call

Bottom-Up Dominance

Dominance Check

Trivia Removal

Candidate Conjunctions

Code Generation

Program

Domain Generation

Functional Dependency
Monotonicity

Constraint Checkers
Typical Restrictions

Aggregate

Implications
Contractible
Expandible

Density
Ranking

Fig. 1. Workflow in the Model Seeker (Color figure online)

80 N. Beldiceanu and H. Simonis

Transformation. In a first step, we try to convert the input samples to other,
more appropriate representations. This might involve replacing a 0/1 format
with finite domain values, or converting different graph representations into the
successor variable form used by the global constraints in the catalog. For some
transformations, we keep both the original and the transformed representation
for further analysis, for others we replace the original sample with the trans-
formed data.

Candidate Generation. The second step (Sequence Generation) tries to group
the variables of the sample into regular subsets, for example interpreting the
input vector as a matrix and creating subsequences for all rows and all columns.
In the Argument Creation step, we create call patterns for constraints from the
subsequences. We can try each subsequence on its own, or combine pairs of
subsequences or use all subsequences together in a single collection. We also try
to add additional arguments based on functional dependencies and monotonic
arguments of constraints, described as meta-data in the global constraint catalog.
For each of these generated call patterns, we then call the Constraint Seeker to
find matching constraints, which satisfy all subsequences of all samples. For this
we enforce the Typical Restrictions, meta-data in the catalog, which describe
how a constraint is typically used in a constraint program. Only the highest
ranking candidates are retained for further analysis.

Candidate Simplification. After the seeker calls, we potentially have a very
large list of possible candidate conjunctions (up to 2,000 conjunctions in our
examples), we now have to reduce this set as much as possible. We first apply
a Dominance Check to remove all conjunctions of constraints that we can show
are implied by other conjunctions of constraints in our candidate list. Instead
of showing the implication from first principles, we rely on additional meta-data
in the catalog, which describe implications between constraints, but we also use
conditional implications which only hold if certain argument restrictions apply,
and expandible and contractible [27] properties, which state that a constraint still
holds if we add or remove some of its decision variables. The dominance check is
the core of our modeling system, helping to remove irrelevant constraints from
the candidate list. In the last step before our final candidate list output the
system removes trivial constraints and simplifies some constraint pattern. This
also performs a ranking of the candidates based on the constraint and sequence
generator used, trying to place the most relevant conjunction of constraints at
the top of the candidate list.

Code Generation. As a side effect of the initial transformation, we also create
potential domains for the variables of our problem. In the default case, we just
use the range of all values occurring in the samples, but for some graph-based
transformations a more refined domain definition is used. Given the candidate
list and domains for the variables, we can easily generate code for a model using
the constraints. At the moment, we produce SICStus Prolog code using the call
format of the catalog. The generated code can then be used to validate the
samples given, or to find solutions for the model that has been found.

ModelSeeker: Extracting Global Constraint Models from Positive Examples 81

After this brief overview, we will now discuss the different process steps in
more detail.

2.1 Transformation

In finite domain programming, there are implicit conventions on how to express
models leading to effective solution generation. In our system, we can not assume
that the user is aware of these conventions, nor that the sample solutions are
already provided in the “correct” form. We therefore try to apply a series of
(currently 12) input transformations, that convert between different possible
representations of problems, and that retain the form which matches the format
expected by the constraint catalog. In each case, some pre- and post-conditions
must be satisfied for the transformation to be considered valid. We now give
some examples.

Converting 0/1 Samples. If a solution is given using only 0/1 values, there
may be a way of re-interpreting the sample as a permutation with finite domain
variables. If we consider the 0/1 values as an n× n matrix (xij) where each row
and each column contains a single one, we can transform this into a vector vi of
n finite domain values based on the equivalence

∀1≤i≤n∀1≤j≤n : xij = 1 ⇒ vi = j

This transformation is the equivalent of a channeling constraint between 0/1 and
finite domain variables, described for example in [23].

Using Successor Notation for Graph Constraints. Most graph constraints
in the catalog use a successor notation to describe circuits, cycles or paths,
i.e. the value of a node indicates the next node in the final assignment. But
this is not the only way of describing graphs. In the original Knight’s Tour
formulation [37], the value of a node is the position in the path, i.e. the first node
has value one, the second value two, and so on. We have defined transformations
which map between these (and several other) formats, while checking that the
resulting graph can be compactly described.

Table 2. Bundesliga running example: transformed problem

2 −1 4 −3 6 −5 8 −7 10 −9 12 −11 14 −13 16 −15 18 −17

−8 15 −10 7 −18 9 −4 1 −6 3 −14 13 −12 11 −2 17 −16 5

4 −17 14 −1 12 −13 10 −15 16 −7 18 −5 6 −3 8 −9 2 −11

. . .

−2 1 −4 3 −6 5 −8 7 −10 9 −12 11 −14 13 −16 15 −18 17

8 −15 10 −7 18 −9 4 −1 6 −3 14 −13 12 −11 2 −17 16 −5

. . .

Using Schreuder Tables. Another transformation is linked to sports schedul-
ing problems. In many cases, users like to give the schedule as a list of fixtures,

82 N. Beldiceanu and H. Simonis

listing which games will be played on each day. The first team is the home
team, the second the away team. For constraint models, the format of Schreuder
tables [34], as shown in Table 2 for our running example, can lead to more com-
pact models [21,22,29,36]. For each time-point t over q rounds and for an even
number of teams n, they can be obtained from the fixture representation as
follows:

∀1≤t≤q(n−1)∀1≤i≤�n/2� : x2i−1,t = k, x2i,t = l ⇒ vk,t = l, vl,t = −k

2.2 Sequence Generator

After the input transformation, we have to consider possible, regular substruc-
tures which group the samples into subsequences. For space reasons again, we
only give some examples of the sequence generators used in our running exam-
ple, the full list (containing 21 generators) with their formal definition can be
found in the technical report, some were already described in [4].

vector(n). This is the most basic sequence generator of treating all elements of
the sample as a single sequence of size n.

scheme(n, r, c, a, b). By far the most common sequence generator treats a
sample of length n as an r× c matrix, and creates non-overlapping blocks of size
a× b, creating n/ab sequences of size ab. The number of such partitions depends
on the number of factors of n, as n = rc. For our running example (Sect. 1.1)
with 612 values, we have to consider the matrices 2 × 306, 3 × 204, 4 × 153,
6×102, 9×68, 17×36, 18×34, 34×18, 36×17, 68×9, 102×6, 153×4, 204×3
and 306 × 2. Some of the blocks created from these matrices lead to the same
partition of the variables, only one representative is kept.

repart(n, r, c, a, b). This sequence generator also treats the sample of size n
as a r × c matrix, and considers blocks of size a × b. But it groups elements in
the same position from each block, creating a × b sequences of size n/(ab).

For the running example, a total of 68 subsequence collections are generated.
Note that the subsequences often, but not always, have the same size. We also
provide an API where the user can provide his own sequence generators, this
can be helpful to deal with known, but irregular structure in the problem.

2.3 Argument Creation

In the next step of the operation, we convert the generated subsequences into
call patterns for the Constraint Seeker [3]. In order to consider more of the
constraints in the catalog, we have to provide different argument signatures by
organizing the subsequences in different ways, and by adding arguments.

Single, Pairs and Collection. In the first part we decide how we want to
use the subsequences. Consider we have k subsequences, each of length m. If
we use each subsequence on its own, we create k call patterns with a single
argument, each a collection of m variables. This corresponds to the argument

ModelSeeker: Extracting Global Constraint Models from Positive Examples 83

pattern used by alldifferent constraints, for example. We can also consider
pairs of subsequences, creating a call patterns with two arguments, for k−1 calls
to a predicate like lex greater. Finally we can use all subsequences as a single
collection of collections, which creates one call with a collection of k collections
of m elements each. This would match a constraint like lex alldifferent. We
generate all these potential calls in parallel, and perform the steps described in
the following two paragraphs.

Value Projection. For some problems (like our transformed, running example),
a projection from the original domain to a smaller domain can lead to a more
compact model. If, for example, some of the values in the sample are positive,
and others are negative, we can try a projection using the absolute value or the
sign of the numbers, in addition to the original values.

Adding Arguments. Many global constraints use additional arguments besides
the main decision variables. If we do not generate these arguments in the call
pattern, we can not find such constraints with the Constraint Seeker. But just
enumerating all possible values for these additional arguments would lead to a
combinatorial explosion. Fortunately, we can compute values for these arguments
in case of functional dependencies and monotonic arguments. This is similar to
the argument generation discussed for the gcc constraint discussed in [12].

2.4 Constraint Seeker

The Constraint Seeker [3] will find a ranked list of global constraints that satisfy
a collection of positive and negative sample calls, using the available constraint
checkers of the catalog. We use this seeker as a black-box for all call patterns
with all additional argument values and value projections defined in the previous
section.

Using Multiple, Positive Samples. The seeker first checks that the call signa-
ture matches the constraint, then tries to evaluate the constraint on the samples.
In our case, these are the call patterns prepared in the previous step for all sub-
sequences of all positive examples given. In our modeling system we currently
do not consider negative examples. They would require a slightly different treat-
ment, as a negative example can be rejected by just one constraint, while all
positive examples must be accepted by all constraints found.

Typical Restrictions. In addition to the restrictions that must hold for the
constraint to be applied, in our modeling tool we also check for the typical
restrictions that are specified in the catalog. The alldifferent constraint for
example can be called with an empty collection, but a typical use would have
more than two variables in the collection. The typical constraints are expressed
using the same language as the formal restrictions of the catalog, checking their
validity thus does not require any additional code.

Selecting Top-Ranked Elements. The Constraint Seeker returns a ranked
list of candidates, this ranking is a combination of structural properties (func-
tional dependencies or monotonic arguments), implications between constraints,

84 N. Beldiceanu and H. Simonis

estimated solution density and estimated popularity of the constraint described
in [3]. In our system we only use the top ranked element that satisfies all subse-
quences of all samples. This reduces the number of candidates to be considered,
while at the same time it does not seem to exclude constraints that are required
for the highly structured problems considered.

For our running example, we perform 1,099 calls to the Constraint Seeker,
which performs 82,458 constraint checks, and which results in 589 possible can-
didate conjunctions. We now face the task of reducing this candidate list as much
as possible, keeping only interesting conjunctions.

2.5 Bottom-Up Dominance

Some constraints like sum or gcc have the aggregate property, one can combine
multiple such constraints over disjoint variable sets by adding the right hand
sides or summing the counter values. As an example, we can combine

x1 + x2 = 5 ∧ x3 + x4 = 2 ⇒ x1 + x2 + x3 + x4 = 7

We want to remove aggregated constraints of this type, as they are implied
by conjunctions of smaller constraints. We perform a bottom-up saturation of
combining constraints with the aggregate property up to a limited size, and
remove any candidate conjunctions where all constraints are dominated.

2.6 Dominance Check

The dominance check compares all conjunction candidates against each other
(worst case quadratic number of comparisons), and marks dominated entries.
Note that dominated entries may be used to dominate other entries, and thus
can not be removed immediately. We use a number of meta-data fields to check
for dominance.

Implications. In our final candidate list, we are interested in only the strongest,
most restrictive constraints, all constraints that are implied by other candidate
constraints can be excluded. Note that this will sometimes lead to overly restric-
tive solutions, especially if only a few samples are given.

Checking if some conjunction is implied by some other conjunction for a
particular set of input values is a complex problem, a general solution would
require sophisticated theorem proving tools like those used in [15] for a restricted
problem domain. We do not attempt such a generic solution, but instead rely on
meta-data in the catalog linking the constraints. That meta-data is useful also
for understanding the relations between constraints, and thus serves multiple
purposes. This syntactic implication check is easy to implement, but only can
be used if both constraints have the same arguments.

Conditional Implications. For some constraints additional implications exist,
but only if certain restrictions apply. The cycle constraint for example implies
the circuit constraint, but only if the NCYCLE argument is equal to one.

ModelSeeker: Extracting Global Constraint Models from Positive Examples 85

For conditional implications the arguments do not have to be the same, but
the main decision variables used must match.

Contractibility and Expandability. Other useful properties are contractibil-
ity [27] and expandibility. A constraint (like alldifferent) is contractible if it
still holds if we remove some of its decision variables. This allows us to dominate
large conjunctions of constraints with few variables with small conjunctions of
constraints with many variables. Due to the way we systematically generate all
subsequence collections, this is often possible. In a similar way, some constraints
like atleast are expandible, they still hold if we add decision variables. We can
again use this property to dominate some conjunctions of constraints. Details
and possible extensions have been described in [4].

Hand-coded Domination Rules. Some dominance rules are currently hand-
crafted in the program, if the required meta-data have not yet been formalized
in the catalog description. Such examples can be an important source of require-
ments for the catalog itself, enhancing the expressive power of the constraint
descriptions.

2.7 Trivia Removal

Even after the dominance check, we can still have candidate explanations which
are valid and not dominated, but which are not useful for modeling. In the trivia
removal section, we eliminate or replace most of these based on sets of rules.

Functional Dependencies on Single Samples. In Sect. 2.3 we have described
how we can add some arguments to a call pattern for functional dependencies.
In the case of pure functional dependencies [6], we have to worry about pattern
consisting of a single subsequence with a single sample. In that case, the con-
straint does not filter any pattern, as for each pattern the correct value can be
selected. We therefore remove such candidates.

Constraint Simplification. At this point we can also try to simplify some
constraints that have particular structure. A typical example are lex chain
constraints on a subsequence, where already the first entries of the collections
are ordered in strictly increasing order. We can therefore replace the lex chain
constraint on the subsequences with a strictly increasing constraint on the
first elements of the collections, using a special first sequence generator. These
constraints often occur as symmetry-breaking restrictions in models, which we
find if all the samples given respect the symmetry breaking.

Uninteresting Constraints. Even with the typical restrictions in the Con-
straint Seeker, we often find candidates (like not all equal) which are not very
interesting for defining models. As a final safe-guard, we use a black-list to remove
some combinations of constraints and sequence generators that should not be
included in our models.

86 N. Beldiceanu and H. Simonis

2.8 Candidate List for Bundesliga Schedule

Table 3 shows the list of the candidate conjunctions generated for our trans-
formed example problem. Entries in green match a manually defined model,
ten other candidates are also proposed. The arguments of constraints in the
Constraint Conjunction column indicate any additional parameters, the ∗n
indicates how many constraints form the conjunction. The value projections
absolute value and sign convert each element of the input data, id denotes
the identity projection.

Table 3. Constraint conjunctions for problem Bundesliga

Some of the constraints mentioned are perhaps unfamiliar, we provide a short
definition. The constraint symmetric alldifferent([x1, .., xn]) [2, p. 1854] in
line 4 states that

∀1≤i≤n : xi ∈ [1, n];xi = j ⇐⇒ xj = i

It expresses the constraint that if team A plays team B on some day, then team
B will play team A. The constraints twin([〈x1, y1〉, ..., 〈xn, yn〉]) [2, p. 1896] in
lines 7, 19 and 20 state that

ModelSeeker: Extracting Global Constraint Models from Positive Examples 87

∀1≤i≤n : (xi = u ∧ yi = v) ⇒ (∀1≤j≤n : xj = u ⇐⇒ yj = v)

These constraints express the fact that the tournament is played in two symmet-
ric half-seasons, with home and away games swapped. Note that constraints 8,
21 and 23 also express this condition, but using an elements constraint, pairing
positive and negative numbers. The alldifferent constraint in line 1 expresses
that no repeat games occur in the season, while that of line 5 states that all
teams play on each day. The strictly increasing constraint in line 9 results
from the simplification of a symmetry breaking lex chain constraint. The gcc
in line 14 states that each team plays 17 home (positive value) and 17 away
(negative value) games. Finally, the among seq constraint in line 22 states that
no team has more than two consecutive away games.

2.9 Domain Creation

By default, the domains of the variables in our generated models are the interval
between the smallest and largest value occurring in the samples. Based on the
transformation used, we can use more restricted domains for graph models like
graph partitioning and domination [19], where the domain of each variable/node
specifies the initial graph.

2.10 Code Generation

The code generation builds flat models for the given instances. The programs
consist of five parts, we first define all variables with their domains, then state
all restrictions due to fixed values as assignments, state any projections used
to simplify the variables, then build the constraints in the catalog syntax, and
finally call a generic value assignment routine to search for a solution. We can
use the generated model as a test to check if it accepts the given samples, or to
generate new solutions for the problem. Many puzzles have a unique solution,
we can count solutions of our program to see if the generated model is restrictive
enough to capture this property.

It would be straightforward to generate the code for other systems than
SICStus Prolog, provided that the catalog constraints are supported. A version
generating FlatZinc [28] or XCSP [33] would be especially attractive to benefit
from the variety of backend solvers which support these formats.

3 Evaluation

Table 4 shows summary results for selected problems of our evaluation set. The
problems range from sports scheduling (ACC Basketball Scheduling, csplib11;
Bundesliga; DEL2011 (German ice hockey league); Scottish Premier League (soc-
cer); Rabodirect Pro 12 (rugby)), to scheduling (Job-shop 10×10 [14]) and place-
ment (Duijvestijn, csplib9; Conway 5×5×5 [9]; Costas Array [16]), design theory
(BIBD, csplib28; Kirkman [17]; Orthogonal Latin Squares [13]), event schedul-
ing (Social Golfer, csplib10; Progressive Party, csplib13) and puzzles. Details of

88 N. Beldiceanu and H. Simonis

Table 4. Selected example results

these problems can be found in the technical report mentioned before. Smaller
problems are solved within seconds, even the largest require less than 5 min on
a single core of a MacBook Pro (2.2 GHz) with 8 Gb of memory.

The columns denote: Transformation Id : the number of the transformation
applied (if any), Instance Size: the number of values in the solution, i.e. the
number of variables in the model, Nr Samples: the number of solutions given as
input, Nr Sequences: the number of sequence sets generated, Nr Seeker Calls: the
number of times the Constraint Seeker is called, Constraint Checks: the number
of calls to constraint checkers inside the seeker, Nr Relevant : the number of
initial candidate conjunctions found by the Constraint Seeker, Nr Non Dom: the
number of non-dominated candidates remaining after the dominance checkers,
Nr Specified : the number of conjunctions specified in the manual, “canonical”
model, Nr Models: the number of conjunctions given as output of the Model
Seeker, Nr Missing : how many of the manually defined conjunctions were not
found by the system, Hit Rate: the percentage rate of Nr Specified to Nr Models,
a value of 100% indicates that exactly the candidates of the canonical model were
found, and Time: the execution time in seconds.

ModelSeeker: Extracting Global Constraint Models from Positive Examples 89

For two of the problems, we only find part of the complete model. The Pro-
gressive party problem [35] requires a bin-packing constraint that we currently do
not recognize, as it relies on additional data for the boat sizes, while the ACC
basketball problem contains several constraints which apply only for specific
parts of the schedule, and which can not be learned from a single solution. Also
note that for the De Jaenisch problem [31], we show results with and without
a transformation. This problem combines a “near” magic square, found without
transformation, with an Euler Knight tour, using transformation 7.

For our full evaluation, we have used 230 examples from various sources. For
10 of the examples no reasonable model was generated, either because we did
not have the right sequence generator, or we are currently missing the global
constraint required to express the problem. For a further 37 problems, only part
of the model was found. This is typically caused by some constraint requiring
additional data, not currently given as input, or by an over-specialization of
the output, where the Model Seeker finds a more restrictive constraint than the
one specified manually. Overall, we considered 73 constraints in the Constraint
Seeker, and selected 53 different global constraints as potential solutions. This
is only a fraction of the 380 constraint in the catalog, many of the missing
constraints have more complex argument signatures or use finite sets, which are
currently not available in SICStus Prolog.

Figure 2 shows the number of candidates found for all examples studied as a
function of the instance size, split between single samples and multiple samples.
Note that the plot uses a log-log scale. The results indicate that even with a
single sample, the number of candidate conjunctions found is quite limited, this
drops further if multiple samples are used.

Fig. 2. Candidates as a function of problem size (variables)

90 N. Beldiceanu and H. Simonis

Another view of all the results is shown in Fig. 3. It shows the relationship
between number of variables and execution time, again grouped by problems
with a single sample and problems for which multiple samples were provided.
While no formal complexity analysis has been attempted, as several subproblems
are expressed as constraint problems, results seem to indicate a low-polynomial
link between problem size and execution time. The non-linear least square fit for
the single sample problems is 8.5e−2x0.90, and for multiple samples 6.1e−3x1.45.

Fig. 3. Execution time as a function of problem size (variables)

Table 5 shows the number of lines required for the different components of the
system, as well as accumulated execution times over all 230 examples measured

Table 5. Lines of code/run time per module over all 230 examples

Module Lines Time [s] % of total

Transformation 1,500 1 0.03

Sequence generation 1,000 53 2.81

Argument creation 1,000 150 7.84

Constraint seeker call 300 464 24.22

Bottom-up check 200 506 26.42

Dominance check 800 739 38.61

Trivia removal 500 1 0.03

Glue/IO/test 2,000 - -

ModelSeeker: Extracting Global Constraint Models from Positive Examples 91

for these components. The programming effort is fairly evenly split amongst the
different components, while the two dominance checkers require nearly two-thirds
of the total execution time, with the constraint seeker using another quarter of
the time. The system is written in SICStus Prolog 4.2, and uses the Constraint
Seeker [3] with an additional 6,500 lines of code, and the global constraint catalog
meta-data description of 60,000 lines of Prolog.

4 Related Work

Our approach of searching for conjunctions of identical constraints generalizes
the idea of matrix models [18], which are an often-used pattern in constraint
modeling.

The method proposed is a special, restricted case of constraint acquisi-
tion [30], which is the process of finding a constraint network from a training set
of positive and negative examples. The learning process operates on a library of
allowed constraints, and a resulting solution is a conjunction of constraints from
that library, each constraint ranging over a subset of the variables.

The most successful of these systems is the CONACQ system [10], which
proposes the use of version space learning to generate models interactively with
the user, relying on an underlying SAT model to perform the learning. This is
shown to work for binary constraints, but the method breaks down for global
constraints over an unlimited number of variables.

In [11], the authors study the problem of determining argument values
for global constraints like the gcc from example solutions, in the context of
timetabling problems. This is similar to the argument creation we describe in
Sect. 2.3.

The more recent work of [25] considers the use of inductive logic programming
for finding models for problems given as a set of logic formulas. This can be
powerful to find generic, size-independent models for a problem, but again, it is
unclear how to deal with a library of given global constraints, which may not
have a simple description as logic formulas.

Our dominance check based on meta-data is related to the work described
in [15], where they use a theorem prover to find certain implications between
constraints for a restricted domain. This does not rely on meta-data provided in
the system, but instead would require a very powerful theorem prover to work
for a collection of constraints for problems of the size considered here.

Common to all these results is that they have not been evaluated on a large
variety of problems, that they consider only a limited number of potential con-
straints, and that problem sizes have been quite small.

5 Limitations and Future Work

We are currently only considering some 70 constraints in the global constraint
catalog in our seeker calls. Many of the missing constraints require additional
information (cost matrix, lookup tables) which have to be provided as additional

92 N. Beldiceanu and H. Simonis

input data to the system. For some problems, such additional data, like a prece-
dence graph, may also express implicit, less regular sequence generators, which
define for which variables a constraint should be stated. Extending our input
format to allow for such data would drastically increase both the number of
constraints that can be considered, as well as the range of application problems
that can be modelled.

Most other constraint acquisition systems use both positive and negative
examples. The negative examples are used to interactively differentiate between
competing models of the system. We currently only use positive examples, but
given recent results on global constraint reification [6], we could extend our
system to include this functionality.

A first application of the ModelSeeker to an application problem is described
in [7]. It discusses the use of the ModelSeeker to learn models of electrical power
plants as part of a Unit Commitment Model of the French electricity company
EDF. We learn constraints on the power output over consecutive time periods
from positive samples by using specific time-series constraints [5].

If we want to provide the functionality we have presented here to end-users,
we will have to consider issues of usability and interactivity, allowing the user
to filter and change constraint candidates, as well as being able to suggest cus-
tom sequence generators tailored to a specific problem. An interactive tool that
helps programers to refactor their MiniZinc constraint programs with global con-
straints was described in [26]. It tries to replace code fragments by corresponding
global constraints, generating sample solutions as required, and is supported by
a web-based interface.

Ultimately, we are looking for a modeling tool which can analyze samples
of different sizes, and generate a generic, size independent model. Building on
top of our existing framework, this would require to express both the sequence
generator parameters and any additional arguments for constraints in terms
of a variable problem size, to produce more compact, iterative code instead of
the flat models currently generated. A first step towards this goal was discussed
in [32], where we learn coefficients of simple polynomials that characterize generic
models of constraint problems.

A very different approach to generating constraint models semi-automatically
is used in the Conjure system [1]. Instead of using sample solutions, the input
consists of a naive, high-level model of a problem. This model is then transformed
into a more effective constraint model by recognizing structure and symmetries.
It is an interesting open question to unterstand whether sample solutions or
high-level models are more readily available for practical problems.

6 Conclusion

Exploiting the idea that many highly structured combinatorial problems can
be described by a small set of conjunctions of identical global constraints, this
chapter described the ModelSeeker system for extracting global constraint mod-
els from positive sample solutions. It relies on a detailled description of the

ModelSeeker: Extracting Global Constraint Models from Positive Examples 93

constraints in terms of meta-data in the global constraint catalog. The system
provides promising results on a variety of problems even when working from a
very limited number of only positive examples.

Acknowledgement. The help of Hakan Kjellerstrand in finding example problems is
gratefully acknowledged.

References

1. Akgun, O., Frisch, A.M., Gent, I.P., Hussain, B.S., Jefferson, C., Kotthoff, L.,
Miguel, I., Nightingale, P.: Automated symmetry breaking and model selection in
Conjure. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 107–116. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40627-0 11

2. Beldiceanu, N., Carlsson, M., Rampon, J.: Global constraint catalog, 2nd edn.
(revision a). Technical report T2012:03, SICS (2012)

3. Beldiceanu, N., Simonis, H.: A constraint seeker: finding and ranking global con-
straints from examples. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 12–26.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-23786-7 4

4. Beldiceanu, N., Simonis, H.: Using the global constraint seeker for learning struc-
tured constraint models: a first attempt. In: The 10th International Workshop on
Constraint Modelling and Reformulation (ModRef 2011), Perugia, Italy, pp. 20–34,
September 2011

5. Beldiceanu, N., Carlsson, M., Douence, R., Simonis, H.: Using finite transducers for
describing and synthesising structural time-series constraints. Constraints 21(1),
22–40 (2016)

6. Beldiceanu, N., Carlsson, M., Flener, P., Pearson, J.: On the reification of global
constraints. Constraints 18(1), 1–6 (2013)

7. Beldiceanu, N., Ifrim, G., Lenoir, A., Simonis, H.: Describing and generating solu-
tions for the EDF unit commitment problem with the ModelSeeker. In: Schulte,
C. (ed.) Principles and Practice of Constraint Programming. LNCS, vol. 8124, pp.
733–748. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40627-0 54

8. Beldiceanu, N., Simonis, H.: A model seeker: extracting global constraint models
from positive examples. In: Milano, M. (ed.) CP 2012. Lecture Notes in Com-
puter Science, vol. 7514, pp. 141–157. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-33558-7 13

9. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for Your Mathematical
Plays, vol. 4, 2nd edn. A K Peters/CRC Press, Natick (2004)

10. Bessière, C., Coletta, R., Freuder, E.C., O’Sullivan, B.: Leveraging the learning
power of examples in automated constraint acquisition. In: Wallace, M. (ed.) CP
2004. LNCS, vol. 3258, pp. 123–137. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-30201-8 12

11. Bessiere, C., Coletta, R., Koriche, F., O’Sullivan, B.: A SAT-based version space
algorithm for acquiring constraint satisfaction problems. In: Gama, J., Camacho,
R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol.
3720, pp. 23–34. Springer, Heidelberg (2005). doi:10.1007/11564096 8

12. Bessiere, C., Coletta, R., Petit, T.: Acquiring parameters of implied global con-
straints. In: Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 747–751. Springer,
Heidelberg (2005). doi:10.1007/11564751 57

http://dx.doi.org/10.1007/978-3-642-40627-0_11
http://dx.doi.org/10.1007/978-3-642-23786-7_4
http://dx.doi.org/10.1007/978-3-642-40627-0_54
http://dx.doi.org/10.1007/978-3-642-33558-7_13
http://dx.doi.org/10.1007/978-3-642-33558-7_13
http://dx.doi.org/10.1007/978-3-540-30201-8_12
http://dx.doi.org/10.1007/978-3-540-30201-8_12
http://dx.doi.org/10.1007/11564096_8
http://dx.doi.org/10.1007/11564751_57

94 N. Beldiceanu and H. Simonis

13. Bose, R.C., Shrikhande, S.S., Parker, E.T.: Further results on the construction of
mutually orthogonal latin squares and the falsity of Euler’s conjecture. Can. J.
Math. 12, 189–203 (1960)

14. Carlier, J., Pinson, E.: An algorithm for solving the job shop problem. Manag. Sci.
35, 164–176 (1989)

15. Charnley, J., Colton, S., Miguel, I.: Automatic generation of implied constraints.
In: Brewka, G., Coradeschi, S., Perini, A., Traverso, P. (eds.) ECAI. Frontiers in
Artificial Intelligence and Applications, vol. 141, pp. 73–77. IOS Press, Amsterdam
(2006)

16. Drakakis, K.: A review of Costas arrays. J. Appl. Math. 2006, 1–32 (2006)
17. Dudeney, H.E.: Amusements in Mathematics. Dover, New York (1917)
18. Flener, P., Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., Walsh, T.: Matrix mod-

elling. Technical report 2001–023, Department of Information Technology, Uppsala
University, September 2001

19. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in
Graphs. Monographs and Textbooks in Pure and Applied Mathematics. Marcel
Dekker, New York (1998)

20. Van Hentenryck, P., Michel, L.: Constraint-Based Local Search. MIT Press, Boston
(2005)

21. Henz, M.: Scheduling a major college basketball conference - revisited. Oper. Res.
49, 163–168 (2001)

22. Henz, M., Müller, T., Thiel, S.: Global constraints for round robin tournament
scheduling. Eur. J. Oper. Res. 153(1), 92–101 (2004)

23. Hernández, B.M.: The systematic generation of channelled models in constraint
satisfaction. PhD thesis, University of York, York, YO10 5DD, UK, Department
of Computer Science (2007)

24. Hooker, J.N.: Integrated Methods for Optimization. Springer Science + Business
Media LLC, New York (2007)

25. Lallouet, A., Lopez, M., Martin, L., Vrain, C.: On learning constraint problems.
In: ICTAI, vol. 1, pp. 45–52. IEEE Computer Society (2010)

26. Leo, K., Mears, C., Tack, G., Garcia de la Banda, M.: Globalizing constraint
models. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 432–447. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40627-0 34

27. Maher, M.J.: Open constraints in a boundable world. In: van Hoeve, W.-J., Hooker,
J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547, pp. 163–177. Springer, Heidelberg
(2009)

28. Marriott, K., Nethercote, N., Rafeh, R., Stuckey, P.J., de la Banda, M.G., Wallace,
M.: The design of the Zinc modelling language. Constraints 13(3), 229–267 (2008)

29. Nemhauser, G., Trick, M.: Scheduling a major college basketball conference. Oper.
Res. 46, 1–8 (1998)

30. O’Sullivan, B.: Automated modelling and solving in constraint programming. In:
Fox, M., Poole, D. (eds.) AAAI, pp. 1493–1497. AAAI Press, Palo Alto (2010)

31. Petkovic, M.S.: Famous Puzzles of Great Mathematicians. American Mathematical
Society, Providence (2009)

32. Razakarison, N., Carlsson, M., Beldiceanu, N., Simonis, H.: GAC for a linear
inequality and an atleast constraint with an application to learning simple poly-
nomials. In: Helmert, M., Röger, G. (eds.) Proceedings of the Sixth Annual Sym-
posium on Combinatorial Search, SOCS 2013, Leavenworth, Washington, USA,
11–13 July 2013. AAAI Press (2013)

http://dx.doi.org/10.1007/978-3-642-40627-0_34

ModelSeeker: Extracting Global Constraint Models from Positive Examples 95

33. Roussel, O., Lecoutre, C.: XML representation of constraint networks format XCSP
2.1. Technical report arXiv:0902.2362v1, Universite Lille-Nord de France, Artois
(2009)

34. Schreuder, J.A.M.: Combinatorial aspects of construction of competition Dutch
professional football leagues. Discret. Appl. Math. 35(3), 301–312 (1992)

35. Smith, B.M., Brailsford, S.C., Hubbard, P.M., Williams, H.P.: The progressive
party problem: integer linear programming and constraint programming compared.
Constraints 1(1/2), 119–138 (1996)

36. Walser, J.P.: Domain-independent local search for linear integer optimization. PhD
thesis, Technical Faculty of the University des Saarlandes, Saarbruecken, Germany,
October 1998

37. Watkins, J.J.: Across the Board: The Mathematics of Chessboard Problems.
Princeton University Press, Princeton (2004)

http://arxiv.org/abs/0902.2362v1

Learning Constraint Satisfaction Problems:
An ILP Perspective

Luc De Raedt1, Anton Dries1(B), Tias Guns1, and Christian Bessiere2

1 DTAI, KU Leuven, Leuven, Belgium
anton.dries@cs.kuleuven.be

2 CNRS, University of Montpellier, Montpellier, France

Abstract. We investigate the problem of learning constraint satisfac-
tion problems from an inductive logic programming perspective. Con-
straint satisfaction problems are the underlying basis for constraint pro-
gramming and there is a long standing interest in techniques for learning
these. Constraint satisfaction problems are often described using a rela-
tional logic, so inductive logic programming is a natural candidate for
learning such problems. So far, there is however only little work on the
intersection between learning constraint satisfaction problems and induc-
tive logic programming. In this article, we point out several similarities
and differences between the two classes of techniques that may inspire
further cross-fertilization between these two fields.

1 Introduction

Constraint programming (CP) is an active research area in the field of artifi-
cial intelligence. It is concerned with solving combinatorial problems that are
formalised as constraint satisfaction problems (CSPs). CP has been used in
numerous applications in domains such as time-tabling, scheduling, packing,
bioinformatics, etc.

On the other hand, inductive logic programming (ILP) is a research area that
has studied the learning of logic programs and relational descriptions for more
than twenty years now. ILP has also been applied in a wide variety of contexts,
including bio- and chemo-informatics, natural language processing, engineer-
ing, etc.

CP has – like ILP – its origins in the field of logic programming and uses
a declarative representation. However, while learning traditional logic programs
is popular (thanks to ILP), the learning of constraint programs and CSPs has
received much less attention, even though several techniques for learning CSPs
have been contributed in the past ten years, cf. [1,5,7,10,19,20]. The motivation
for learning is that formulating the CSP for a particular application is a non-
trivial task.

Most of the techniques to learn logic programs and to learn constraint sat-
isfaction problems have been developed independently of one another (but see
[19]). This is surprising as both problems are – as we will show – essentially

c© Springer International Publishing AG 2016
C. Bessiere et al. (Eds.): Data Mining and Constraint Programming, LNAI 10101, pp. 96–112, 2016.
DOI: 10.1007/978-3-319-50137-6 5

Learning Constraint Satisfaction Problems: An ILP Perspective 97

logical and relational learning problems. This paper contributes to bridging
the gap between CP and ILP by surveying the CP-learning techniques from
the perspective of ILP. This will allow us to point out differences and similari-
ties between the two approaches and to also indicate opportunities for further
research.

This paper is organized as follows. In Sect. 2, we introduce the relevant con-
text on the modelling of constraint satisfaction problems (CSPs). In Sect. 3, we
introduce the task of learning CSPs, and we relate this task to ILP in Sect. 4.
In Sect. 5, we give an overview of existing systems for solving this task, and
we describe them in terms of ILP concepts. Section 6 provides a summary and
discussion of the different systems and Sect. 7 concludes this paper.

2 Constraint Satisfaction Problems

Constraint programming (CP) is concerned with solving constraint satisfaction
problems (CSPs). A CSP is a constraint network p = (V,D, C), defined by

– a finite set of variables V = {v1, . . . , vn};
– a domain D, which maps every variable v ∈ V to a set of possible values D(v);

and
– a finite set of constraints C = {c1, . . . , cn}, where each constraint ci ∈ C

is essentially a relation ci ⊆ D(vi1) × · · · × D(vimi
), that can be specified

extensionally or intensionally.

The key question of constraint satisfaction problems is to find an assignment
of values to the variables so that all constraints in the constraint network are
satisfied. The constraints hence form one big conjunction. Let us now illustrate
CSPs using three well-known examples: n-queens, sudoku and graph coloring.

In n-queens, the goal is to put n queens on an n-by-n board, so that no queen
attacks another one (queens can attack if they are in the same row, column or
diagonal, as per the chess rules), cf. Figs. 1 and 2. The valid solutions of the
n-queens problem are completely determined by the value of n.

Fig. 1. A 4× 4 chessboard

X

X

X

X

Fig. 2. ...and a 4-queens solution.

In Sudoku, one is given a 9× 9 grid. The goal of a Sudoku is to enter in each
cell a number between 1 and 9, such that no number occurs twice in the same
row, column or block. In a Sudoku puzzle, a number of values are already given
while guaranteeing that there is a unique solution to the puzzle, cf. Figs. 3 and
4. In a CSP these initial values can be encoded as additional constraints.

98 L. De Raedt et al.

5 3 7

6 1 9 5

9 8 6

8 6 3

4 8 3 1

7 2 6

6 2 8

4 1 9 5

8 7 9

Fig. 3. An unsolved 3× 3 Sudoku...

5 3 4 6 7 8 9 1 2

6 7 2 1 9 5 3 4 8

1 9 8 3 4 2 5 6 7

8 5 9 7 6 1 4 2 3

4 2 6 8 5 3 7 9 1

7 1 3 9 2 4 8 5 6

9 6 1 5 3 7 2 8 4

2 8 7 4 1 9 6 3 5

3 4 5 2 8 6 1 7 9

Fig. 4. ...and its solution.

In graph coloring, one is given a graph and a set of colors. The goal is to
assign a color to each node in the graph such that adjacent nodes have a different
color. In a CSP the graph structure can be encoded by using auxiliary variables
and constraints on them. An example is shown in Figs. 5 and 6.

a

b

c

d

e

Fig. 5. An uncolored graph

a

b

c

d

e

Fig. 6. .. and a valid 3-coloring. (Color
figure online)

CSPs can be expressed in terms of local constraints. These constraints express
simple relationships between a bounded number of individual variables, for exam-
ple, v1 = v2, v3 �= v4, v5 = v6 + v7 + v8.

However, the number of such constraints in a CSP can become very large.
CSPs are therefore often expressed in terms of global constraints. What we call
a global constraint is in fact a class of constraints involving any (unbounded)
number of variables. The semantics of the global constraint is given by a Boolean
function of unbounded arity; thus an instance of the global constraint can be
posted on any number of variables and may represent a whole set of local con-
straints. Global constraints have two main advantages: they simplify the model
by reducing the number of constraints, and solvers can more easily exploit
the relationships between the constraints in the set. The standard example of
a global constraint is the alldifferent constraint. For example, the constraint
alldifferent([v1, v2, v3]) is equivalent to the set v1 �= v2, v1 �= v3, v2 �= v3. Addi-
tionally, higher level languages for expressing CSPs (such as MiniZinc [23] and
B-prolog [28]) offer constructs for compactly expressing loops (e.g., foreach).

Learning Constraint Satisfaction Problems: An ILP Perspective 99

Listing 1.1 shows an example of an n-queens constraint specification in B-
prolog. It uses a list of variables Q, with N such variables (line 2), each with
a domain of values from 1 to N (line 3). In this representation, the assignment
Q[i] = j means that the queen on row i is at column j (using the knowledge
that there can be only one queen per row). Lines 5–9 represent the constraints.
Line 5 uses the global alldifferent constraint and states that no two queens can
be on the same column. Line 6 uses a foreach construct to state that queens can
not be on a \-diagonal (example: Q[2] = 2 and Q[3] = 3) while line 8 states the
same for a /-diagonal (example: Q[3] = 3 and Q[4] = 2).

Listing 1.1. “n-queens on rows in B-prolog”

1 queens rows (N, Q) :−
2 length (Q, N) ,
3 Q :: 1 . .N,

5 a l l d i f f e r e n t (Q) ,
6 foreach (R1 in 1 . .N, R2 in (R1+1) . .N, (
7 Q[R1] − Q[R2] #\= R1 − R2)) ,
8 foreach (R1 in 1 . .N, R2 in (R1+1) . .N, (
9 Q[R1] − Q[R2] #\= R2 − R1)) ,

This model contains both a choice on how to represent the queens, as well as
how to formulate the constraints. Other representations for the queens are also
possible, such as one Boolean variable per board position or one integer variable
per column. Other ways to formulate the constraints are also possible, such as
with a decomposition of the alldifferent constraints.

In this paper, we will review different techniques that have been investigated
for learning constraints, as well as their relationship to ILP.

3 The Learning Task

In its basic form, the learning task consists in learning the constraints of a CSP
from example assignments. Given is

– a finite set of variables V = {v1, . . . , vn};
– a domain D that maps every variable v ∈ V to a set of possible values D(v);
– a set of positive and negative examples that take the form of assignments

θ = {v1 = a1, . . . , vn = an} to the variables V that satisfy or violate the CSP;
– a language of possible constraints LC , such that each c ∈ LC is of the form

r(t1, . . . , tm) with r/m a relation of arity m defined in the background, where
the terms ti correspond to a constant, a variable in V or a list of variables
that are a subset of V.1

1 Observe that we choose here to represent global constraints as unary predicates,
taking a list of variables as its arguments. An alternative would be to introduce
one version of the global predicate for any possible arity, e.g. alldifferent(X,Y),
alldifferent(X,Y, Z),

100 L. De Raedt et al.

The goal then is to find a hypothesis h ⊆ LC that is satisfied by all positive
examples and no negative examples.

For the n-queens problem in Listing 1.1, the set of variables would have car-
dinality n, and the domain for each would be the set {1, . . . , n} (note how the
variable representation is part of the learning problem). For 4-queens, a positive
example would be {Q1 = 3, Q2 = 1, Q3 = 4, Q4 = 2} and a negative exam-
ple would be {Q1 = 3, Q2 = 3, Q3 = 4, Q4 = 2}; example constraints could be
binary predicates for equality and inequality; ternary predicates for addition and
multiplication and a unary predicate for the alldifferent constraint, among
others.

Observations. Several observations can be made about this problem statement:

– CSPs are conjunctive descriptions and CP is heavily focussed on dealing
with conjunctions as these impose strong constraints that – unlike disjunc-
tive descriptions – propagate well in the search;

– The above definition assumes that all variables are explicit, and no new (aux-
iliary) variables are introduced to formulate certain constraints;

– Unlike in traditional machine learning and ILP, one typically assumes a noise-
free setting;

– The number of constraints in CSPs can be quite large, especially when consid-
ering ground representations in which foreach loops are unrolled; it is typically
much larger than the typical clauses learned in ILP; for instance, the Sudoku
problem involves 927 = 36 × 27 constraints.

– Redundancy amongst constraints is a key problem. For instance, the con-
straints x = y and y = z imply x = z. Together with the high number
of variables that is available, this causes severe problems for traversing the
search space as there are many syntactic variants. These are hypotheses that
are formulated differently and hence syntactically different (like x = y ∧ y = z
and x = y∧y = z∧x = z) but semantically equivalent. Clever ways for dealing
with this are necessary.

– Standard ILP systems often start from a large set of positive and negative
examples. The number of solutions to a CSP problem is often small and it can
already be hard to generate a single positive one. Therefore, several researchers
are learning CSPs from queries [7,8] and from small sets of examples [5,19];
these queries, as we shall discuss, do not always ask for the classification of a
complete example (consisting of a value assignment to all variables in V).

4 Relation to Inductive Logic Programming

Inductive Logic Programming (ILP) is a machine learning methodology that uses
first-order logic to represent the data as well as the learned hypotheses. This use
of first-order logic sets it apart from other machine learning techniques. It is
often used in a concept learning setting, where the goal is to find a hypothesis
that covers all of the positive examples and none of the negative ones. See [13]
for a gentle introduction to ILP.

Learning Constraint Satisfaction Problems: An ILP Perspective 101

In the ILP literature, there is a well-known distinction between learning from
entailment and learning from interpretations [12], which is also quite relevant in
the present context. When learning from entailment, each example is presented
as a ground fact and additional knowledge about the examples and the domain
is provided as background knowledge. The goal is to find (a set of) clauses that,
combined with the background knowledge, logically entail the positive examples,
and do not entail the negative examples.

Several state of the art CSP learning approaches (such as Conacq [10] and
QuAcq [7]) map directly to this setting. However, in contrast to traditional ILP,
they focus on learning a single clause.

The CSP p = (V,D, C) can be represented by a single conjunctive clause of
the following form:

p(v1, . . . , vn) :- d(v1), . . . , d(vn),
c1(vc11 , vc12 , . . . , vc1r

),
. . . ,

cm(vcm1 , vcm2 , . . . , vcms
).

where V = {v1, . . . , vn}, d(vx) represents the domain of vx and there are m
constraints ci, each involving a subset of the variables in V. In this setting,
learning a CSP corresponds to learning a single clause for which in addition
vars(head) = vars(body) as no existential variables are allowed in the body of
the clause. The definition of the ci is then part of the background knowledge;
cf. below. The goal is then to learn the definition of p(v1, . . . , vn) given this
background knowledge and positive and negative examples. Observe that this
formulation of the constraint learning problem is closely related to the learnabil-
ity results for single rules by [18] or conjunctive concepts in structural domains
by [17], two settings that have been well-studied within the context of ILP.

Example. For the n-queens problem with n = 4, we could have the positive exam-
ple queens4(2, 3, 1, 4) and the negative example queens4(2, 1, 3, 4). The back-
ground knowledge consists of the declaration of the domains, equality operators
and simple mathematical functions.

The goal is to find a set of clauses of the form

queens4(q1, q2, q3, q4) :- body(q1, q2, q3, q4)

such that the body of at least one of the clause is satisfied for the substitution
{q1/2, q2/3, q3/1, q4/4} and the body of none of the clauses is satisfied for the
substitution {q1/2, q2/1, q3/3, q4/4}.

The n-queens problem for n = 4 can be formulated as

queens4(q1, q2, q3, q4) :- q1 ∈ [1, 4], q2 ∈ [1, 4], q3 ∈ [1, 4], q4 ∈ [1, 4],
q1 �= q2, q1 �= q3, q1 �= q4, q2 �= q3, q2 �= q4, q3 �= q4,

|q1 − q2| �= 1, |q1 − q3| �= 2, |q1 − q4| �= 3,

|q2 − q3| �= 1, |q2 − q4| �= 2, |q3 − q4| �= 1.

102 L. De Raedt et al.

The second line could be replaced with alldifferent(q1, q2, q3, q4) if that constraint
is available.

Alternatively, the learning of CSPs can also be viewed as a learning from
interpretations task as originally tackled in the Clausal Discovery system
Claudien [14]. In this approach an example is a set of ground facts (typically a
Herbrand interpretation). This set is a complete description of the knowledge
about the example, that is, facts that are not in the example are considered to
be false. In this setting, there is no explicit target predicate such as queens.

Furthermore, a hypothesis H is said to cover an example e if the example e
is a model of H. Hypotheses are represented in clausal logic, that is, Claudien
learns a conjunctive set of clauses of the form h1 ∨· · ·∨hm ← b1 ∧· · ·∧bn, where
the hi and bj are first-order terms. All variables in such a clause are universally
quantified.

Also with this representation, it is possible to represent a CSP p = (V,D, C).
The form that this could take is to add a predicate vi/1 to represent each variable
in V and then employ for each variable vi ∈ V the following clauses:

vi(X) ∧ vi(Y) → X = Y

vi(ei,1) ∨ · · · ∨ v(ei,in)

with D(vi) = {ei,1, . . . , ei,in} the domain of the variable vi. These clauses guar-
antee that any model will have to take exactly one value e for each variable
v ∈ V. Furthermore, for each constraint cj we add the clause:

v1(X1) ∧ v2(X2) ∧ · · · ∧ vn(Xn) → cj(X1,X2, . . . , Xn)

where Xi are the different variables involved in the constraint cj . This constraint
guarantees that any model of the theory will satisfy all the constraints in the
CSP. Notice again that we assumed here that the number of variables is given and
fixed. If so, the learning setting is essentially propositional and closely related to
that of Valiant’s seminal PAC-learning setting [27]. However, it is often possible
to generalize the setting towards any number of variables as in the first order
extension to j, k-clausal theories [15] of Valiant’s setting. It is this setting that
formed the basis for learning from interpretations in ILP. We achieve this trans-
formation by replacing each predicate vi(X) by a predicate v(i,X), that is, by
making the variable index a variable itself. We illustrate this on the n-queens
example.

Example. We can represent a solution to the 4-queens problem as the following
interpretation:

{size(4), q(1, 2), q(2, 4), q(3, 1), q(4, 3)}
where q(R,C) indicates that there is a queen at position (R,C) on the board.
The set of clauses that fully determines the n-queens problem for examples
represented in this language is

Learning Constraint Satisfaction Problems: An ILP Perspective 103

q(R1, C1) ∧ q(R2, C2) ∧ R1 �= R2 → C1 �= C2

q(R1, C1) ∧ q(R1, C1) ∧ R1 �= R2 → |R1 − R2| �= |Q1 − Q2|
q(R1, C1) ∧ q(R2, C2) ∧ C1 �= C2 → R1 �= R2

size(N) ∧ q(R,C) → between(C, 1, N)
size(N) ∧ q(R,C) → between(R, 1, N)

size(N) ∧ between(R, 1, N) → existsrow(R)

where existsrow is defined in the background knowledge as

q(R,C) → existsrow(R).

Similar clauses could be added for existscol but they are redundant. In the
common CSP formulation of this problem (see Listing 1.1) the last 4 constraints
are implicitly encoded in the representation of the variables as a list of row
positions of the queens. Note that this definition can be learned from examples
of different sizes.

One interesting consequence of these different representations is the following.
The single clause representation is essentially a propositional one, while the
representation as a conjunctive set of clauses (CNF) also allows for relational
descriptions. The propositional techniques will learn constraints for one specific
CSP instance (e.g., n-queens for one specific n or graph coloring for one specific
graph), while relational approaches have the potential of learning the general
CSP (e.g., n-queens for all n at the same time or graph coloring for arbitrary
graphs). Indeed, given that in the single clause representation the arity of the
target predicate is fixed and vars(head) = vars(body), it is not possible to learn
one clause that will work for any number of queens.

As an example, let us examine the graph coloring problem. Using a proposi-
tional representation (either the single clause or the propositional CNF one), one
will essentially learn the constraints governing a particular graph. This is easy
to see when considering the single clause representation. What will be learned
will be a set of inequalities. Each such inequality corresponds to one edge in the
graph. This is unusual from an ILP perspective, as there it would typically be
assumed that the edges are given. If the edges are given, it is possible to learn
the overall concept of graph-coloring using a clause such as

edge(X,Y), color(X,CX), color(Y,CY) → CX �= CY

5 CSP Learning Systems

In the literature there are several examples of learning systems that focus on the
problem of learning CSPs. To describe these learning systems, we shall proceed
along a number of dimensions, which are often used to characterize ILP systems.
It will be convenient to realize this by answering the following questions:

1. What is the representation language for the examples (or instances in the
data)?

104 L. De Raedt et al.

2. What is the hypotheses space or language ?
3. What type of background knowledge is used ?
4. What search strategy is used ?
5. How are the resulting hypotheses scored or ranked ?

In the remainder of this section we briefly discuss five different constraint
learning systems by answering these questions.

5.1 Learning a CNF

Clausal Discovery (Claudien) [14]. Claudien was developed as a general
purpose learning system, not focussed in particular on learning CSPs.

1. Examples are represented as Herbrand interpretations. These interpretations
can contain additional information about the problem instance, for example
the graph structure in the case of graph coloring. Claudien is capable of
learning from only positive examples, or both positive and negative examples.

2. Hypotheses are represented as a conjunctive set of clauses.
3. Background knowledge contains global knowledge, for example, definitions of

global constraints that are available. This knowledge is typically represented
as clauses or predicate definitions.

4. Search in Claudien is performed on a lattice based on θ-subsumption. It is
guided by a refinement operator which can be specified in the DLAB bias
specification language, which specifies which literals can be added to a clause
during the search.

5. Claudien computes the most specific hypothesis, that is the one that covers
the fewest interpretations.2

Lallouet et al. [19]. The system proposed by Lallouet et al. essentially solves the
same learning task as Claudien. However, instead of learning a set of clauses in
universally quantified conjunctive normal form (UCNF) directly, they exploit the
duality between UCNF and clauses in existentially quantified disjunctive normal
form (EDNF) [11]. This duality can be expressed by the following property:

(∃l1,1 ∧ · · · ∧ l1,n1) ∨ · · · ∨ (∃lk,1 ∧ · · · ∧ lk,n1k)

is a solution to an EDNF concept learning task with positive examples P and
negative examples N if and only if

(∀¬l1,1 ∨ · · · ∨ ¬l1,n1) ∧ · · · ∧ (∀¬lk,1 ∨ · · · ∨ ¬lk,n1k)

is a solution to an UCNF concept learning task with N as positive examples and
P as negative examples. The clausal theory is thus obtained by learning a EDNF
on the examples where the class labels are flipped (so positive become negative
2 It is well-known in ILP [12] that when learning from interpretations, a hypothesis G

is more general than S if and only if S |= G, while when learning from entailment
if and only if G |= S.

Learning Constraint Satisfaction Problems: An ILP Perspective 105

and vice versa) and by then taking the negation of the obtained formula, which
is in UCNF. The main motivation for this approach is the availability of EDNF
learning algorithm implementations such as Aleph [26].

An important difference between Claudien and this approach is the use of
positive versus negative examples. Claudien learns primarily on positive exam-
ples with possible additional information from negative examples, while the app-
roach by Lallouet et al. primarily learns from negative examples due to the class
flipping step.

1. same as Claudien
2. same as Claudien
3. same as Claudien
4. The authors observe that neither top-down search as bottom-up search pro-

vided the necessary scalability. They propose a bi-directional search method
that combines top-down and bottom-up search similar to Mitchell’s Candi-
date Elimination [21].

5. Selection is part of the bidirectional search of the DNF learning algorithm.

ModelSeeker [5]. ModelSeeker searches for global constraints starting from an
unstructured list of variables. It does not perform search over individual variables
but it searches over blocks of variables instead. These blocks are generated by a
generator function that extracts certain structures from the example (e.g. rows
of a matrix). This approach consists of two steps:

1. Find a generator that can be applied on the given example. The generator
will enumerate blocks of variables (e.g. the rows of a matrix).

2. Find a global constraint, defined on all variables in a given block (e.g. row),
that holds for all blocks generated by that generator.

ModelSeeker defines a number of generator templates that can be instanti-
ated. For example, scheme(n,m1,m2, size1, size2) interprets a sample of length
n as a matrix of size m1 × m2, and extracts non-overlapping blocks of size
size1 × size2. Valid instances of this template can be found using Prolog as
follows

scheme(N, M1, M2, S1, S2) :-
factor(N, M1, M2), M1 =< M2,
factor(M, S1, _),
factor(M, S2, _).

where factor(N,M1,M2) computes a pair of integers M1 and M2 such that N =
M1 × M2. For a 9 × 9 Sudoku with 81 variables, possible generators include
schema(81, 1, 81, 1, 81) (a list), schema(81, 3, 27, 3, 3) (a 3-by-27 matrix where
blocks of 3-by-3 are extracted), and schema(81, 9, 9, 1, 9) (where the rows of a
9 × 9 matrix are extracted).

In the second phase, ModelSeeker searches for a constraint that is satisfied by
all blocks belonging to the specific generator instance selected in the first phase.

106 L. De Raedt et al.

In a Sudoku, for example, the constraint alldifferent(Vars) holds for all sets
of variables extracted by schema(81, 9, 9, 1, 9) (i.e. the rows of the matrix). The
constraints that are considered are a large subset of those available in the global
constraint catalog [3].

Table 1 shows the output of ModelSeeker for the Sudoku problem.

Table 1. Model found by ModelSeeker for the standard Sudoku problem.

Generator Constraint Comment

scheme(81,9,9,1,9) permutation*9 rows

scheme(81,9,9,9,1) permutation*9 columns

scheme(81,9,9,3,3) permutation*9 3-by-3 blocks

In an ILP formulation, we can write this as

scheme(81, 9, 9, 1, 9, Block) → permutation(Block)
scheme(81, 9, 9, 9, 1, Block) → permutation(Block)
scheme(81, 9, 9, 3, 3, Block) → permutation(Block)

Note that the generator is described using constants. This indicates that Mod-
elSeeker cannot generalize over problems of different sizes. The enumeration of
this kind of clauses requires a very specialized language bias. Thanks to its tai-
lored bias, ModelSeeker is capable of learning from a single example.

ModelSeeker can also introduce auxiliary variables as parameters of global
constraints. It then assumes that all constraints over a set of variable subsets
(e.g. rows of a matrix) share the same parameter. This is for example the case
when learning magic squares, where each row (and column) sums to the same
number.

1. Examples are unstructured lists of numbers. They are typically the output
that one would expect from a CP solver.

2. Hypotheses consist of a generator and a global constraint.
3. Two sets of background knowledge are provided: a set of predefined generator

templates and a set of global constraints. Some (handcrafted) meta informa-
tion is available about subsumption between constraints.

4. The search strategy is a clever generate and test strategy. It consists of finding
all combinations of generator and global constraint that are satisfied in the
example.

5. ModelSeeker uses a combination of techniques for ranking and selecting
hypotheses. The Constraint Seeker returns a ranked list of constraints, where
the ranking is based on a number of properties as described in [4]. ModelSeeker
essentially selects the most specific hypothesis. However, ModelSeeker con-
siders the global constraints to be black-boxes on which no automated rea-
soning is possible. Generality tests are therefore purely based on available

Learning Constraint Satisfaction Problems: An ILP Perspective 107

hand-crafted meta-data. This meta-data can be used to express, among oth-
ers, implication (e.g. permutation implies alldifferent), contractibility and
expandability (e.g. alldifferent(a,b,c) implies alldifferent(a,b), etc.)

5.2 Learning a Single Clause

Conacq [6,8]. Conacq employs a version-space like approach (Mitchell’s FIND-S
algorithm [21]). The version space is the space of all possible constraint networks
that can be built on a given set of variables with constraints belonging to a given
language. Conacq iterates over the examples to reduce the version space.

1. All examples are complete assignments on a set V of variables taking values
in a domain D. Each example is labelled positive or negative depending on
whether it satisfies or not all the constraints of the problem. For instance for
4-queens: (Q1 = 3, Q2 = 1, Q3 = 4, Q4 = 2) is a positive example.

2. The hypotheses are subsets of a set B of the basis constraints, that is, all
constraints that possibly participate to the definition of the constraint net-
work. For instance, B could contain all binary constraints Qi � Qj where
� ∈ {=, �=, <,≤,≥, >, . . .}.

3. The background knowledge contains the definition of these constraints, and
can also include any interdependency between constraints that could hold
between subsets of constraints. For instance, X ≤ Y ∧ Y ≤ Z → X ≤
Z tells us that each time constraints Qi ≤ Qj and Qj ≤ Qk are learned,
we can derive Qi ≤ Qk. This is intended to recognize syntactic variants
and work more at a semantic level of generalization that is reminiscent of
Buntine’s generalized subsumption [9] and the notion of semantic closure
[16]. Working at the semantic level allows one to significantly decrease the
number of candidate hypotheses in the version space.

4. The version space is compactly represented by a SAT formula. Each model is
a hypothesis that accepts all positive examples and rejects all negative ones.
Strategies for updating/simplifying the SAT formula involve unit propagation
or backbone detection (i.e., detecting constraints that belong to all hypotheses
of the version space.

5. No ranking/evaluation function was proposed for selecting hypotheses. The
by default function is to take the most specific one.

The active version of Conacq (Conacq2) [8] asks membership queries until
the version space has converged on a single hypothesis.

1. as in Conacq
2. as in Conacq
3. as in Conacq
4. The strategy usually used for asking membership queries that will produce a

fast decrease in the size of the version space is an adaptation of the near-
miss strategy [25]. For instance, given a negative example e1 violating a
set κ of constraints, we try to ask the user to classify an example e2 that

108 L. De Raedt et al.

violates a single constraint of κ. If the example is classified positive, that
constraint is removed from the candidate constraints. If it is negative, it is
learned as belonging to the constraint network. This strategy is reminiscent
of Mitchell’s FIND-S algorithm [22]. Interdependencies between constraints
can make impossible the generation of near-miss queries, leading to slower
decrease in the size of the version space (Constraints networks have been
shown to be non learnable in a polynomial sequence of membership queries).

5. Conacq2 can be stopped at any time, but it has been presented to be run
until convergence. In such a case, it is not necessary to rank the hypotheses
as there is only remaining one in the version space.

QuAcq [7]. QuAcq is an extension of Conacq2 that is able to ask partial queries
to reduce the number of queries required for convergence.

Thanks to this feature, for each example classified as negative, QuAcq uses
a dichotomic search to elucidate one constraint of the constraint network with a
number of queries logarithmic in the size of the negative example. As a result,
QuAcq learns the constraint network in a polynomial number of queries (namely,
t · n, where t is the size of the network and n the number of its variables) and
proves convergence in a number of queries linear in the size of the basis B.

1. examples are partial or complete assignments on the set V of variables. Each
example is labelled positive or negative depending on whether it satisfies or
not all the constraints of the problem whose variables are involved in the
example. For instance for 4-queens: (Q1 = 3, Q2 = 2, Q3 = 4) is a negative
example because Q1 and Q2 are on the same diagonal;

2. as in Conacq;
3. QuAcq does not use any background knowledge other than the definition of

the operators;
4. for each example classified as positive, QuAcq rules out from the candidate

constraints all those that are violated by the example. For each example clas-
sified as negative, QuAcq uses a dichotomic search to elucidate one constraint
of the constraint network with a number of queries logarithmic in the size of
the negative example. This step requires the use of partial queries.

5. as Conacq2, QuAcq is supposed to be run until convergence.

Example. Consider the 4-queens problem. Suppose the example e = (Q1 =
3, Q2 = 1, Q3 = 3, Q4 = 2) has been classified as negative by the user. This
means there is at least one constraint of the network to learn that rejects e
(actually there are several). To elucidate such a constraint, QuAcq splits e in
two parts of equal size (to guarantee logarithmic convergence) and asks the user
the query (Q1 = 3, Q2 = 1). As the two remaining queens in this example do not
attack each other, the user classifies this partial example as positive and QuAcq
removes from the set of candidate constraints all those that are violated by
(Q1 = 3, Q2 = 1) (e.g., Q1 = Q2). Then QuAcq extends the example to Q3. The
query (Q1 = 3, Q2 = 1, Q3 = 3) is negative. Hence, QuAcq knows that there is a
constraint between {Q1, Q2} and Q3. QuAcq generates the query (Q1 = 3, Q3 =

Learning Constraint Satisfaction Problems: An ILP Perspective 109

3), which is classified as negative. At this point QuAcq knows there is a constraint
on the scope (Q1, Q3), and it knows this constraint forbids the tuple (3, 3).
What remains to do is to generate queries on (Q1, Q3) that will allow QuAcq
to find which constraint leads to the rejection of (Q1 = 3, Q3 = 3). Suppose
that the remaining candidate constraints that could reject (Q1 = 3, Q3 = 3)
are {�=, <,>}. After having asked (Q1 = 3, Q3 = 2) and (Q1 = 2, Q3 = 3),
both classified positive, QuAcq rules out Q1 < Q3 and Q1 > Q3 as candidate
constraints, and Q1 �= Q3 is added to the learned network.

6 Discussion

We will now analyze these different systems based on a number of dimensions.
Table 2 gives an overview of this section.

Propositional vs. Relational. For the systems we discussed, Claudien and
Lallouet use first-order logic to learn constraint models, while Conacq and QuAcq
are based on propositional logic. Many constraint satisfaction problems have
some form of global structure that can be captured very well by first-order logic,
but would require many constraints in propositional logic.

ModelSeeker is a mix between the two. It allows one to capture global struc-
ture using global constraints, but it only learns a restricted form of clauses. Its
output can be considered to be a domain-specific language that can be mapped
to a clausal theory, but it lacks the expressivity of the latter.

Active vs. Passive Learning. Most of the systems are passive learning systems,
that is, they take examples and produce a model without user interaction. How-
ever, Conacq2 and QuAcq are based on posing queries to the user, which allows
them to quickly converge to the correct solution, even when no positive examples
have been seen. In a sense, it allows the system to learn the model and solve
it at the same time. From a machine learning point of view, the use of partial
queries is new and unexplored in the context of ILP, cf. [2].

Table 2. Categorization of systems. The question answered are (1) Does the system
learn a single clause or multiple ones? (2) Is the system propositional or relational? (3)
Does it use active learning? (4) What type of examples does it need (positive, negative,
partial)? (5) How does it handle redundancy (logic-based, lattice-based, ruleset-based)
(6) Can it learn from examples of difference sizes?

Claudien Lallouet ModelSeeker Conacq Conacq2 QuAcq

Clauses? multi multi multi single single single

Prop./Rel.? rel rel mixed prop prop prop

Active? pass pass pass pass active active

Examples? pos(+neg) neg(+pos) pos pos+neg pos+neg partial

Redundancy? logic logic ruleset lattice lattice lattice

Different sizes? yes yes no no no no

110 L. De Raedt et al.

Requirements on Examples. An important aspect of learning CSPs is the avail-
ability of examples. Some CSPs have many solutions, some have only one. The
systems discussed in this paper have different requirements for the examples.

Claudien and the approach of Lallouet et al. start from examples as sets of
ground facts. This allows them to learn from structured examples (for example,
containing a graph). Both approaches typically require a substantial number of
examples, depending on the complexity of the input language and the avail-
able background information in the form of language bias. The main difference
between both approaches is that Claudien learns a theory on positive exam-
ples, while Lallouet et al. starts from negative examples. Both approaches can
incorporate information from both positive and negative examples.

Conacq, QuAcq and ModelSeeker start from examples in the form of assign-
ments to the variables in the model. This means they fix the number of variables
at the start of the learning task.

ModelSeeker assumes that some structure can be imposed on the variables on
which global constraints can be found. It often can learn a good model from just
a single positive example. ModelSeeker can not incorporate information from a
negative example.

QuAcq can start from partial examples, which means that it can be used to
learn problems for which no solution has been found yet.

Redundancy. All systems support some form of redundancy elimination. In
Claudien, Lallouet et al., Conacq and QuAcq this is based on logical inference.
In ModelSeeker, this is based on metadata provided with the constraints.

7 Conclusion and Future Work

We see the learning of CSPs as a modern challenge in which many of the tech-
niques and insights from ILP can play an important role. The connection between
constraint programming and inductive logic programming has been made before
by Lallouet et al. [19] for learning CSPs and by Abdennadher and Rigotti [1]
for learning propagation rules for CSP solvers. In this survey, we have given an
overview of techniques for learning CSPs and relate them to concepts from the
ILP community, with the intention of inspiring further cross-fertilization between
these two fields.

Each of the systems described in this paper contributes its own ideas. The
expert driven ModelSeeker [5] introduces the idea of generators and uses a very
well developed search strategy which makes it capable of learning relatively
complex CSPs from a small number of examples. However, techniques from ILP
can still contribute (1) by making it possible to structure the search space better
by using more-general-than relations between the available constraints and the
generators, (2) by allowing ModelSeeker to incorporate negative examples, and
(3) by making it able to learn from examples of different sizes [24].

The propositional systems Conacq [10] and QuAcq [7] are interesting because
they start from a sound theoretical basis and can therefore provide guarantees on

Learning Constraint Satisfaction Problems: An ILP Perspective 111

the complexity of the learning task. The QuAcq system is especially of interest
because it can learn from partial queries to the user. This allows it to learn a
CSP for which no solutions are known yet. This setting has never been studied
in an ILP setting.

In conclusion, we believe that ILP-based techniques can make a valuable con-
tribution for the task of learning CSPs, and that techniques studied for learning
CSPs can be used to improve the effectiveness of ILP systems.

Acknowledgements. This work was supported by the European Commission under
the project “Inductive Constraint Programming” (FP7- 284715).

References

1. Abdennadher, S., Rigotti, C.: Automatic generation of rule-based solvers for inten-
sionally defined constraints. IJAIT 11(2), 283–302 (2002)

2. Angluin, D.: Queries and concept learning. Mach. Learn. 2(4), 319–342 (1988)
3. Beldiceanu, N., Carlsson, M., Rampon, J.-X.: Global constraint catalog. http://

www.emn.fr/z-info/sdemasse/gccat/
4. Beldiceanu, N., Simonis, H.: A constraint seeker: finding and ranking global con-

straints from examples. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 12–26.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-23786-7 4

5. Beldiceanu, N., Simonis, H.: A model seeker: extracting global constraint models
from positive examples. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 141–
157. Springer, Heidelberg (2012)

6. Bessiere, C., Coletta, R., Freuder, E.C., O’Sullivan, B.: Leveraging the learning
power of examples in automated constraint acquisition. In: Wallace, M. (ed.) CP
2004. LNCS, vol. 3258, pp. 123–137. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-30201-8 12

7. Bessiere, C., Coletta, R., Hebrard, E., Katsirelos, G., Lazaar, N., Narodytska, N.,
Quimper, C.-G., Walsh, T.: Constraint acquisition via partial queries. In IJCAI,
pp. 475–481. AAAI Press (2013)

8. Bessiere, C., Coletta, R., O’Sullivan, B., Paulin, M.: Query-driven constraint acqui-
sition. In: IJCAI, pp. 50–55 (2007)

9. Buntine, W.: Generalized subsumption and its applications to induction and redun-
dancy. Artif. Intell. 36(2), 149–176 (1988)

10. Coletta, R., Bessiére, C., O’Sullivan, B., Freuder, E.C., O’Connell, S., Quinque-
ton, J.: Semi-automatic modeling by constraint acquisition. In: Rossi, F. (ed.) CP
2003. LNCS, vol. 2833, pp. 812–816. Springer, Heidelberg (2003). doi:10.1007/
978-3-540-45193-8 58

11. De Raedt, L.: Induction in logic. In: Proceedings of the 3rd International Workshop
on Multistrategy Learning, pp. 29–38 (1996)

12. De Raedt, L.: Logical and Relational Learning. Springer, Heidelberg (2008)
13. De Raedt, L.: Inductive logic programming. In: Sammut, C., Webb, G.I. (eds.)

Encyclopidea of Machine Learning. Springer, New York (2010)
14. De Raedt, L., Dehaspe, L.: Clausal discovery. ML 26(2–3), 99–146 (1997)
15. De Raedt, L., Džeroski, S.: First-order jk-clausal theories are PAC-learnable. Artif.

Intell. 70(1–2), 375–392 (1994)
16. De Raedt, L., Ramon, J.: Condensed representations for inductive logic program-

ming. KR 4, 438–446 (2004)

http://www.emn.fr/z-info/sdemasse/gccat/
http://www.emn.fr/z-info/sdemasse/gccat/
http://dx.doi.org/10.1007/978-3-642-23786-7_4
http://dx.doi.org/10.1007/978-3-540-30201-8_12
http://dx.doi.org/10.1007/978-3-540-30201-8_12
http://dx.doi.org/10.1007/978-3-540-45193-8_58
http://dx.doi.org/10.1007/978-3-540-45193-8_58

112 L. De Raedt et al.

17. Haussler, D.: Learning conjunctive concepts in structural domains. Machine Learn-
ing 4(1), 7–40 (1989)

18. Kietz, J.-U.: Some lower bounds for the computational complexity of inductive
logic programming. In: Brazdil, P.B. (ed.) ECML 1993. LNCS, vol. 667, pp. 115–
123. Springer, Heidelberg (1993). doi:10.1007/3-540-56602-3 131

19. Lallouet, A., Lopez, M., Martin, L., Vrain, C.: On learning constraint problems.
In: ICTAI, pp. 45–52 (2010)

20. Leo, K., Mears, C., Tack, G., Garcia de la Banda, M.: Globalizing constraint mod-
els. In: Schulte, C. (ed.) Principles and Practice of Constraint Programming. LNCS,
vol. 8124, pp. 432–447. Springer, Berlin Heidelberg (2013)

21. Mitchell, T.M.: Version spaces: a candidate elimination approach to rule learning.
In: IJCAI, pp. 305–310. Morgan Kaufmann Publishers Inc (1977)

22. Mitchell, T.M.: Machine Learning. McGraw Hill, New York (1997)
23. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.:

MiniZinc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP
2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-74970-7 38

24. Razakarison, N., Carlsson, M., Beldiceanu, N., Simonis, H.: GAC for a linear
inequality and an atleast constraint with an application to learning simple poly-
nomials. In: SOCS. AAAI Press (2013)

25. Smith, B.D., Rosenbloom, P.S.: Incremental non-backtracking focusing: a polyno-
mially bounded generalization algorithm for version spaces. In: AAAI, pp. 848–853.
Citeseer (1990)

26. Srinivasan, A.: The aleph manual (2001).http://www.cs.ox.ac.uk/activities/
machlearn/Aleph/aleph.html

27. Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)
28. Zhou, N.-F.: The language features and architecture of B-Prolog. Theory Pract.

Log. Program. 12(1–2), 189–218 (2012)

http://dx.doi.org/10.1007/3-540-56602-3_131
http://dx.doi.org/10.1007/978-3-540-74970-7_38
http://dx.doi.org/10.1007/978-3-540-74970-7_38
http://www.cs.ox.ac.uk/activities/machlearn/Aleph/aleph.html
http://www.cs.ox.ac.uk/activities/machlearn/Aleph/aleph.html

Learning Modulo Theories

Andrea Passerini(B)

Department of Computer Science and Information Engineering,
University of Trento, Trento, Italy

passerini@disi.unitn.it

Abstract. Many real-world applications require reasoning over hybrid
domains involving combinations of continuous and discrete variables
and their relationships. Being able to precisely specify all constraints
and their respective importance beforehand is often infeasible for the
most experienced designer, let alone for a typical decision maker. In
this chapter we discuss Learning Modulo Theories (LMT), a learning
framework capable of dealing with hybrid domains by combining struc-
tured learning with Satisfiability Modulo Theory (SMT) techniques.
LMT incorporates SMT solvers and their extensions for optimization
as inference engines within learning algorithms. The learning stage auto-
matically identifies the relevant constraints and their respective weights
among a set of candidates. The framework can be cast in the structured-
output learning paradigm, where the task is learning the structure of the
problem from a set of noisy instances, or as a preference elicitation task,
where a decision maker is involved in an interactive optimization loop
aimed at generating the most preferred solution. We report experimental
results highlighting the potential of the method in automated design and
recommendation scenarios.

1 Introduction

Many real-world applications require reasoning over hybrid domains involv-
ing combinations of continuous and discrete variables and their relationships.
A notable example is layout synthesis, where the task is that of finding an opti-
mal layout subject to a set of constraints, with applications to urban pattern
layout [70], decorative mosaics [37] and furniture arrangement [72], to mention
a few. Fields like design optimization [66] and computational creativity [52] are
also typically characterized by hybrid problems with complex constraints (think
of harmony rules in music composition).

Reasoning and learning in hybrid domains is a very challenging task. Apart
from hybrid Bayesian Networks, for which efficient inference is limited to con-
ditional Gaussian distributions, there is relatively little previous work on hybrid
methods. The few existing attempts [21,33,36,38,54,69] impose strong limi-
tations on the type of constraints they can handle. Inference is typically run
by approximate methods, based on variational approximations or sampling
strategies. Exact inference, support for hard numeric (in addition to Boolean)

c© Springer International Publishing AG 2016
C. Bessiere et al. (Eds.): Data Mining and Constraint Programming, LNAI 10101, pp. 113–146, 2016.
DOI: 10.1007/978-3-319-50137-6 6

114 A. Passerini

constraints and combination of diverse types of data, like integer and rational
numbers, are out of the scope of these approaches.

In order to overcome these limitations, we focused on the most recent
advances in automated reasoning over hybrid domains. Researchers in automated
reasoning and formal verification have developed logical languages and reason-
ing tools that allow for natively reasoning over mixtures of Boolean and numer-
ical variables (or even more complex structures). These languages are grouped
under the umbrella term of Satisfiability Modulo Theories (SMT) [3]. Each such
language corresponds to a decidable fragment of First-Order Logic augmented
with an additional background theory T , like linear arithmetic over the ratio-
nals or over the integers. SMT is a decision problem, which consists in finding
an assignment to both Boolean and theory-specific variables making an SMT
formula true. SMT solvers combine satisfiability testing for a Boolean abstrac-
tion of the formula, where theory atoms are replaced with Boolean variables,
and theory-specific solvers for finding consistent assignments to the theory vari-
ables or providing additional constraints to guide the satisfiability solver toward
theory-consistent assignments (hence the name Satisfiability Modulo Theories).
Recently, researchers have leveraged SMT from decision to optimization. MAX-
SAT Modulo Theories (MAX-SMT) [24,53] deal with the problem of finding a
theory-consistent truth assignment maximizing the total weight of the satisfied
clauses. The most general framework is that of Optimization Modulo Theories
(OMT) [61], which consists in finding a model for a formula which minimizes
the value of some (arithmetic) cost function defined over the variables in the
formula.

In this chapter we describe Learning Modulo Theories (LMT) [19,64], a novel
framework for performing learning and inference in hybrid domains. The goal is
learning to predict complex structures (e.g. the optimal program schedule for a
large conference, the furniture arrangement of an apartment) characterized by
hybrid constraints over their components. The quality of a structure is given
by an unknown scoring function which is a weighted combination of (soft) con-
straints, and that has to be learned from experimental data. The framework
combines the efficiency of modern OMT solvers to perform inference in hybrid
domains with the effectiveness of learning techniques for predicting structured
objects [2]. The learning stage automatically identifies the relevant constraints
and their respective weights among a set of candidates, while inference returns
the minimal cost (or maximal score) configuration according to the learned prob-
lem formulation.

The framework can be cast in the structure-output learning paradigm or as
a preference elicitation task. In the former case, the task is learning the scoring
function from a set of correct input-output pairs, in order to be able to generate
novel maximal scoring instances consistent with the problem constraints. We
rely on structured-output Support Vector Machines (SVM) [65], a very flexible
max-margin structured prediction method, and adapt them to the LMT frame-
work [64]. Preference elicitation, on the other hand, is the task of eliciting the
unknown preference of a decision maker in order to generate her most preferred

Learning Modulo Theories 115

solution. An interactive optimization loop [19] iteratively asks for feedback on
candidate solutions based on the currently learned utility model, and refines the
model according to the feedback received, until the decision maker is satisfied
with the returned solution.

The rest of the chapter is organized as follows. We start by introducing rele-
vant background in Sect. 2. Section 3 describes LMT for structured-output pre-
diction, including experimental results on a representative problem and related
work. Section 4 focuses on LMT for preference elicitation, including again an
experimental study and some relevant related work. Conclusions are finally
drawn in Sect. 5.

2 Background

In this section we will introduce the necessary background, namely Satisfiabil-
ity Modulo Theory for reasoning over hybrid domains and structured-output
learning for predicting structured entities as outputs. Table 1 summarizes the
notation we will use throughout the paper.

Table 1. Explanation of the notation used throughout the text.

Symbol Meaning

above, right, . . . Boolean variables

x, y, dx, . . . Rational variables

ϕ1, . . . , ϕm Constraints

(I , O) Instance; I is the input, O is the output

1k(I ,O) Indicator for Boolean constraint ϕk over (I ,O)

sk(I ,O) Score for arithmetic constraint ϕk over (I ,O)

ψ(I ,O) Feature representation of the instance

ψk(I ,O) := 1k(I ,O) Feature associated to Boolean constraint ϕk

ψk(I ,O) := sk(I ,O) Feature associated to arithmetic constraint ϕk

w Weights

2.1 Satisfiability Modulo Theory

Given a formula made of Boolean variables and logical connectives, propositional
satisfiability (SAT) deals with the problem of deciding whether the formula can
be satisfied by a truth value assignment of the Boolean variables. Satisfiability
Modulo Theory (SMT) [59] extends SAT to decide about satisfiability of a first-
order formula with respect to a background theory T , like linear arithmetic over
the rationals (LRA) or integers (LIA), or a combination of theories. We will
write SMT(T) to indicate satisfiability modulo theory T , e.g. SMT(LRA) for
satisfiability modulo linear arithmetic over the rationals.

116 A. Passerini

Current SMT solvers are based on the so-called lazy approach, where an outer
SAT-solver interacts with one or more specialized T -solvers (one for each theory)
in order to progressively focus the search towards theory-consistent solutions. In
the rest of the paper we will assume for ease of exposition to always deal with
single theories, but all the machinery can be applied to arbitrary combinations
of theories. Let φ be an SMT formula. Its Boolean abstraction φ− is obtained
replacing each theory-specific predicate in φ with a Boolean variable. The SAT
solver finds a truth value assignment satisfying φ−, and presents it to the T -
solver to check for theory consistency. If the T -solver detects an inconsistency,
it returns unsat, plus a justification, i.e. a subset of the assignment which is
unsatisfiable according to the theory. This justification is added to the original
formula, and the process is repeated until a theory-consistent solution is found,
or the refined formula is not satisfiable.

Example 2.1. Let φ be the following SMT(LIA) formula:

(x + y + z ≤ 5) ∧ (y < 0) ∧ ((x + y > 4) ∨ (x + z > 4)) ∧ ((x < 0) ∨ (z = 4))

Its Boolean abstraction is:

ϕ1 ∧ ϕ2 ∧ (ϕ3 ∨ ϕ4) ∧ (ϕ5 ∨ ϕ6)

Suppose the SAT solver finds the following solution:

ϕ1 = �, ϕ2 = �, ϕ3 = �, ϕ4 = ⊥, ϕ5 = �, ϕ6 = ⊥

corresponding to the following SMT(LIA) formula:

(x + y + z ≤ 5) ∧ (y < 0) ∧ (x + y > 4) ∧ (x + z ≤ 4) ∧ (x < 0) ∧ (z �= 4)

The formula cannot be satisfied, as e.g. x and y cannot be both negatives if
they need to sum to more than 4. When asked to solve it, the T -solver detects
unsatisfiability and returns for instance:

¬(ϕ2 ∧ ϕ3 ∧ ϕ5)

as a justification. After including it, the SAT solver finds for instance the new
solution:

ϕ1 = �, ϕ2 = �, ϕ3 = ⊥, ϕ4 = �, ϕ5 = �, ϕ6 = ⊥
which corresponds to the formula:

(x + y + z ≤ 5) ∧ (y < 0) ∧ (x + y ≤ 4) ∧ (x + z > 4) ∧ (x < 0) ∧ (z �= 4)

The T -solver is now able to detect satisfiability, resulting for instance in the
assignment

x = −1, y = −1, z = 6

Learning Modulo Theories 117

Modern lazy SMT solvers introduce a number of refinements to this basic
procedure, combining solving techniques from very heterogeneous domains. We
refer the reader to [3,59] for an overview on lazy SMT solving.

MAX-SMT [24,25,53] generalizes SMT in the same way as MAX-SAT does
with SAT. Rather than finding an assignment satisfying the formula, the task is
that of finding an assignment minimizing the number of unsatisfied constraints.
In its weighted version, each constraint has a (typically positive) weight, and the
task is that of minimizing the cost, that is the weighted sum of the unsatisfied
constraints.

Let {(ϕ1, w1), . . . , (ϕm, wm)} be a set of constraints with associated (non-
negative) weights. The cost of any assignment is clearly smaller than the sum
of all weights W =

∑m
i=1 wi and larger than or equal to zero. The search for a

minimal cost solution follows a branch and bound approach, where the upper
and lower cost bounds are progressively tightened and plain SMT is called within
these bounds. Consider an upper bound Ŵ < W . A simple approach to enforce
the solution to have a cost smaller than Ŵ is to add a set of m fresh Boolean
variables and weights {(ϕ̄1, w̄1), . . . , (ϕ̄m, w̄m)} combined with the following con-
straints:

ϕi ∨ ϕ̄i ∀i ∈ [1,m]
ϕ̄i → (w̄i = wi) ∀i ∈ [1,m]
¬ϕ̄i → (w̄i = 0) ∀i ∈ [1,m]

m∑

i=1

w̄i ≤ Ŵ

which make any assignment with overall weight larger than Ŵ inconsistent with
the theory.

MAX-SMT has been recently generalized to the so-called Optimization Mod-
ulo Theories (OMT) [49,53,61], where the task is finding a model for a formula
minimizing the value of some arithmetic cost function over the variables of the
formula. Existing solvers have focused on the LRA theory and combine lazy
SMT-solving with LP minimization techniques.

Example 2.2. Consider the following OMT(LRA) problem:

(cost = x + y + z) ∧ (x + 2y ≥ 10) ∧ ((z ≥ y) ∨ (z ≥ x)) ∧ (y > 0) ∧ (x > 0)

Depending on the truth value assignment of its Boolean abstraction (omitted here
for the sake of conciseness), the sets of constraints to minimize are:

(cost = x + y + z) ∧ (x + 2y ≥ 10) ∧ (z ≥ y) ∧ (z < x) ∧ (y > 0) ∧ (x > 0)
(cost = x + y + z) ∧ (x + 2y ≥ 10) ∧ (z < y) ∧ (z ≥ x) ∧ (y > 0) ∧ (x > 0)
(cost = x + y + z) ∧ (x + 2y ≥ 10) ∧ (z ≥ y) ∧ (z ≥ x) ∧ (y > 0) ∧ (x > 0)

118 A. Passerini

having respective solutions:

x = 4, y = 3, z = 3, cost = 10
x = 0, y = 5, z = 0, cost = 5
x = 0, y = 5, z = 5, cost = 10

giving an overall minimal cost of 5.

Note that while OMT focuses on minimizing costs, structured-output learn-
ing and preference elicitation typically deal with maximizing scores and utilities.
In the rest of the chapter we will thus focus on maximization problems, with the
implicit assumption that optimization will actually be addressed by minimizing
their negated versions.

2.2 Learning with Structured Outputs

Statistical learning approaches have traditionally focused on learning settings
with vectorial representations as inputs and scalar representations as outputs,
either classification or regression. However, many real-world scenarios are char-
acterized by more complex types of data, both in the input (e.g. a website,
a protein sequence) and in the output (e.g. collective classification for web-
pages, secondary structure sequential labeling for protein sequences). Dealing
with structured inputs is performed by explicit or implicit feature construction
approaches, like kernel machines [63] or neural networks [9]. Structured-output
prediction [2] is more tricky, as it requires to learn a function producing a struc-
ture as its output. A common approach to the problem is that of learning a
scoring function over joint input-output pairs:

f(I ,O) = wT ψ(I ,O) (1)

Here I is the input (or observed) part, O is the output (or query) part1 and
ψ is a function mapping input-output pairs to a joint feature space, where linear
discrimination is performed. Given an input I , the predicted output will be the
one maximizing the scoring function:

O∗ = argmax
O

f(I ,O) (2)

and the problem boils down to finding efficient procedures for computing the
maximum. This formulation is also known as energy-based learning [47] and
comprises many statistical relational learning [32] approaches to collective pre-
diction. It also corresponds to maximum-a-posteriori inference in probabilistic
graphical models [42], where the scoring function is the conditional probability

1 We depart from the conventional x/y notation for indicating input/output pairs to
avoid name clashes with the x-y coordinate variables.

Learning Modulo Theories 119

of the output given the input. Efficient exact procedures exist for some special
cases—like when the space of feasible solutions can be represented in terms of
regular or context free grammars—while approximate inference is typically used
in the general case. In this paper we are interested in the case where inputs
and outputs are combinations of discrete and continuous variables, and we will
leverage SMT techniques to perform efficient inference in this setting.

Discriminative learning of the scoring function is based on a generalization of
the max-margin algorithm to the structured-output setting. Max-margin learn-
ing in binary classification [18] enforces positive examples to be separated from
negative ones with a large margin, possibly accounting for margin errors to be
penalized in the objective function. In the structured-output setting, this corre-
sponds [65] to enforcing that the correct output structure for a certain input has
a score which is higher (by a large margin) than any possible incorrect structure,
again admitting margin violations to be penalized in the objective. The resulting
optimization problem is as follows:

argmin
w ,ξ

1
2
‖w‖2 +

C

n

n∑

i=1

ξi (3)

s.t. w�(ψ(I i,O i) − ψ(I i,O
′)) ≥ Δ(I i,O i,O

′) − ξi ∀ i = 1, . . . , n; O ′ �= O i

where Δ(I ,O ,O ′) is a non-negative loss function that, for any given observation
I , quantifies the penalty incurred when predicting O ′ instead of the correct
output O . Each inequality states that the score of the correct output O i should
be higher than that of an incorrect output O ′ �= O i by at least the value of the
loss between the two outputs and, if this is not the case, that a penalty should
be paid in the objective function. Note that as ξi is shared among all inequalities
involving example i, each example contributes to the objective with a cost equal
to the maximum among the penalties for all possible wrong outputs. Minimizing
the norm of the weights corresponds to maximizing the margin between correct
and incorrect outputs. The regularization term C is a hyper-parameter trading
off size of the margin and penalties for margin violations.

A problem with this formulation is that the number of candidate output
structures is exponential in the size of the output, which makes exhaustive enu-
meration of the inequalities infeasible. The problem is addressed by the cutting
plane algorithm [40], which iteratively adds the inequality corresponding to the
most violated condition for each example pair given the current scoring func-
tion, and refines it by solving the resulting quadratic problem with a standard
SVM solver. The procedure is shown in Algorithm1. For each training example
(I i,O i), the algorithm finds the highest scoring incorrect output O ′

i by solving
the so-called separation problem (line 4):

O ′
i = argmax

O′
wT ψ(I i,O

′) + Δ(I i,O i,O
′) (4)

The penalty currently associated with the training example (I i,O i) is stored
in the slack variable ξi. If the loss-augmented score of O ′

i minus the score of

120 A. Passerini

Data: Training instances {(I 1,O1), . . . , (I n,On)}, parameters C, ε
Result: Learned weights w

1 Wi ← ∅, ξi ← 0 for all i = 1, . . . , n
2 repeat
3 for i = 1, . . . , n do

4 O ′
i ← argmaxO′ w�ψ(I i,O

′) + Δ(I i,O i,O
′)

5 if w�ψ(Ii,O
′
i) + Δ(Ii,Oi,O

′
i) − w�ψ(Ii,Oi) > ξi + ε then

6

Wi ← Wi ∪ {O ′
i}

w , ξ ← argmin
w,ξ≥0

1

2
‖w‖2 +

C

n

n∑

i=1

ξi

s.t. ∀O ′
1 ∈ W1 : w� [ψ(I 1,O1) − ψ(I 1,O

′
1)
] ≥

Δ(I i,O i,O
′
1) − ξ1

...

∀O ′
n ∈ Wn : w� [ψ(I n,On) − ψ(I n,O ′

n)
] ≥

Δ(I i,O i,O
′
n) − ξn

7 end

8 end

9 until no Wi has changed during iteration
10 return w

Algorithm 1. Cutting-plane algorithm for training structured-output
SVM.

the correct output O i exceeds ξi by more than a tolerance ε (line 5), O ′
i is

added to the set of conditions for the training example and a new set of weights
(and slacks) is generated by solving the resulting quadratic problem (line 6).
The procedure is repeated until no condition is added for any of the training
examples, and it is guaranteed to find an ε-approximate solution in a polynomial
number of iterations [65].

This learning formulation is generic, meaning that it can be adapted to any
structured prediction problem as long as it is provided with: (i) a joint feature
space representation ψ(I ,O) of input-output pairs (and consequently a scoring
function f , see Eq. (1)); (ii) an oracle to perform inference, i.e. to solve Eq. (2);
(iii) an oracle to retrieve the most violated condition, i.e. to solve the separation
problem (see Eq. (4)). For a more detailed account, and in particular for the
derivation of the separation oracle formulation, please refer to [65].

3 LMT for Structured-Output Prediction

Existing structured-output prediction approaches mostly focus on predicting dis-
crete structures as outputs, like (labeled) sequences, trees or graphs. In this

Learning Modulo Theories 121

section we show how to employ OMT technology to adapt the structured-output
SVM to deal with the prediction of hybrid output structures.

3.1 An Introductory Example

In order to introduce the LMT framework, we start with a toy learning exam-
ple. We are given a unit-length bounding box, [0, 1] × [0, 1], that contains a
given, fixed block (rectangle), as in Fig. 1(a). The block is identified by the four
constants (x1, y1, dx1, dy1), where x1, y1 indicate the bottom-left corner of the
rectangle, and dx1, dy1 its width and height, respectively. Now, suppose that
we are assigned the task of fitting another block, identified by the variables
(x2, y2, dx2, dy2), in the same bounding box, so as to maximize the following
scoring function:

score := w1 × dx2 + w2 × dy2 (5)

with the additional requirements that (i) the two blocks “touch” either from
above, below, or sideways, and (ii) the two blocks do not overlap.

It is easy to see that the weights w1 and w2 control the shape and location of
the optimal solution. Assuming positive weights, if w1 w2, then the optimal
block will be placed so as to occupy as much horizontal space as possible, while
if w1 � w2 it will prefer to occupy as much vertical space as possible, as in
Fig. 1(b, c). If w1 and w2 are close, then the optimal solution depends on the
relative amount of available vertical and horizontal space in the bounding box.

Fig. 1. (a) Initial configuration. (b) Optimal configuration for w1 	 w2. (c) Optimal
configuration for w1
 w2.

This toy example illustrates two key points. First, the problem involves a
mixture of numerical variables (coordinates, sizes of block 2) and Boolean vari-
ables along with hard rules that control the feasible space of the optimization
procedure (conditions (i) and (ii)), and soft rules which control the shape of the
optimization landscape. This is the kind of problem that can be solved in terms
of Optimization Modulo Linear Arithmetic, OMT(LRA). Second, it is possible
to estimate the weights w1, w2 from data in order to learn what kind of blocks are
to be considered optimal. The goal of our learning procedure is precisely to find
a good set of weights from examples. In the following we will describe how such
a learning task can be framed within the structured-output SVM framework.

122 A. Passerini

3.2 The Method

As previously mentioned, the cutting plane algorithm for structured-output SVM
can be adapted to arbitrary structured-output problems by providing a joint
input-output feature map and oracles for inference and separation. In the fol-
lowing we will detail how these components are provided within the LMT frame-
work.

Input-Output Feature Map. Recall that in our setting each instance (I ,O)
is represented as a set of Boolean and rational variables:

(I ,O) ∈ ({�,⊥} × . . . × {�,⊥})︸ ︷︷ ︸
Boolean part

× (Q × . . . × Q)︸ ︷︷ ︸
rational part

We indicate Boolean variables using predicates2 such as touching(i, j), and
write rational variables as lower-case letters, e.g. distance, x, y. Features are
represented in terms of constraints {ϕk}m

k=1, each constraint ϕk being either a
Boolean- or rational-valued function of the instance (I ,O). These constraints
are constructed using the background knowledge available for the domain. For
each Boolean-valued constraint ϕk, we denote its indicator function as 1k(I ,O),
which evaluates to 1 if the constraint is satisfied and to −1 otherwise (the choice
of −1 to represent falsity is customary in the max-margin literature). Similarly,
we refer to the score of a rational-valued constraint ϕk as sk(I ,O) ∈ Q. The
feature space representation of an instance (I ,O) is given by the feature vector
ψ(I ,O) obtained by concatenating indicator and scoring functions of Boolean
and rational constraints respectively, i.e.:

ψ(I ,O) := (ψ1(I ,O), . . . , ψm(I ,O))�

where:

ψk(I ,O) :=

{
1k(I ,O) if ϕk is Boolean
sk(I ,O) if ϕk is arithmetic

Note that we are implicitly assuming to have soft constraints, whose weights
wk will be learned from data (see Eq. (1)). In most cases, these soft constraints
will be complemented by a set of hard constraints, which do not contribute to
the feature vector but rather define the space of feasible configurations. For a
summary of the notation see Table 1.

Inference Oracle. Given the feature vector ψ(I ,O), the scoring function
f(I ,O) is a linear combination of indicator and score functions. Since ψ can be
expressed in terms of SMT(LRA) formulas, the resulting maximization problem
can be readily cast as an OMT(LRA) problem and inference is performed by an

2 While we write Boolean variables using a first-order syntax for readability, the OMT
solver currently requires the grounding of all Boolean predicates.

Learning Modulo Theories 123

OMT-solver (we use the OptiMathSAT solver [62]). As previously explained,
given that OMT-solvers are conceived to minimize cost functions rather than
maximize scores, we actually run it on the negated scoring function.

Separation Oracle. The separation problem consists in maximizing the sum
of the scoring function and a loss function over output pairs (see Eq. (4)). The
loss function determines the dissimilarity between output structures, a mixture
of Boolean and rational variables in our setting. We observe that by picking
a loss function expressible as an OMT(LRA) problem, we can readily use the
same OMT solver used for inference to also solve the separation oracle. This can
be achieved by selecting a loss function such as the following Hamming loss in
feature space:

Δ(I ,O ,O ′) :=
∑

k : ϕk is Boolean

|1k(I ,O) − 1k(I ,O ′)| +

∑

k : ϕk is arithmetic

|sk(I ,O) − sk(I ,O ′)|

= ‖ψ(I ,O) − ψ(I ,O ′)‖1
This loss function is piecewise-linear, and as such satisfies the desideratum. While
this is the loss which was used in all experiments presented in this chapter, LMT
can work with any loss function that can be encoded as an SMT formula.

Example 3.1. Consider the block-world example in Sect. 3.1. Here the input I
to the problem is the observed block (x1, y1, dx1, dy1) while the output O is the
generated block (x2, y2, dx2, dy2). In order to encode the set of constraints {ϕk},
it is convenient to first introduce a background knowledge of predicates expressing
facts about the relative positioning of blocks. To this end we add a fresh predicate
left(i, j), that encodes the fact that “a block of index i touches a second block j
from the left”, defined as follows:

left(i, j) := (xi + dxi = xj) ∧
((yj ≤ yi ≤ yj + dyj) ∨ (yj ≤ yi + dyi ≤ yj + dyj))

Similarly, we add analogous predicates for the other directions: right(i, j),
below(i, j), over(i, j). The hard constraints represent the fact that the output
O should be a valid block within the bounding box (all constraints are implicitly
conjoined):

0 ≤ x2, y2, dx2, dy2 ≤ 1 (x2 + dx2) ≤ 1 ∧ (y2 + dy2) ≤ 1

and that the output block O should “touch” the input block I:

left(1, 2) ∨ right(1, 2) ∨ below(1, 2) ∨ over(1, 2)

Note that whenever this rule is satisfied, both conditions (i) and (ii) of the toy
example hold, i.e. touching blocks never overlap. The soft constraints here should

124 A. Passerini

encode features related to the width and height of the output block, i.e.:

ψ(I,O) = (dx2, dy2)
�

This allows to define a scoring function as a linear combination of features:

score := w1 × dx2 + w2 × dy2 = w�ψ(I,O)

3.3 Experimental Results

We show the potential of the approach on automatic character drawing, a novel
structured-output learning problem that consists in learning to translate any
input noisy hand-drawn character into its symbolic representation. More specifi-
cally, given a black-and-white image of a handwritten letter or digit, the goal is
to construct an equivalent symbolic representation of the same character.

In this paper, we assume the character to be representable by a polyline made
of a given number m of directed segments, i.e. segments identified by a starting
point (xb, yb) and an ending point (xe, ye). The input image I is seen as the set
P of coordinates of the pixels belonging to the character, while the output O is
a set of m directed segments {(xb

i , y
b
i , x

e
i , y

e
i)}m

i=1.
Intuitively, any good output O should satisfy the following requirements:

(i) it should be as similar as possible to the noisy input character; and (ii)
it should actually “look like” the corresponding symbolic character. Figure 2
shows an example for the “A” character. These requirements will be encoded
in two feature vectors: coverage(I ,O), measuring how many pixels of the input
image are covered; orientation(O), measuring the resemblance of the output to
a symbolic template for the corresponding character.

Fig. 2. Left, example bitmap image of an “A”. Middle, a set of 5 segments satisfying
the “looking like an A” rules in the text. Right, 5 segments satisfying both the rules
for character “A” and fitting the underlying image.

Since the output is supposed to be a polyline, we constrain consecutive seg-
ments to be connected:

∀i connected(i, i + 1)

Learning Modulo Theories 125

We then constrain (without loss of generality) each segment to be oriented from
left to right, i.e. xb

i ≤ xe
i , and no larger than the image nor smaller than a pixel:

∀i min length ≤ length(i) ≤ 1. Finally, we restrict the segments to be either
horizontal, vertical or 45◦ diagonal, that is:

∀i horizontal(i) ∨ vertical(i) ∨ diagonal(i)

This restriction allows us express all numerical constraints in linear terms. Under
these assumptions, we can encode the coverage feature as:

coverage(I ,O) :=
1

|P |
∑

p∈P

1(covered(p))

where covered(p) is true if pixel p is covered by at least one of the m segments:

covered(p) :=
∨

i∈[1,m]

covered(p, i)

The fact that a segment i = (xb
i , y

b
i , x

e
i , y

e
i) covers pixel p = (x, y) depends on

the orientation of the segment and is computed using constructs like:

If horizontal(i) then covered(p, i) := xb
i ≤ x ≤ xe

i ∧ y = yb
i

The coverage formulae for the other segment types can be found in Table 2.
As for the orientation vector, it should contain features related to the sym-

bolic representation of characters. These include both the direction of the indi-
vidual segments and the connections between pairs of segments. Consider the
symbolic representation of an “A” in Fig. 2(b). Directions for segments could be
encoded as follows:

increasing(1) ∧ increasing(2) ∧ decreasing(3) ∧
horizontal(4) ∧ decreasing(5)

Here increasing(i) and decreasing(i) indicate the direction of segment i, and
can be written as:

increasing(i) := ye
i > yb

i

decreasing(i) := ye
i < yb

i

In order to represent connection types, we follow the convention used for
Bayesian Networks, where the head of a directed segment is the edge containing
the arrow (the ending point (xe, ye)) and the tail is the opposite edge (the start-
ing point (xb, yb)). For instance, h2t(i, j) indicates that i is head-to-tail with
respect to j, h2h(i, j) that they are head-to-head:

h2t(i, j) := (xe
i = xb

j) ∧ (ye
i = yb

j)
h2h(i, j) := (xe

i = xe
j) ∧ (ye

i = ye
j)

126 A. Passerini

Connections between segments in Fig. 2(b) could then be encoded as follows:

h2t(1, 2) ∧ h2t(2, 3) ∧ h2h(3, 4) ∧ h2t(4, 5)

For a full list of background knowledge predicates, see Table 2.
Now given the image in Fig. 2(a) and the template in Fig. 2(b), a charac-

ter drawing algorithm driven by these coverage and orientation criteria could
produce an output like the one pictured in Fig. 2(c). However, the formula for
the “looking like an A” constraint is not available at test time and should be
learned from the data. In order to do so, the orientation vector includes possible
directions (increasing, decreasing, right) for all m segments and all possible
connection types between all pairs of segments (h2t, h2h, t2t, t2h). Note that
we do not include specific segment orientations (i.e., horizontal, vertical,
diagonal) in the feature space, to accommodate for alternative symbolic repre-
sentations of the same letter. For instance, the first segment in an “A” (the lower
left one because of the left-to-right rule) is bound to be increasing, but may
be equally likely vertical or diagonal (see e.g. Figs. 2(b) and (c)). Summing
up, the orientation vector can be written as:

(increasing(1), decreasing(1), right(1),
· · ·
increasing(m), decreasing(m), right(m),
h2t(1, 2), t2h(1, 2), h2h(1, 2), t2t(1, 2),
· · ·
h2t(1,m), t2h(1,m), h2h(1,m), t2t(1,m),
· · ·
h2t(m − 1,m), t2h(m − 1,m), h2h(m − 1,m), t2t(m − 1,m))

where each feature is the indicator function of the corresponding Boolean vari-
able, e.g. increasing(1) := 1(increasing(1)) (see Table 3).

We evaluated LMT on the character drawing problem by carrying out an
extensive experiment using a set of noisy B&W 16 × 20 character images3.
Learning to draw characters is a very challenging constructive problem, made
even more difficult by the low quality of the noisy images in the dataset (see,
e.g. Fig. 4). In this experiment we learn a model for each of the first five let-
ters of the alphabet (A to E), and assess the ability of LMT to generalize over
unseen handwritten images of the same character. For each letter, we selected
five images at random to be used as training examples. For each of these, we
used OptiMathSAT to generate a “perfect” symbolic representation according
to a human-provided letter template (similar to the “looking like an A” rule
above), obtaining a training set of five fully supervised images. The first row of
Figs. 3, 4, 5, 6, and 7 report these supervised instances. Note that the resulting
supervision is in some cases very noisy, and depends crucially on the quality of

3 Dataset taken from http://cs.nyu.edu/∼roweis/data.html.

http://cs.nyu.edu/~roweis/data.html

Learning Modulo Theories 127

Table 2. Background knowledge used in the character writing experiment.

Segment types

Segment i is horizontal horizontal(i) := (xb
i �= xe

i) ∧ (y = yb
i)

Segment i is vertical vertical(i) := (xb
i = xe

i) ∧ (ye
i �= yb

i)

Segment i is diagonal diagonal(i) := |xe
i − xb

i | = |ye
i − yb

i |
Segment i is increasing increasing(i) := ye

i > yb
i

Segment i is decreasing decreasing(i) := ye
i < yb

i

Segment i is left-to-right right(i) := xe
i > xb

i

Segment i is incr. vert incr vert(i) := increasing(i) ∧ vertical(i)

Segment i is decr. vert. decr vert(i) := decreasing(i) ∧ vertical(i)

Segment i is incr. diag. incr diag(i) := increasing(i) ∧ diagonal(i)

Segment i is decr. diag. decr diag(i) := decreasing(i) ∧ diagonal(i)

Segment length

Length of horiz. segment i horizontal(i) → length(i) = |xe
i − xb

i |
Length of vert. segment i vertical(i) → length(i) = |ye

i − yb
i |

Lenght of diag. segment i diagonal(i) → length(i) =
√

2 |ye
i − yb

i |
Connections between segments

Segments i,j are head-to-tail h2t(i, j) := (xe
i = xb

j) ∧ (ye
i = yb

j)

Segments i,j are head-to-head h2h(i, j) := (xe
i = xe

j) ∧ (ye
i = ye

j)

Segments i,j are tail-to-tail t2t(i, j) := (xb
i = xb

j) ∧ (yb
i = yb

j)

Segments i,j are tail-to-head t2h(i, j) := (xb
i = xe

j) ∧ (yb
i = ye

j)

Segments i,j are connected
connected(i, j) := h2h(i, j) ∨ h2t(i, j)∨

t2h(i, j) ∨ t2t(i, j)

Whether segment i = (xb, yb, xe, ye) covers pixel p = (x, y)

Coverage of pixel p covered(p) :=
∨

i covered(p, i)

Coverage of pixel p by seg. i

incr vert(i) → covered(p, i) := yb
i ≤ y ≤ ye

i ∧ x = xb
i

decr vert(i) → covered(p, i) := ye
i ≤ y ≤ yb

i ∧ x = xb
i

horizontal(i) → covered(p, i) := xb
i ≤ x ≤ xe

i ∧ y = yb
i

incr diag(i) → covered(p, i) := yb
i ≤ y ≤ ye

i ∧ xb
i ≤ x ≤ xe

i ∧ xb
i − yb

i = x − y

decr diag(i) → covered(p, i) := ye
i ≤ y ≤ yb

i ∧ xb
i ≤ x ≤ xe

i ∧ xb
i + yb

i = x + y

the character image (see e.g. the “B”, the most geometrically complex of the
characters).

For each letter, we learned models with a number training examples ranging
from 2 to 5 and tested them on 10 randomly chosen test images. We indicate the
predictions obtained by models learned with k examples as pred@k. The number
of segments m was known during both training and inference. The output for all

128 A. Passerini

Table 3. List of all rules used in the character writing problem. Top, hard rules.
Middle, soft rules. Bottom, total score of a segment assignment.

(a) Hard constraints

Left-to-right ordering xb
i ≤ xe

i

Allowed segment types vertical(i) ∨ horizontal(i) ∨ diagonal(i)

Consecutive segments are connected connected(i, i + 1)

Minimum segment size min length ≤ length(i) ≤ 1

(b) Soft constraints (features)

Non-zero pixel coverage coverage := 1
|P |
∑

p∈P 1(covered(p))

Indicator of increasing segment i increasing(i) := 1(increasing(i))

Indicator of decreasing segment i decreasing(i) := 1(decreasing(i))

Indicator of right segment i right(i) := 1(right(i))

Indicator of head-to-tail i, j h2t(i, j) := 1(h2t(i, j))

Indicator of tail-to-head i, j t2h(i, j) := 1(t2h(i, j))

Indicator of head-to-head i, j h2h(i, j) := 1(h2h(i, j))

Indicator of tail-to-tail i, j t2t(i, j) := 1(t2t(i, j))

(c) Score

score := w�(increasing(i), decreasing(i), right(i)
︸ ︷︷ ︸

for all segments i

,

h2t(i, j), t2h(i, j), h2h(i, j), t2t(i, j)
︸ ︷︷ ︸

for all segment pairs (i,j) with j>i

,

coverage)

letters can be found in Figs. 3, 4, 5, 6, and 7, from the second to the fifth rows
of each figure.

In order to speed up inference we extract a set of hard constraints from
the learned model prior to inference. We add a hard rule for each segment and
connection feature with a positive weight. If more than one weight is positive for
any given segment/connection, we add the disjunction of the hard rules to the
model. Note that this process allows to learn a letter template constraining the
search, while the weighted features still allow for some flexibility in the choice
of the actual solution.

As a quantitative measure of the quality of the predictions, we also report the
distance between the generated symbolic representation O for each letter and
a corresponding human-made gold standard O ′. Here the error is computed by
first aligning the segments using an optimal translation, and then summing the
distances between all corresponding segment endpoints. The human generated
images respect the same “looking like an X” rule used for generating the training
set, i.e. they have the same number of segments, drawn in the same order and
within the same set of allowed orientations. The values in Fig. 8 are the average
over all instances in the test set, when varying the training set size.

Learning Modulo Theories 129

Training

Pred @2

Pred @3

Pred @4

Pred @5

Human

Fig. 3. Results for the “A” character drawing task. The training instances are lined
up in the first row. The second to fifth row are the segmentations generated by models
learned with the first two training instances, the first three instances, etc., respectively.
The last row are the human-made segmentations used in the comparison. The generated
symbolic representations are shown overlayed over the corresponding bitmap image.
Segments are colored for readability.

Training

Pred @2

Pred @3

Pred @4

Pred @5

Human

Fig. 4. Results for the “B” character drawing task.

Training

Pred @2

Pred @3

Pred @4

Pred @5

Human

Fig. 5. Results for the “C” character drawing task.

130 A. Passerini

Training

Pred @2

Pred @3

Pred @4

Pred @5

Human

Fig. 6. Results for the “D” character drawing task.

Training

Pred @2

Pred @3

Pred @4

Pred @5

Human

Fig. 7. Results for the “E” character drawing task.

The results show that LMT is able to address the character drawing problem
and produce reasonable outputs for all the target letters. It should be stressed
here that both the coordinates and the number of character pixels can vary
widely between test instances, and our results highlight the generalization ability
of our method. Furthermore, the predictions tend to get closer to the human-
provided segmentations as the number of training instances increases. For the
simplest cases (i.e. “C”, “D”, and “E”, drawn using four to five segments), the
outcome is unambiguous. The only real issue is with the “D” which is always
represented as a rectangle with no diagonal edge. The main reason is that in
none of the test images it is possible to draw a 45◦ diagonal without sacrificing
pixel coverage, and diagonals of different degree are not representable in terms
of linear constraints. None of the predictions looks perceptually “wrong”. More
complex letters like the “A” and “B”, with seven and nine segments respectively,
also look reasonably similar to the given examples, apart from few predictions
for which either coverage (e.g. see the first column in Fig. 3) or “perceptual” rep-
resentation (e.g. see the first and fourth columns in the fourth row of Fig. 4) are

Learning Modulo Theories 131

Fig. 8. Average distance between the predicted symbolic images and the human-made
ones, while increasing the number of training instances. The @k ticks on the x-axis
indicate the size of the training set. The y-axis represents the sum of per-segment
distances averaged over all images in the test set. From left to right, top to bottom:
results for “A”, “B”, “C”, “D”, and “E”.

sub-optimal. The distance-to-human results in Fig. 8 also show how the algo-
rithm produces more perceptually reasonable predictions as the training set
increases, as in almost all cases the distance at pred@5 is lower than that at
pred@2. The fluctuations observed in some of the cases are due to the occasional
presence of pathologically bad inputs in the training set. The bad quality of the
second and third “B” training examples leads to bad performance in the pred@3
and pred@4 experiments, while the performance worsening of pred@4 for “C” is
due to the unusual shape of the fourth training example.

Summarizing, excluding cases of pathologically bad inputs, LMT is able to
learn an appropriate model for each letter and generalize the learned template
over unseen inputs.

3.4 Related Work

There is a body of work concerning integration of relational and numerical
data from a feature representation perspective, in order to effectively incorpo-
rate numerical features into statistical relational learning models. These include
neural networks used as feature generators within Markov Logic Networks [50],
T-norms used as continuous relaxations of Boolean constraints in Seman-
tic Based Regularization [26] and Probabilistic Soft Logic [17], and Gaussian
Logic [44]. All these approaches aim at incorporating continuous features as
inputs, while our framework aims at allowing learning and inference over hybrid
domains with continuous and discrete variables as outputs.

While a number of efficient algorithms have been developed for Relational
Continuous Models [1,22,23], performing inference over joint continuous-discrete

132 A. Passerini

relational domains is still a challenge. The few existing attempts aim at extend-
ing statistical relational learning methods to the hybrid domain. These include
Hybrid Probabilistic Relational Models [54], Relational Hybrid Models [21],
Hybrid Markov Logic Networks [69] and Hybrid ProbLog [36] which all extend
their respective original formulations to the hybrid case. Furthermore, some
probabilistic programming languages like Church [33] can natively accomodate
hybrid discrete-continuous distributions and arbitrary constraints.

All these approaches focus on probability computation rather than search for
optimal configurations. In order to couple with the resulting complexity, they
either impose restrictions on the allowed relational structure (e.g. in conditional
Gaussian models, discrete nodes cannot have continuous parents) or algebraic
operations (e.g. continuous variables should be uncoupled in Hybrid ProbLog),
and/or perform approximate inference by sampling strategies, which makes it
prohibitively expensive to reason with hard continuous constraints4.

Conversely, LMT can accomodate arbitrary combinations of predicates from
the theories for which a solver is available. These currently include linear arith-
metic over both rationals and integers as well as a number of other theories
like strings, arrays and bit-vectors. Furthermore, the tight integration between
theory-specific and SAT solvers [24,49,53,60,61], where the former inform the
latter about conflicting constraints and help guiding the search, is widely recog-
nised as a key reason of the success of SMT solvers [3]. This integration is missing
in approaches like Hybrid Markov Logic Networks, which use a general-purpose
global optimization algorithm (L-BFGS) as a black-box to solve numeric sub-
problems. Note also that previous attempts to substitute standard SAT solvers
with WalkSAT inside an SMT solver have failed, producing dramatic worsening
of performance [34].

On the other hand, an advantage of probabilistic inference approaches is that
they allow to return marginal probabilities in addition to most probable expla-
nations. This is actually the main focus of these approaches, and the reason
why they are less suitable for solving the latter problem when the search space
becomes strongly disconnected. As with most structured-output approaches over
which it builds, LMT focuses on the task of finding an optimal configuration,
which in a probabilistic setting corresponds to generating the most probable
explanation. We are planning to extend it to also perform probability computa-
tion, as discussed in the conclusions of the paper.

Please refer to the original structured LMT work [64] for a deeper discussion
on the above mentioned approaches and their relationship to the LMT frame-
work.

4 Our preliminary experimental studies showed that Church is incapable of solving in
reasonable time the simple task of generating a pair of blocks conditioned on the
fact that they touch somewhere.

Learning Modulo Theories 133

4 LMT for Preference Elicitation

The structured-output formulation discussed so far assumes a training set of
input-output pairs is available. This is indeed reasonable in a number of real-
world scenarios, where the notion of a correct output is (reasonably) clearly
defined and there exist datasets of examples labelled by human experts or exper-
imental procedures (e.g. parse trees for natural language processing, secondary
structure for protein structure determination). There is however a relevant class
of problems where these data are not available a-priori, because they are very
expensive to compute and/or because they depend on some specific condition. A
typical example is that of recommendation systems [56], where the scoring func-
tion measures the utility a user assigns to a certain instance. Existing approaches
to user recommendation rely on (combinations of) collaborative filtering on one
side, to leverage similarities between users and propagate recommendations, and
content-based filtering on the other, to learn a user profile relating item features
to user preferences. Content-based filtering usually adopts preference elicita-
tion [15] techniques, to gather feedback from the user in order to refine her
utility model. From an optimization viewpoint, this setting can be seen as an
instance of learning while optimizing [4], where the task is that of learning to
optimize a (partially) unknown function. In this section we will discuss how
the LMT framework can be adapted to address this type of problems. In the
following we will refer to the user as the decision maker (DM).

4.1 An Introductory Example

Consider a customer interested in buying a house. A very clear-headed person
could go to a real-estate agency with a (simplified) request like:

I would like a house in a safe area, close to my parents and to the kinder-
garten, with a garden if there are no parks nearby. My maximum budget
is 300,000 euro.

These desiderata can be encoded as an SMT problem as follows:

solve:
ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4

subject to:
ϕ1 = (¬O2 → O1) ϕ2 = (O3 < θ1)
ϕ3 = (O4 < θ2) ϕ4 = (O5 < θ3)
price(O) ≤ 300000

where the characteristics of the house are defined in terms of the set of out-
put variables O described in Table 4. Now this problem could have no solu-
tion in case none of the houses at the agency disposal satisfies all constraints.

134 A. Passerini

Table 4. Output variables for the housing example.

Name Description Type

O1 Garden Boolean

O2 Park nearby Boolean

O3 Crime rate Ordinal

O4 Distance from parents Continuous

O5 Distance from kindergarten Continuous

A more reasonable alternative is turning the problem into an optimization one,
where the task is maximizing the weighted sum of the satisfied constraints
(i.e. a MAX-SMT problem). However, assigning weights to requirements is a
typically hard task for humans. An exact specification of the set of constraints,
like the one above, is also difficult to obtain. The most natural scenario consists
of an interactive process, in which the customer is provided with some candidates
and the realtor updates her understanding of the customer preferences according
to the feedback received. In the following we will present a preference elicitation
method automatizing this process (from the recommender side).

4.2 The Method

We will start by introducing the components of the method and then show how
these components are combined in the overall algorithm.

Space of Constraints. The first component is the space of candidate con-
straints, from which the ones which are of interest to the customer will be
selected. We will assume there is a catalogue of features which can be used to rep-
resent entities. These features can be either Boolean (e.g. there is a garden),
ordinal (e.g. crime rate) or continuous (e.g. distance to kindergarten) vari-
ables (see Table 4 in the previous example for a list). Atomic constraints are
constructed from these features, by simply taking their values for Boolean
variables, and constraining each ordinal and continuous feature to be below
a certain (variable-specific) threshold. More complex constraints can be con-
structed by arbitrary combinations of these building blocks (e.g. distance to
kindergarten < θ ∧ distance to parents < θ, so that a car is not needed).
We distinguish between hard constraints, which define the space of feasible
configurations and are assumed to be known in advance, and soft constraints,
unknown desired features which need to be discovered in the elicitation process
and can be traded-off in the search for feasible configurations. The space of con-
structible constraints is clearly exponential in the size of the catalogue. In the
following we show how we deal with this complexity.

Learning Modulo Theories 135

Utility Function. The utility function takes as input an instance and returns
its utility according to the (learned) DM preference:

f(O) = wT ψ(d)(O) (6)

As for the structured-output learning scenario, each instance is represented as
a vector of values associated with the Boolean and algebraic constraints, and
maximization of the utility is cast as an OMT problem and solved by an OMT-
solver. There are however some differences in the feature map ψ(d), which we
detail below. First, we assume here that all instance features are in the output,
i.e. the input I is empty. This is a reasonable assumption in recommendation
scenarios, as shown in the previous example. However, our formulation is almost
unchanged if a non-empty input is considered. Note also that inputs could be
seen as hard constraints on the valid configurations, and incorporated in the
set of hard constraints defining the feasible space. Second, the set of features is
not specified in advance, but we consider as features all possible conjunctions
and/or disjunctions of up to d atomic constraints (the ones in the catalogue).
The maximal degree d contributes to limit the size of the feature space, and is
grounded on the bounded rationality of humans [51], who can simultaneously
handle only a limited number of features. Note that for the same reason, only
very few of these candidate features will actually be considered by the DM, so
that the utility function will be extremely sparse, with most weights set to zero.
This will be accounted for when introducing the learning stage. Third, each
feature is computed as the indicator function of the corresponding formula, i.e.
ψk(O) := 1k(O) regardless of whether the formula containts algebraic atoms or
not. The reason for this simplifying choice is that current OMT solvers can only
address linear cost functions in an efficient way, while combinations of algebraic
constraints could generate non-linear functions (e.g. products for conjunctions).
The method can be generalized to continuous features by either using mappings
like the minimum or the Lukasiewicz t-norms, which current OMT solvers can
handle, or leveraging on the research on hybrid non-linear arithmetics [28,41,46],
when the solvers will reach the desired level of maturity.

Learning Phase. Learning consists in finding the weights for the utility function
matching the unknown DM preferences. Training examples for this phase consist
of candidate instances with their evaluation from the DM (see the preference
elicitation phase further down). Asking quantitative feedback such as real-valued
scores is typically out of reach of human DM. A more realistic scenario consists
of asking the DM to rank solutions by preference. We can thus formulate the
problem as learning to rank, where the task is learning a function returning the
same ranking as the one provided by the DM. We focus on the adaptation of
SVM for ranking [39], which assumes pairwise ranking preferences, and enforces a
(soft) large margin between the two predictions. However, we have an additional
requirement, which is the sparsity in the feature weights. Indeed, the feature
vector contains all possible constraints (up to a certain complexity), and the
learning phase should also perform some form of constraint learning by selecting

136 A. Passerini

a small set of relevant ones. We favour this behaviour by replacing the 2-norm
of SVM with a 1-norm, which is a sparsifying norm encouraging solutions with
few non-zero weights [29]. The resulting learning problem is:

min
w ,ξ≥0

||w ||1 + C
∑

Oi≺ Oj

ξi,j (7)

subject to: wT (ψ(d)(O i) − ψ(d)(Oj)) ≥ Δ(O i,Oj) − ξi,j

∀ O i ≺ Oj ∈ D

where O i ≺ Oj indicates that output O i is ranked before Oj in the DM prefer-
ence. Constraints enforce pairwise rankings to match DM preferences. A linear
penalty is added to the objective function when a less preferred solution gets a
score which is not sufficiently smaller than the more preferred one.

Preference Elicitation Phase. The ultimate goal of the algorithm is returning
the DM the best possible instance given her utility function. However, given that
the utility function is unknown, a preference elicitation phase will be needed in
order to gather information on DM preference and use it to refine the current
approximation f̂ of her utility. In collecting candidates for feedback, one should
consider the following principles:

1. the generation of top-quality configurations, consistent with the learnt DM
preferences;

2. the generation of diversified configurations, i.e., alternative possibly subopti-
mal configurations with respect to the learnt utility f̂ ;

3. the search for the DM features which were not recovered by the current
approximation f̂ , i.e., features not appearing in any of the terms in f̂ .

The rationale for the first principle is focusing on the relevant areas of the
utility surface, those of interest to the DM. As a matter of fact, a preference
elicitation system that asks to rank low quality configurations will be likely
considered useless or annoying by the DM [35]. The second principle favours
the exploration of the relationships among the features recovered by the current
preference model f̂ . Finally, as the learnt formulation of f̂ may miss some of the
user decisional features, their search is promoted by the third principle.

Based on the above principles, our active learning strategy works as follows.
First, f̂ is maximized (first principle), generating the first candidate configura-
tion O∗. Then, a hard constraint is added to the OMT problem as the disjunction
of all features not satisfied by O∗, and maximization is run again. This accounts
for the second principle, by enforcing a new solution O∗∗ which differs from O∗

by at least one feature. Finally, each unassigned feature5 in both O∗ and O∗∗

is given a random value in its domain, thus incorporating the third principle.
Indeed, if these features are truly irrelevant for the DM, setting them at random

5 Unassigned features are catalogue features not appearing in any hard constraint or
non-zero weight soft constraint.

Learning Modulo Theories 137

Data: Set of catalogue features ψ1, . . . , ψm

Result: Most preferred solution O∗

/* Initialization */

1 Select three configurations uniformly at random
2 D ← ranking of configurations by DM

/* Refinement */

3 while termination criterion do
/* learning */

4

f̂ ← argmin
w,ξ≥0

||w ||1 + C
∑

Oi≺ Oj

ξi,j

s.t. wT (ψ(d)(O i) − ψ(d)(Oj)) ≥ Δ(O i,Oj) − ξi,j

∀ O i ≺ Oj ∈ D

/* preference elicitation */

5 Collect two configurations optimizing f̂
6 D ← D ∪ ranking of configurations by DM

7 end
/* final recommendation */

8 return argmax f̂

Algorithm 2. Algorithm for preference elicitation with LMT

should not affect the evaluation of the candidate solutions. If on the other hand
some of them are needed to explain the DM preferences, driving their elicitation
can allow to identify the deficiencies of the current approximation f̂ and recover
previously discarded relevant features.

Overall Algorithm. The pseudocode of the full algorithm is shown in
Algorithm 2. It takes as input a set of catalogue features (the atomic constraints)
and returns the solution which is most preferred to the DM. In the initialization
phase, it selects three configurations uniformly at random and asks the DM for
feedback on them. The training dataset is initialized with pairwise preferences
between these configurations. Then a refinement loop begins, where at each iter-
ation the utility function is first refined using the current feedback, and then
used to generate candidates on which to elicit additional feedback. The first
step consists in solving the learning to rank problem in Eq. (7), where D is the
dataset of all pairwise preferences collected so far. The regularization parame-
ter C is set to one in the first iteration, and fine-tuned by an internal cross
validation on the training set in the following ones. With a slight abuse of nota-
tion, we write f̂ ← argmin to indicate that f̂ is the function whose weights w
are the result of the minimization. The second step is the preference elicitation
phase, where the current utility f̂ is used to generate novel candidates according

138 A. Passerini

to the up-mentioned rules (see the preference elicitation phase paragraph). The
dataset D is updated according to the feedback the DM gives on these candidates.
The process terminates when a stopping condition is met. Being an interactive
process involving a human DM, the most obvious termination condition is the
DM satisfaction on the current recommendation. Additional conditions could
be conceived, for instance, by estimating the improvement one could expect by
further refining the utility function.

4.3 Experimental Results

We show the results of the preference elicitation method on a housing problem,
along the lines of the example in Sect. 4.1. There are different locations available,
characterized by different housing values, prices, constraints about the design of
the building (e.g., usually in the city center you cannot have a family house
with a huge garden and pool), etc. Table 5 reports the full set of catalogue
features characterizing locations. As previously specified, atomic constraints are
constructed by taking values for Boolean variables and thresholding numeric
ones, and the feature vector is constructed with all possible combinations of
up to d atomic constraints (we focused on conjunctions of literals and used
d = 3 in the experiments).

Table 5. Catalogue features for the housing problem.

Num Feature Type

1 House type Ordinal

2 Garden Boolean

3 Garage Boolean

4 Commercial facilities in the neighborhood Boolean

5 Public green areas in the neighborhood Boolean

6 Cycling and walking facilities in the neighborhood Boolean

7 Distance from downtown Continuous

8 Crime rate Continuous

9 Location-based taxes and fees Continuous

10 Public transit service quality index Continuous

11 Distance from high schools Continuous

12 Distance from nearest free parking Continuous

13 Distance from working place Continuous

14 Distance from parents house Continuous

15 Price Continuous

Feasible housing locations are defined by a set of hard constraints (Table 6).
These hard constraints are stated by the customer (e.g., cost bounds) or by

Learning Modulo Theories 139

the company (e.g., constraints about the distance of the available locations from
user-defined points of interest). Let us note that constraints 5, 6, 7 define a linear
bi-objective problem among distances from user-defined points of interest. Prices
of potential housing locations are defined as a function of the other features. For
example, price increases if a semi-detached house rather than a flat is selected
or in the case of green areas in the neighborhood. On the other hand, e.g., when
crime index of potential locations increases, price decreases.

Table 6. Hard feasibility constraints for the housing problem. Parameters ρi, i =
1 . . . 13, are threshold values specified by the user or by the sales personnel, depending
on who states the hard constraint which they refer to.

Num Hard constraint

1 Price ≤ ρ1

2 Location-based taxes and fees ≤ ρ2 => not public green ares in the
neighborhood and not public transit service quality index ≤ ρ3

3 Commercial facilities in the neighborhood => not (garden and garage)

4 Crime rate ≤ ρ4 => distance from downtown ≥ ρ5

5 Distance from working place + distance from parents house ≥ ρ6

6 Distance from working place + distance from high schools ≥ ρ7

7 Distance from parents house + distance from high schools ≥ ρ8

8 Distance from nearest free parking ≤ ρ9 => not public green areas in the
neighborhood

9 Distance from parents house ≤ ρ10 => distance from downtown ≥ ρ11 and
crime rate ≥ ρ12

10 Garden => house type ≥ ρ13

We generated a set of 40 literals (i.e. atomic constraints). The target utility
function is composed of (soft) constraints combining two or three literals, with
at least one combination containing three literals. We assume the maximum
number of literals per constraint (three) to be known in advance. Constraint
weights are integer values selected uniformly at random in the range [1, 100].
Inaccurate feedback from the DM is modelled by a Probit model, a standard
noise model in which each evaluation from the DM is assumed to be affected by
an additive i.i.d. zero-mean Gaussian noise.

Figure 9 reports the results over a benchmark of 400 randomly generated util-
ity functions for each of the following (number of literals, number of constraints)
pairs: {(5, 3), (10, 6), (15, 9)}. Note that this is a very challenging problem due to
complex non-linear interactions among the decisional features. When increasing
the number of queries asked, the quality of the solution rapidly improves and the
algorithm identifies the DM preferred configuration in all the cases. On average,
22 and 69 queries are needed by the algorithm to converge to the DM preferred

140 A. Passerini

Fig. 9. Performance of LMT for preference elicitation in the housing problem.
The y-axis reports the percentage utility loss, while the x-axis contains the number of
pairwise-comparison queries asked so far. The curve reports the median values observed
over 400 runs of the algorithm, while the shaded area denotes the range between the
25th and the 75th percentiles of the observations.

solution in the case of three and nine6 constraints respectively. A problem with
the current version of the algorithm is the high variance of the performance. This
is mainly due to some runs where the elicitation procedure fails to improve the
quality of the utility model. As discussed in the conclusions, we plan to adopt
smarter query selection strategies to address this issue, possibly also reducing
the number of queries to the DM.

4.4 Related Work

The problem of automatically learning utility functions and eliciting prefer-
ences from users is widely studied within the Artificial Intelligence community
[15,27]. A popular approach consists of modeling the uncertainty about the DM
preferences in terms of a set of candidate hypotheses, among which the DM
utility is expected to be. An interactive process is conducted in which feedback
from the DM is elicited and used to restrict the hypothesis space until the DM
is satisfied with the proposed solution. In statistical decision theory, the min-
imax regret criterion [58] is a way to make decisions under uncertainty. Given
a certain decision O , the maximum regret is the difference in utility between
the DM most preferred solution O∗ and O assuming the worst-case scenario,
where the DM utility is the one in the feasible set for which this difference is
maximal. The minimax regret criterion prescribes to make the decision minimiz-
ing this regret. A recent line of research [13,14,16] adapts the minimax regret
principle to preference elicitation. Queries to be asked to the DM are selected
so as to reduce the minimax regret by restricting the feasible hypothesis set.
An advantage of minimax regret approaches with respect to our formulation is
that they can provide theoretical guarantees in terms of bounds on the solution
quality and convergence to provably-optimal results. On the other hand, these
approaches assume perfect feedback from the DM and are not suitable to deal

6 DM utility functions involving nine complex constraints are quite unrealistic and are
considered here just for testing the scalability of the algorithm.

Learning Modulo Theories 141

with the imprecise and contradictory information which is typical of interactions
with human DM.

An alternative solution is that of Bayesian approaches to preference elicita-
tion [11,12,35,67] which define a probability distribution over the hypotheses
and query the DM trying to increase the posterior probability of her utility.
These approaches can naturally handle the uncertainty in both utility and feed-
back. Furthermore, the probabilistic framework allows to reason in terms of
potential informativeness of queries and select the maximally informative one.
The maximum expected loss of taking a decision O is the maximum expected
reduction in utility when choosing O instead of the DM most preferred solution
O∗, where expectation is taken over the probability distribution of the util-
ity functions. The expected value of information criterion prescribes to choose
the query producing the largest expected reduction in maximum expected loss.
Exact computation of the expected value of information, as well as exact com-
putation of the posterior distribution over utility functions given the feedback,
are extremely expensive. Approximate solutions have been proposed in the
literature [35]. These approaches are conceived for instances characterized by
purely discrete attributes, and cannot be easily extended to hybrid ones. Fur-
thermore, experimental comparisons on purely Boolean datasets showed that
even these approximate versions cannot compete with our LMT algorithm on
problems with a substantial degree of non-linearity (see [19] for the details).
However, adapting Bayesian preference elicitation approaches to our framework
is a relevant research direction, as discussed in the conclusions of the chapter.

Finally, closest to our approach from a constraint solving viewpoint is the
work on preference elicitation with soft constraints [31]. This work assumes local
preferences in terms of weights assigned to each configuration of the variables
of a constraint. An algebraic structure called c-semiring allows to combine local
preferences into a global one for an entire solution and assign a partial order
over candidate solutions. Missing preference values are inferred by an elicitation
procedure. In terms of expressiveness, semiring-based soft constraint satisfaction
problems can be encoded into weighted MAX-SAT formulations [48]. A weighted
MAX-SMT encoding can be used in case of continuous variables. In terms of
interaction with the DM, the work assumes perfect knowledge of constraint
structure, with missing information limited to part of the local preferences, and
quantitative (possibly interval-based [30]) local feedback over assignments for
specific soft constraints. Our formulation assumes complete ignorance of con-
straint structure, limiting initial information to the feature catalogue, and relies
on more affordable global pairwise preferences as feedback. Finally, inconsistent
preference information is not handled, while our approach trades off preference
fitting with complexity of the learned utility model.

5 Conclusions

We described Learning Modulo Theories as an expressive framework for learn-
ing in hybrid domains characterized by combinations of Boolean and numerical

142 A. Passerini

features and relationships between them. We showed how to cast the problem
as a structured-output learning task, in which we learn to generate novel con-
figurations from a training set of correct instances, and a preference elicitation
task, where an interactive process with a decision maker suggests candidate con-
figurations and progressively refines the learned utility model according to the
feedback received. Both algorithms automatically identify the set of relevant
constraints and their weights starting from a catalogue of candidates.

The framework can be extended in a number of directions. First, LMT is
currently focused on the task of finding the maximal configuration, and can-
not compute marginal probabilities. This gap can be filled thanks to weighted
model integration [7,8], a recently proposed formulation generalizing weighted
model counting [20] to hybrid domains. In terms of expressiveness, OMT is cur-
rently limited to quantifier free formulae and linear algebra. Some attempts to
extend SMT solvers to quantified formulae [5,43,57] and to non-linear arithmetic
[28,41,46] have been presented in the literature. Although the state of the art
of these extensions is not yet satisfactory, these techniques are evolving rapidly
and we can rather easily extend our framework in these directions as soon as the
underlying SMT technology is mature enough. In terms of required knowledge,
the current formulation for structured-output prediction assumes knowledge of
the desired output for training examples. This requirement can be loosened
by introducing latent variables for the unobserved part of the output, to be
maximized over during training [71]. In terms of interaction with the user, the
preference elicitation strategy we employ is quite simple, and more advanced
approaches estimating the value of information of candidate queries could be
explored, see e.g. the work by Viappiani and Boutilier on optimal recommenda-
tion sets [68]. Adapting these concepts to deal with complex non-linear hybrid
formulas is an interesting and challenging direction for future work. Finally,
albeit capable of automatically identifying relevant constraints, our approach
requires a set of candidates (possibly only atomic ones) to start from and can-
not generate completely novel constraints. Adapting constraint acquisition tech-
niques [6,10,45,55] to our framework is a relevant and challenging direction for
future research.

Acknowledgments. This chapter builds on a body of work done in collaboration
with Paolo Campigotto, Roberto Battiti, Stefano Teso and Roberto Sebastiani.

References

1. Ahmadi, B., Kersting, K., Sanner, S.: Multi-evidence lifted message passing, with
application to pagerank and the kalman filter. In: Proceedings of IJCAI 2011, pp.
1152–1158 (2011)

2. Bakir, G.H., Hofmann, T., Schölkopf, B., Smola, A.J., Taskar, B., Vishwanathan,
S.V.N.: Predicting Structured Data (Neural Information Processing). The MIT
Press, Cambridge (2007)

3. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories,
chap. 26, Frontiers in Artificial Intelligence and Applications, pp. 825–885. IOS
Press, February 2009

Learning Modulo Theories 143

4. Battiti, R., Brunato, M.: Reactive search optimization: learning while optimiz-
ing. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics. Interna-
tional Series in Operations Research & Management Science, vol. 146, pp. 543–571.
Springer, New York (2010)

5. Baumgartner, P., Tinelli, C.: Model evolution with equality modulo built-
in theories. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011.
LNCS (LNAI), vol. 6803, pp. 85–100. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22438-6 9

6. Beldiceanu, N., Simonis, H.: A model seeker extracting global constraint models
from positive examples. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 141–
157. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33558-7 13

7. Belle, V., Passerini, A., Van den Broeck, G.: Probabilistic inference in hybrid
domains by weighted model integration. In: Proceedings of 24th International Joint
Conference on Artificial Intelligence (IJCAI) (2015)

8. Belle, V., Van den Broeck, G., Passerini, A.: Hashing-based approximate prob-
abilistic inference in hybrid domains. In: Proceedings of the 31st Conference on
Uncertainty in Artificial Intelligence (UAI) (2015)

9. Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1),
1–127 (2009)

10. Bessiere, C., Coletta, R., Hebrard, E., Katsirelos, G., Lazaar, N., Narodytska, N.,
Quimper, C.-G., Walsh, T.: Constraint acquisition via partial queries. In: Proceed-
ings of the Twenty-Third International Joint Conference on Artificial Intelligence,
IJCAI 2013, pp. 475–481. AAAI Press (2013)

11. Birlutiu, A., Groot, P., Heskes, T.: Efficiently learning the preferences of people.
Mach. Learn. 90, 1–28 (2012)

12. Bonilla, E., Guo, S., Sanner, S.: Gaussian process preference elicitation. In: Lafferty,
J., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in
Neural Information Processing Systems, pp. 262–270 (2010)

13. Boutilier, C., Patrascu, R., Poupart, P., Schuurmans, D.: Constraint-based opti-
mization and utility elicitation using the minimax decision criterion. Artif. Intell.
170(8–9), 686–713 (2006)

14. Boutilier, C., Regan, K., Viappiani, P.: Simultaneous elicitation of preference fea-
tures and utility. In: Proceedings of the Twenty-Fourth AAAI Conference on Arti-
ficial Intelligence (AAAI 2010), Atlanta, GA, USA. AAAI Press, pp. 1160–1167,
July 2010

15. Braziunas, D.: Computational approaches to preference elicitation. Technical
report, Department of Computer Science, University of Toronto (2006)

16. Braziunas, D., Boutilier, C.: Minimax regret based elicitation of generalized addi-
tive utilities. In: Proceedings of the Twenty-Third Conference on Uncertainty in
Artificial Intelligence (UAI 2007), Vancouver, pp. 25–32 (2007)

17. Broecheler, M., Mihalkova, L., Getoor, L.: Probabilistic similarity logic. In: Uncer-
tainty in Artificial Intelligence (UAI), pp. 73–82 (2010)

18. Burges. C.: A tutorial on support vector machines for pattern recognition. In: Data
Mining and Knowledge Discovery, vol. 2. Kluwer Academic Publishers, Boston
(1998)

19. Campigotto, P., Battiti, R., Passerini, A.: Learning modulo theories for preference
elicitation in hybrid domains. arXiv (2015)

20. Chavira, M., Darwiche, A.: On probabilistic inference by weighted model counting.
Artif. Intell. 172(6–7), 772–799 (2008)

http://dx.doi.org/10.1007/978-3-642-22438-6_9
http://dx.doi.org/10.1007/978-3-642-22438-6_9
http://dx.doi.org/10.1007/978-3-642-33558-7_13

144 A. Passerini

21. Choi, J., Amir, E.: Lifted relational variational inference. In: de Freitas, N., Mur-
phy, K.P. (eds.) UAI 2012: Proceedings of the Twenty-Eighth Conference on Uncer-
tainty in Artificial Intelligence, pp. 196–206. AUAI Press (2012)

22. Choi, J., Guzmn-Rivera, A., Amir, E.: Lifted relational kalman filtering. In: Pro-
ceedings of IJCAI 2011, pp. 2092–2099 (2011)

23. Choi, J., Hill, D., Amir, E.: Lifted inference for relational continuous models. In:
UAI 2010: Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial
Intelligence (2010)

24. Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R., Stenico, C.: Satisfiability
modulo the theory of costs: foundations and applications. In: Esparza, J., Majum-
dar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 99–113. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-12002-2 8

25. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: A modular approach
to MaxSAT modulo theories. In: Järvisalo, M., Van Gelder, A. (eds.) SAT
2013. LNCS, vol. 7962, pp. 150–165. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39071-5 12

26. Diligenti, M., Gori, M., Maggini, M., Rigutini, L.: Bridging logic and kernel
machines. Mach. Learn. 86(1), 57–88 (2012)

27. Domshlak, C., Hüllermeier, E., Kaci, S., Prade, H.: Preferences in AI: an overview.
Artif. Intell. 175(7–8), 1037–1052 (2011)

28. Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of
large non-linear arithmetic constraint systems with complex boolean structure.
JSAT 1(3–4), 209–236 (2007)

29. Friedman, J., Hastie, T., Rosset, S., Tibshirani, R.: Discussion of boosting papers.
Ann. Stat. 32, 102–107 (2004)

30. Gelain, M., Pini, M., Rossi, F., Venable, K., Wilson, N.: Interval-valued soft con-
straint problems. Ann. Math. Artif. Intell. 58, 261–298 (2010)

31. Gelain, M., Pini, M.S., Rossi, F., Venable, K.B., Walsh, T.: Elicitation strategies
for soft constraint problems with missing preferences: properties, algorithms and
experimental studies. Artif. Intell. J. 174(3–4), 270–294 (2010)

32. Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning (Adaptive
Computation and Machine Learning). The MIT Press, Cambridge (2007)

33. Goodman, N.D., Mansinghka, V.K., Roy, D.M., Bonawitz, K., Tenenbaum, J.B.:
Church: a language for generative models. In: McAllester, D.A., Myllymäki, P.
(eds.) UAI, pp. 220–229. AUAI Press (2008)

34. Griggio, A., Phan, Q.-S., Sebastiani, R., Tomasi, S.: Stochastic local search
for SMT: combining theory solvers with WalkSAT. In: Tinelli, C., Sofronie-
Stokkermans, V. (eds.) FroCoS 2011. LNCS (LNAI), vol. 6989, pp. 163–178.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-24364-6 12

35. Guo, S., Sanner, S.: Real-time multiattribute Bayesian preference elicitation with
pairwise comparison queries. J. Mach. Learn. Res. - Proc. Track 9, 289–296 (2010)

36. Gutmann, B., Jaeger, M., Raedt, L.: Extending ProbLog with continuous distrib-
utions. In: Frasconi, P., Lisi, F.A. (eds.) ILP 2010. LNCS (LNAI), vol. 6489, pp.
76–91. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21295-6 12

37. Hausner, A.: Simulating decorative mosaics. In: Proceedings of the 28th Annual
Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 2001,
pp. 573–580. ACM, New York (2001)

38. Islam, M.A., Ramakrishnan, C.R., Ramakrishnan, I.V.: Inference in probabilistic
logic programs with continuous random variables. Theory Pract. Log. Program.
12(4–5), 505–523 (2012)

http://dx.doi.org/10.1007/978-3-642-12002-2_8
http://dx.doi.org/10.1007/978-3-642-39071-5_12
http://dx.doi.org/10.1007/978-3-642-39071-5_12
http://dx.doi.org/10.1007/978-3-642-24364-6_12
http://dx.doi.org/10.1007/978-3-642-21295-6_12

Learning Modulo Theories 145

39. Joachims, T.: Optimizing search engines using click through data. In: Proceedings
of the Eighth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD 2002, pp. 133–142. ACM, New York (2002)

40. Joachims, T., Finley, T., Chun-Nam John, Y.: Cutting-plane training of structural
SVMs. Mach. Learn. 77(1), 27–59 (2009)

41. Jovanović, D., Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 339–354. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-31365-3 27

42. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-
niques - Adaptive Computation and Machine Learning. The MIT Press, Cambridge
(2009)

43. Kruglov, E.: Superposition modulo theory. Ph.D. thesis, Universität des Saarlan-
des, Postfach 151141, 66041 Saarbrücken (2013)

44. Kuželka, O., Szabóová, A., Holec, M., Železný, F.: Gaussian logic for predictive
classification. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.)
ECML PKDD 2011. LNCS (LNAI), vol. 6912, pp. 277–292. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-23783-6 18

45. Lallouet, A., Lopez, M., Martin, L., Vrain, C.: On learning constraint problems.
In: ICTAI (1) 2010, pp. 45–52 (2010)

46. Larraz, D., Oliveras, A., Rodŕıguez-Carbonell, E., Rubio, A.: Minimal-model-
guided approaches to solving polynomial constraints and extensions. In: Sinz, C.,
Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 333–350. Springer, Heidelberg
(2014). doi:10.1007/978-3-319-09284-3 25

47. LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., Huang, F.-J.: A tutorial on
energy-based learning. In: Bakir, G., Hofman, T., Schölkopf, B., Smola, A., Taskar,
B. (eds.) Predicting Structured Data. MIT Press, Cambridge (2006)

48. Leenen, L., Anbulagan, A., Meyer, T., Ghose, A.: Modeling and solving semiring
constraint satisfaction problems by transformation to weighted semiring Max-SAT.
In: Orgun, M.A., Thornton, J. (eds.) AI 2007. LNCS (LNAI), vol. 4830, pp. 202–
212. Springer, Heidelberg (2007). doi:10.1007/978-3-540-76928-6 22

49. Li, Y., Albarghouthi, A., Kincad, Z., Gurfinkel, A., Chechik, M.: Symbolic opti-
mization with SMT solvers. In: Proceedings of the 41st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2014, pp. 607–618.
ACM, New York (2014)

50. Lippi, M., Frasconi, P.: Prediction of protein-residue contacts by markov logic
networks with grounding-specific weights. Bioinformatics 25(18), 2326–2333 (2009)

51. March, J.G.: Bounded rationality, ambiguity, and the engineering of choice. Bell
J. Econ. 9, 587–608 (1978)

52. McCormack, J., d’Inverno, M. (eds.): Computers and Creativity. Springer, Heidel-
berg (2012)

53. Nieuwenhuis, R., Oliveras, A.: On SAT modulo theories and optimization problems.
In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 156–169. Springer,
Heidelberg (2006). doi:10.1007/11814948 18

54. Nrman, P., Buschle, M., Knig, J., Johnson, P.: Hybrid probabilistic relational mod-
els for system quality analysis. In: EDOC, pp. 57–66. IEEE Computer Society
(2010)

55. Ravkic, I., Ramon, J., Davis, J.: Learning relational dependency networks in hybrid
domains. Mach. Learn. 100(2), 217–254 (2015)

56. Ricci, F., Rokach, L., Shapira, B., Kantor, P.B.: Recommender Systems Handbook,
1st edn. Springer, New York (2010)

http://dx.doi.org/10.1007/978-3-642-31365-3_27
http://dx.doi.org/10.1007/978-3-642-23783-6_18
http://dx.doi.org/10.1007/978-3-319-09284-3_25
http://dx.doi.org/10.1007/978-3-540-76928-6_22
http://dx.doi.org/10.1007/11814948_18

146 A. Passerini

57. Rümmer, P.: A constraint sequent calculus for first-order logic with linear inte-
ger arithmetic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008.
LNCS (LNAI), vol. 5330, pp. 274–289. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-89439-1 20

58. Savage, L.J.: The theory of statistical decision. J. Am. Stat. Assoc. 46(253), 55–67
(1951)

59. Sebastiani, R.: Lazy satisfiability modulo theories. J. Satisfiability, Boolean Model.
Comput., JSAT 3(3–4), 141–224 (2007)

60. Sebastiani, R., Tomasi, S.: Optimization in SMT with LA(Q) cost functions. In:
Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364,
pp. 484–498. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31365-3 38

61. Sebastiani, R., Tomasi, S.: Optimization modulo theories with linear rational costs.
ACM Trans. Comput. Logic 16(2), 12:1–12:43 (2015)

62. Sebastiani, R., Trentin, P.: OptiMathSAT: a tool for optimization modulo theories.
In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 447–454.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-21690-4 27

63. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge
University Press, New York (2004)

64. Teso, S., Sebastiani, R., Passerini, A.: Structured learning modulo theories. Artif.
Intell. (2015)

65. Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods
for structured and interdependent output variables. J. Mach. Learn. Res. 6, 1453–
1484 (2005)

66. Vanderplaats, G.N.: Multidiscipline Design Optimization: Textbook. Vanderplaats
Research & Development, Incorporated, Colorado Springs (2007)

67. Viappiani, P.: Monte Carlo methods for preference learning. In: Hamadi, Y., Schoe-
nauer, M. (eds.) LION 6. LNCS, vol. 7219, pp. 503–508. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-34413-8 52

68. Viappiani, P., Boutilier, C.: Optimal Bayesian recommendation sets and myopically
optimal choice query sets. In: Advances in Neural Information Processing Systems
23 (NIPS), Vancouver, pp. 2352–2360 (2010)

69. Wang, J., Domingos, P.: Hybrid Markov logic networks. In: Proceedings of the 23rd
National Conference on Artificial Intelligence, vol. 2, AAAI 2008, pp. 1106–1111.
AAAI Press (2008)

70. Yang, Y.-L., Wang, J., Vouga, E., Wonka, P.: Urban pattern: layout design by
hierarchical domain splitting. ACM Trans. Graph. 32(6), 181:1–181:12 (2013)

71. Yu, C.-N.J., Joachims, T.: Learning structural SVMs with latent variables. In:
Proceedings of the 26th Annual International Conference on Machine Learning,
ICML 2009, pp. 1169–1176. ACM, New York (2009)

72. Yu, L.-F., Yeung, S.-K., Tang, C.-K., Terzopoulos, D., Chan, T.F., Osher, S.J.:
Make it home: automatic optimization of furniture arrangement. ACM Trans.
Graph. 30(4), 86:1–86:12 (2011)

http://dx.doi.org/10.1007/978-3-540-89439-1_20
http://dx.doi.org/10.1007/978-3-540-89439-1_20
http://dx.doi.org/10.1007/978-3-642-31365-3_38
http://dx.doi.org/10.1007/978-3-319-21690-4_27
http://dx.doi.org/10.1007/978-3-642-34413-8_52

Learning to Solve

Algorithm Selection for Combinatorial Search
Problems: A Survey

Lars Kotthoff(B)

University of British Columbia, Vancouver, Canada
larsko@cs.ubc.ca

Abstract. The Algorithm Selection Problem is concerned with selecting
the best algorithm to solve a given problem on a case-by-case basis. It has
become especially relevant in the last decade, as researchers are increas-
ingly investigating how to identify the most suitable existing algorithm
for solving a problem instead of developing new algorithms. This survey
presents an overview of this work focusing on the contributions made
in the area of combinatorial search problems, where Algorithm Selec-
tion techniques have achieved significant performance improvements. We
unify and organise the vast literature according to criteria that determine
Algorithm Selection systems in practice. The comprehensive classifica-
tion of approaches identifies and analyses the different directions from
which Algorithm Selection has been approached. This chapter contrasts
and compares different methods for solving the problem as well as ways
of using these solutions.

1 Introduction

For many years, Artificial Intelligence research has been focusing on inventing
new algorithms and approaches for solving similar kinds of problems. In some
scenarios, a new algorithm is clearly superior to previous approaches. In the
majority of cases however, a new approach will improve over the current state
of the art only for some problems. This may be because it employs a heuristic
that fails for problems of a certain type or because it makes other assumptions
about the problem or environment that are not satisfied in some cases. Selecting
the most suitable algorithm for a particular problem aims at mitigating these
problems and has the potential to significantly increase performance in practice.
This is known as the Algorithm Selection Problem.

The Algorithm Selection Problem has, in many forms and with different
names, cropped up in many areas of Artificial Intelligence in the last few decades.
Today there exists a large amount of literature on it. Most publications are
concerned with new ways of tackling this problem and solving it efficiently in
practice. Especially for combinatorial search problems, the application of Algo-
rithm Selection techniques has resulted in significant performance improvements
that leverage the diversity of systems and techniques developed in recent years.
This chapter surveys the available literature and describes how research has
progressed.
c© Springer International Publishing AG 2016
C. Bessiere et al. (Eds.): Data Mining and Constraint Programming, LNAI 10101, pp. 149–190, 2016.
DOI: 10.1007/978-3-319-50137-6 7

150 L. Kotthoff

x ∈ P
Problem space

A ∈ A
Algorithm space

p ∈ Rn

Performance
measure space

p = Algorithm
performance

S(x)

Selection
mapping

p(A,x)

Performance
mapping

Norm
mapping

Fig. 1. Basic model for the Algorithm Selection Problem as published in [120].

Researchers have long ago recognised that a single algorithm will not give
the best performance across all problems one may want to solve and that select-
ing the most appropriate method is likely to improve the overall performance.
Empirical evaluations have provided compelling evidence for this, e.g. [1,154].

The original description of the Algorithm Selection Problem was published
in [120]. The basic model described in the paper is very simple – given a space
of problems and a space of algorithms, map each problem-algorithm pair to its
performance. This mapping can then be used to select the best algorithm for
a given problem. The original figure that illustrates the model is reproduced in
Fig. 1. As Rice states,

“The objective is to determine S(x) [the mapping of problems to algo-
rithms] so as to have high algorithm performance.”

He identifies the following four criteria for the selection process.

1. Best selection for all mappings S(x) and problems x. For every problem, an
algorithm is chosen to give maximum performance.

2. Best selection for a subclass of problems. A single algorithm is chosen to
apply to each of a subclass of problems such that the performance degradation
compared to choosing from all algorithms is minimised.

3. Best selection from a subclass of mappings. Choose the selection mapping
from a subset of all mappings from problems to algorithms such that the
performance degradation is minimised.

4. Best selection from a subclass of mappings and problems. Choose a single
algorithm from a subset of all algorithms to apply to each of a subclass of
problems such that the performance degradation is minimised.

The first case is clearly the most desirable one. In practice however, the other
cases are more common – we might not have enough data about individual
problems or algorithms to select the best mapping for everything.

[120] lists five main steps for solving the problem.

Formulation. Determination of the subclasses of problems and mappings to be
used.

Algorithm Selection for Combinatorial Search Problems: A Survey 151

Existence. Does a best selection mapping exist?
Uniqueness. Is there a unique best selection mapping?
Characterization. What properties characterize the best selection mapping

and serve to identify it?
Computation. What methods can be used to actually obtain the best selection

mapping?

This framework is taken from the theory of approximation of functions. The
questions for existence and uniqueness of a best selection mapping are usually
irrelevant in practice. As long as a good performance mapping is found and
improves upon the current state of the art, the question of whether there is
a different mapping with the same performance or an even better mapping is
secondary. While it is easy to determine the theoretically best selection mapping
on a set of given problems, casting this mapping into a generalisable form that
will give good performance on new problems or even into a form that can be used
in practice is hard. Indeed, [62] shows that the Algorithm Selection Problem in
general is undecidable. It may be better to choose a mapping that generalises
well rather than the one with the best performance. Other considerations can be
involved as well. [28,63] compare different Algorithm selection models and select
not the one with the best performance, but one with good performance that is
also easy to understand, for example. [146] select their method of choice for the
same reason. Similarly, [159] choose a model that is cheap to compute instead
of the one with the best performance. They note that,

“All of these techniques are computationally more expensive than ridge
regression, and in our previous experiments we found that they did not
improve predictive performance enough to justify this additional cost.”

Rice continues by giving practical examples of where his model applies. He
refines the original model to include features of problems that can be used to
identify the selection mapping. The original figure depicting the refined model
is given in Fig. 2. This model, or a variant of it, is what is used in most practical
approaches. Including problem features is the crucial difference that often makes
an approach feasible.

For each problem in a given set, the features are extracted. The aim is to
use these features to produce the mapping that selects the algorithm with the
best performance for each problem. The actual performance mapping for each
problem-algorithm pair is usually of less interest as long as the individual best
algorithm can be identified.

Rice poses additional questions about the determination of features.

– What are the best features for predicting the performance of a specific algo-
rithm?

– What are the best features for predicting the performance of a specific class
of algorithms?

– What are the best features for predicting the performance of a subclass of
selection mappings?

152 L. Kotthoff

x ∈ P
Problem space

f(x) ∈ F = Rm

Feature space
A ∈ A

Algorithm space

p ∈ Rn

Performance
measure space

p = Algorithm
performance

Feature
extraction

S(f(x))

Selection
mapping

p(A,x)

Performance
mapping

Fig. 2. Refined model for the Algorithm Selection Problem with problem features [120].

He also states that,

“The determination of the best (or even good) features is one of the most
important, yet nebulous, aspects of the algorithm selection problem.”

He refers to the difficulty of knowing the problem space. Many problem spaces are
not well known and often a sample of problems is drawn from them to evaluate
empirically the performance of the given set of algorithms. If the sample is not
representative, or the features do not facilitate a good separation of the problem
classes in the feature space, there is little hope of finding the best or even a good
selection mapping.

[145] note that,

“While it seems that restricting a heuristic to a special case would likely
improve its performance, we feel that the ability to partition the prob-
lem space of some NP-hard problems by efficient selectors is mildly
surprising.”

This sentiment was shared by many researchers and part of the great prominence
of Algorithm Selection systems especially for combinatorial search problems can
probably be attributed to the surprise that it actually works.

Most approaches employ Machine Learning to learn the performance map-
ping from problems to algorithms using features extracted from the problems.
This often involves a training phase, where the candidate algorithms are run on
a sample of the problem space to experimentally evaluate their performance.
This training data is used to create a performance model that can be used to
predict the performance on new, unseen problems. The term model is used only
in the loosest sense here; it can be as simple as a representation of the training
data without any further analysis.

Algorithm Selection for Combinatorial Search Problems: A Survey 153

1.1 Practical Motivation

[1] notes that in Machine Learning, researchers often perform experiments on
a limited number of data sets to demonstrate the performance improvements
achieved and implicitly assume that these improvements generalise to other data.
He proposes a framework for better experimental evaluation of such claims and
deriving rules that determine the properties a data set must have in order for
an algorithm to have superior performance. His objective is

“. . . to derive rules of the form ‘this algorithm outperforms these other
algorithms on these dependent measures for databases with these charac-
teristics’. Such rules summarize when [. . .] rather than why the observed
performance difference occurred.”

[143] make similar observations and show that there is no algorithm that is
universally the best when solving constraint problems. They also demonstrate
that the best algorithm-heuristic combination is not what one might expect
for some of the surveyed problems. This provides an important motivation for
research into performing Algorithm Selection automatically. They close by noting
that,

“. . . research should focus on how to retrieve the most efficient [algorithm-
heuristic] combinations for a problem.”

The focus of Algorithm Selection is on identifying algorithms with good per-
formance, not on providing explanations for why this is the case. Most publica-
tions do not consider the question of “Why?” at all. Rice’s framework does not
address this question either. The simple reason for this is that explaining the
Why? is difficult and for most practical applications not particularly relevant
as long as improvements can be achieved. Research into what makes a problem
hard, how this affects the behaviour of specific algorithms and how to exploit
this knowledge is a fruitful area, but outside the scope of this chapter. However,
we present a brief exposition of one of the most important concepts to illustrate
its relevance.

The notion of a phase transition [26] refers to a sudden change in the hardness
of a problem as the value of a single parameter of the problem is changed.
Detecting such transitions is an obvious way to facilitate Algorithm Selection.
[65] note that,

“In particular, the location of the phase transition point might provide
a systematic basis for selecting the type of algorithm to use on a given
problem.”

While some approaches make use of this knowledge to generate challenging train-
ing problems for their systems, it is hardly used at all to facilitate Algorithm
Selection. [109] use a set of features that can be used to characterise a phase
transition and note that,

“It turns out that [. . .] this group of features alone suffices to construct
reasonably good models.”

154 L. Kotthoff

It remains unclear how relevant phase transitions are to Algorithm Selection in
practice. On one hand, their theoretical properties seem to make them highly
suitable, but on the other hand almost nobody has explored their use in actual
Algorithm Selection systems.

No Free Lunch Theorems. The question arises of whether, in general, the
performance of a system can be improved by always picking the best algorithm.
The “No Free Lunch” (NFL) theorems [154] state that no algorithm can be the
best across all possible problems and that on average, all algorithms perform the
same. This seems to provide a strong motivation for Algorithm Selection – if,
on average, different algorithms are the best for different parts of the problem
space, selecting them based on the problem to solve has the potential to improve
performance.

The theorems would apply to Algorithm Selection systems themselves as well
though (in particular the version for supervised learning are relevant, see [153]).
This means that although performance improvements can be achieved by select-
ing the right algorithms on one part of the problem space, wrong decisions will
be made on other parts, leading to a loss of performance. On average over all
problems, the performance achieved by an Algorithm Selection meta-algorithm
will be the same as that of all other algorithms.

The NFL theorems are the source of some controversy however. Among the
researchers to doubt their applicability is the first proponent of the Algorithm
Selection Problem [121]. Several other publications show that the assumptions
underlying the NFL may not be satisfied [31,119]. In particular, the distribution
of the best algorithms from the portfolio to problems is not random – it is
certainly true that certain algorithms are the best on a much larger number of
problems than others.

A detailed assessment of the applicability of the NFL theorems to the Algo-
rithm Selection Problem is outside the scope of this chapter. However, a review
of the literature suggests that, if the theorems are applicable, the ramifications
in practice may not be significant. Most of the many publications surveyed here
do achieve performance improvements across a range of different problems using
Algorithm Selection techniques. As a research area, it is very active and thriving
despite the potentially negative implications of the NFL.

1.2 Scope and Related Work

Algorithm Selection is a very general concept that applies not only in almost
all areas of Computer Science, but also other disciplines. However, it is espe-
cially relevant in many areas of Artificial Intelligence. This is a large field itself
though and surveying all Artificial Intelligence publications that are relevant to
Algorithm Selection in a single chapter is infeasible.

In this chapter, we focus on Algorithm Selection for combinatorial search
problems. This is a large and important subfield of Artificial Intelligence where
Algorithm Selection techniques have become particularly prominent in recent

Algorithm Selection for Combinatorial Search Problems: A Survey 155

years because of the impressive performance improvements that have been
achieved by some approaches. Combinatorial search problems include for exam-
ple satisfiability (SAT), constraint problems, planning, quantified Boolean for-
mulae (QBF), scheduling and combinatorial optimisation.

A combinatorial search problem is one where an initial state is to be trans-
formed into a goal state by application of a series of operators, such as assignment
of values to variables. The space of possible states is typically exponential in the
size of the input and finding a solution is NP-hard. A common way of solv-
ing such problems is to use heuristics. A heuristic is a strategy that determines
which operators to apply when. Heuristics are not necessarily complete or deter-
ministic, i.e. they are not guaranteed to find a solution if it exists or to always
make the same decision under the same circumstances. The nature of heuristics
makes them particularly amenable to Algorithm Selection – choosing a heuristic
manually is difficult even for experts, but choosing the correct one can improve
performance significantly.

There exists a large body of work that is relevant to Algorithm Selection in
the Machine Learning literature. [133] presents a survey of many approaches.
Repeating this here is unnecessary and outside the scope of this chapter, which
focuses on the application of such techniques. The most relevant area of research
is that into ensembles, where several models are created instead of one. Such
ensembles are either implicitly assumed or explicitly engineered so that they
complement each other. Errors made by one model are corrected by another.
Ensembles can be engineered by techniques such as bagging [18] and boost-
ing [128]. [9,111] present studies that compare bagging and boosting empirically.
[30] provides explanations for why ensembles can perform better than individual
algorithms.

There is increasing interest in the integration of Algorithm Selection tech-
niques with programming language paradigms, e.g. [4,68]. While these issues are
sufficiently relevant to be mentioned here, exploring them in detail is outside the
scope of the chapter. Similarly, technical issues arising from the computation,
storage and application of performance models, the integration of Algorithm
Selection techniques into complex systems, the execution of choices and the col-
lection of experimental data to facilitate Algorithm Selection are not surveyed
here.

1.3 Terminology

Algorithm Selection is a widely applicable concept and as such has cropped up
frequently in various lines of research. Often, different terminologies are used.

[15] use the term algorithm chaining to mean switching from one algorithm
to another while the problem is being solved. [100] call Algorithm Selection
selection by performance prediction. [145] use the term hybrid algorithm for the
combination of a set of algorithms and an Algorithm Selection model (which
they term selector).

In Machine Learning, Algorithm Selection is usually referred to as meta-
learning. This is because Algorithm Selection models for Machine Learning learn

156 L. Kotthoff

when to use which method of Machine Learning. The earliest approaches also
spoke of hybrid approaches, e.g. [144]. [1] proposes rules for selecting a Machine
Learning algorithm that take the characteristics of a data set into account. He
uses the term meta-learning. [20] introduces the notion of selective superiority.
This concept refers to a particular algorithm being best on some, but not all
tasks.

In addition to the many terms used for the process of Algorithm Selec-
tion, researchers have also used different terminology for the models of what
Rice calls performance measure space. [2] call them runtime performance pre-
dictors. [75,95,96,156] coined the term Empirical Hardness model. This stresses
the reliance on empirical data to create these models and introduces the notion
of hardness of a problem. The concept of hardness takes into account all per-
formance considerations and does not restrict itself to, for example, runtime
performance. In practice however, the described empirical hardness models only
take runtime performance into account. In all cases, the predicted measures are
used to select an algorithm.

Throughout this chapter, the term algorithm is used to refer to what is
selected for solving a problem instance. This is for consistency and to make the
connection to Rice’s framework. An algorithm may be a system, a programme,
a heuristic, a classifier or a configuration. This is not made explicit unless it is
relevant in the particular context.

1.4 Organisation

An organisation of the Algorithm Selection literature is challenging, as there are
many different criteria that can be used to classify it. Each publication can be
evaluated from different points of view. The organisation of this chapter follows
the main criteria below.

What to select algorithms from
Section 2 describes how sets of algorithms, or portfolios, can be constructed.
A portfolio can be static, where the designer decides which algorithms to
include, or dynamic, where the composition or individual algorithms vary or
change for different problems.

What to select and when
Section 3 describes how algorithms from portfolios are selected to solve prob-
lems. Apart from the obvious approach of picking a single algorithm, time
slots can be allocated to all or part of the algorithms or the execution mon-
itored and earlier decisions revised. We also distinguish between selecting
before the solving of the actual problem starts and while the problem is
being solved.

How to select
Section 4 surveys techniques used for making the choices described in Sect. 3.
It details how performance models can be built and what kinds of predictions
they inform. Example predictions are the best algorithm in the portfolio and
the runtime performance of each portfolio algorithm.

Algorithm Selection for Combinatorial Search Problems: A Survey 157

How to facilitate the selection
Section 5 gives an overview of the types of analysis different approaches per-
form and what kind of information is gathered to facilitate Algorithm Selec-
tion. This includes the past performance of algorithms and structural features
of the problems to be solved.

The order of the material follows a top-down approach. Starting with the
high-level idea of Algorithm Selection, as proposed by [120] and described in this
introduction, more technical details are gradually explored. Earlier concepts pro-
vide motivation and context for later technical details. For example, the choice
of whether to select a single algorithm or monitor its execution (Sect. 3) deter-
mines the types of predictions required and techniques suitable for making them
(Sect. 4) as well as the properties that need to be measured (Sect. 5).

The individual sections are largely self-contained. If the reader is more inter-
ested in a bottom-up approach that starts with technical details on what can
be observed and measured to facilitate Algorithm Selection, Sects. 2 through 5
may be read in reverse order.

Section 6 again illustrates the importance of the field by surveying the many
different application domains of Algorithm Selection techniques with a focus on
combinatorial search problems. We close by summarising in Sect. 7.

2 Algorithm Portfolios

For diverse sets of problems, it is unlikely that a single algorithm will be the
most suitable one in all cases. A way of mitigating this restriction is to use a
portfolio of algorithms. This idea is closely related to the notion of Algorithm
Selection itself – instead of making an up-front decision on what algorithm to
use, it is decided on a case-by-case basis for each problem individually. In the
framework presented by [120], portfolios correspond to the algorithm space A.

Portfolios are a well-established technique in Economics. Portfolios of assets,
securities or similar products are used to reduce the risk compared to hold-
ing only a single product. The idea is simple – if the value of a single security
decreases, the total loss is less severe. The problem of allocating funds to the
different parts of the portfolio is similar to allocating resources to algorithms
in order to solve a computational problem. There are some important differ-
ences though. Most significantly, the past performance of an algorithm can be
a good indicator of future performance. There are fewer factors that affect the
outcome and in most cases, they can be measured directly. In Machine Learning,
ensembles [30] are instances of algorithm portfolios. In fact, the only difference
between algorithm portfolios and Machine Learning ensembles is the way in
which its constituents are used.

The idea of algorithm portfolios was first presented by [73]. They describe
a formal framework for the construction and application of algorithm portfolios
and evaluate their approach on graph colouring problems. Within the Artificial
Intelligence community, algorithm portfolios were popularised by [57,58] and a

158 L. Kotthoff

subsequent extended investigation [59]. The technique itself however had been
described under different names by other authors at about the same time in
different contexts.

[143] experimentally show for a selection of constraint satisfaction algorithms
and heuristics that none is the best on all evaluated problems. They do not men-
tion portfolios, but propose that future research should focus on identifying when
particular algorithms and heuristics deliver the best performance. This implicitly
assumes a portfolio to choose algorithms from. [2] perform a similar investiga-
tion and come to similar conclusions. They talk about selecting an appropriate
algorithm from an algorithm family.

Beyond the simple idea of using a set of algorithms instead of a single one,
there is a lot of scope for different approaches. One of the first problems faced
by researchers is how to construct the portfolio. There are two main types.
Static portfolios are constructed offline before any problems are solved. While
solving a problem, the composition of the portfolio and the algorithms within it
do not change. Dynamic portfolios change in composition, configuration of the
constituent algorithms or both during solving.

2.1 Static Portfolios

Static portfolios are the most common type. The number of algorithms or sys-
tems in the portfolio is fixed, as well as their parameters. In Rice’s notation,
the algorithm space A is constant, finite and known. This approach is used for
example in SATzilla [109,158,159], AQME [117,118], CPhydra [110], ArgoS-
mArT [108], BUS [72] and Proteus [74].

The vast majority of approaches composes static portfolios from different
algorithms or different algorithm configurations. [73] however use a portfolio that
contains the same randomised algorithm twice. They run the portfolio in parallel
and as such essentially use the technique to parallelise an existing sequential
algorithm.

Some approaches use a large number of algorithms in the portfolio, such as
ArgoSmArT, whose portfolio size is 60. SATzilla uses 19 algorithms, although
the authors use portfolios containing only subsets of those for specific applica-
tions. BUS uses six algorithms and CPhydra five. [54] select from a portfolio of
only two algorithms. AQME has different versions with different portfolio sizes,
one with 16 algorithms, one with five and three algorithms of different types
and one with two algorithms [118]. The authors compare the different portfolios
and conclude that the one with eight algorithms offers the best performance, as
it has more variety than the portfolio with two algorithms and it is easier to
make a choice for eight than for 16 algorithms. There are also approaches that
use portfolios of variable size that is determined by training data [81,157]. [74]
combine algorithms and problem encodings in a portfolio – problem instances
can be translated into alternative representations, for which other algorithms
are available.

As the algorithms in the portfolio do not change, their selection is crucial for
its success. Ideally, the algorithms will complement each other such that good

Algorithm Selection for Combinatorial Search Problems: A Survey 159

performance can be achieved on a wide range of different problems. [66] report
that portfolios composed of a random selection from a large pool of diverse algo-
rithms outperform portfolios composed of the algorithms with the best overall
performance. They develop a framework with a mathematical model that theo-
retically justifies this observation. [126] use a portfolio of heuristics for solving
quantified Boolean formulae problems that have specifically been crafted to be
orthogonal to each other. [157] automatically engineer a portfolio with algo-
rithms of complementary strengths. In [162], the authors analyse the contribu-
tions of the portfolio constituents to the overall performance and conclude that
not algorithms with the best overall performance, but with techniques that set
them apart from the rest contribute most. [81] use a static portfolio of variable
size that adapts itself to the training data. They cluster the training problems
and choose the best algorithm for each cluster. They do not emphasise diver-
sity, but suitability for distinct parts of the problem space. [157] also construct
a portfolio with algorithms that perform well on different parts of the problem
space, but do not use clustering.

In financial theory, constructing portfolios can be seen as a quadratic opti-
misation problem. The aim is to balance expected performance and risk (the
expected variation of performance) such that performance is maximised and
risk minimised. [37] solve this problem for algorithm portfolios using genetic
algorithms.

Most approaches make the composition of the portfolio less explicit. Many
systems use portfolios of solvers that have performed well in solver competi-
tions with the implicit assumption that they have complementing strengths and
weaknesses and the resulting portfolio will be able to achieve good performance.

2.2 Dynamic Portfolios

Rather than relying on a priori properties of the algorithms in the portfolio,
dynamic portfolios adapt the composition of the portfolio or the algorithms
depending on the problem to be solved. The algorithm space A changes with
each problem and is a subspace of the potentially infinite super algorithm space
A′. This space contains all possible (hypothetical) algorithms that could be used
to solve problems from the problem space. In static portfolios, the algorithms in
the portfolio are selected from A′ once either manually by the designer of the
portfolio or automatically based on empirical results from training data.

One approach is to build a portfolio by combining algorithmic building
blocks. An example of this is the Adaptive Constraint Engine (ACE) [35,36].
The building blocks are so-called advisors, which characterise variables of the
constraint problem and give recommendations as to which one to process next.
ACE combines these advisors into more complex ones. [33,34] use a similar idea
to construct search strategies for solving constraint problems. [42,43] proposes
CLASS, which combines heuristic building blocks to form composite heuristics
for solving SAT problems. In these approaches, there is no strong notion of a
portfolio – the algorithm or strategy used to solve a problem is assembled from
lower level components.

160 L. Kotthoff

Closely related is the concept of specialising generic building blocks for the
problem to solve. This approach is taken in the SAGE system (Strategy Acquisi-
tion Governed by Experimentation) [92,93]. It starts with a set of general opera-
tors that can be applied to a search state. These operators are refined by making
the preconditions more specific based on their utility for finding a solution. The
Multi-tac (Multi-tactic Analytic Compiler) system [103–105] specialises a set
of generic heuristics for the constraint problem to solve.

There can be complex restrictions on how the building blocks are combined.
RT-Syn [131] for example uses a preprocessing step to determine the possible
combinations of algorithms and data structures to solve a software specification
problem and then selects the most appropriate combination using simulated
annealing. [8] model the construction of a constraint solver from components as
a constraint problem whose solutions denote valid combinations of components.

Another approach is to modify the parameters of parameterised algorithms
in the portfolio. This is usually referred to as automatic tuning and not only
applicable in the context of algorithm portfolios, but also for single algorithms.
The HAP system [146] automatically tunes the parameters of a planning system
depending on the problem to solve. [70] dynamically modify algorithm parame-
ters during search based on statistics collected during the solving process.

Automatic Tuning. The area of automatic parameter tuning has attracted a
lot of attention in recent years. This is because algorithms have an increasing
number of parameters that are difficult to tune even for experts and because of
research into dynamic algorithm portfolios that benefits from automatic tuning.
A survey of the literature on automatic tuning is outside the scope of this chapter,
but some of the approaches that are particularly relevant to this survey are
described below.

Automatic tuning and portfolio selection can be treated separately, as done
in the Hydra portfolio builder [157]. Hydra uses ParamILS [78,79] to automati-
cally tune algorithms in a SATzilla [159] portfolio. Autofolio [98] uses ParamILS
and SMAC [76] to train a claspfolio [67] portfolio. ISAC [81] uses GGA [5] to
automatically tune algorithms for clusters of problem instances.

[105] first enumerates all possible rule applications up to a certain time or size
bound. Then, the most promising configuration is selected using beam search, a
form of parallel hill climbing, that empirically evaluates the performance of each
candidate. [8] use hill climbing to similarly identify the most efficient configura-
tion for a constraint solver on a set of problems. [42,141] use genetic algorithms
to evolve promising configurations.

The systems described in the previous paragraph are only of limited suitabil-
ity for dynamic algorithm portfolios. They either take a long time to find good
configurations or are restricted in the number or type of parameters. Interactions
between parameters are only taken into account in a limited way. More recent
approaches have focused on overcoming these limitations.

The ParamILS system [78,79] uses techniques based on local search to
identify parameter configurations with good performance. The authors address

Algorithm Selection for Combinatorial Search Problems: A Survey 161

over-confidence (overestimating the performance of a parameter configuration
on a test set) and over-tuning (determining a parameter configuration that is
too specific). SMAC [76] builds a model of the performance response surface
in parameter space to predict where the most promising configurations are. [5]
use genetic algorithms to discover favourable parameter configurations for the
algorithms being tuned. The authors use a racing approach to avoid having to
run all generated configurations to completion. They also note that one of the
advantages of the genetic algorithm approach is that it is inherently parallel.

Both of these approaches are capable of tuning algorithms with a large num-
ber of parameters and possible values as well as taking interactions between
parameters into account. They are used in practice in the Algorithm Selection
systems Hydra and ISAC, respectively. In both cases, they are only used to
construct static portfolios however. More recent approaches focus on exploiting
parallelism, e.g. [77,97].

Dynamic portfolios are in general a more fruitful area for Algorithm Selec-
tion research because of the large space of possible decisions. Static portfolios
are usually relatively small and the decision space is amenable for human explo-
ration. This is not a feasible approach for dynamic portfolios though. [105] notes
that

“Multi-tac turned out to have an unexpected advantage in this arena,
due to the complexity of the task. Unlike our human subjects, Multi-tac
experimented with a wide variety of combinations of heuristics. Our human
subjects rarely had the inclination or patience to try many alternatives,
and on at least one occasion incorrectly evaluated alternatives that they
did try.”

3 Problem Solving with Portfolios

Once an algorithm portfolio has been constructed, the way in which it is to be
used has to be decided. There are different considerations to take into account.
The two main issues are as follows.

What to select
Given the full set of algorithms in the portfolio, a subset has to be chosen
for solving the problem. This subset can consist of only a single algorithm
that is used to solve the problem to completion, the entire portfolio with
the individual algorithms interleaved or running in parallel or anything in
between.

When to select
The selection of the subset of algorithms can be made only once before solving
starts or continuously during search. If the latter is the case, selections can
be made at well-defined points during search, for example at each node of a
search tree, or when the system judges it to be necessary to make a decision.

Rice’s model assumes that only a single algorithm A ∈ A is selected. It
implicitly assumes that this selection occurs only once and before solving the
actual problem.

162 L. Kotthoff

3.1 What to Select

A common and the simplest approach is to select a single algorithm from the
portfolio and use it to solve the problem completely. This single algorithm
has been determined to be the best for the problem at hand. For example
SATzilla [109,158,159], ArgoSmArT [108], SALSA [29] and Eureka [28] do
this. The disadvantage of this approach is that there is no way of mitigating a
wrong selection. If an algorithm is chosen that exhibits bad performance on the
problem, the system is “stuck” with it and no adjustments are made, even if all
other portfolio algorithms would perform much better.

An alternative approach is to compute schedules for running (a subset of)
the algorithms in the portfolio. In some approaches, the terms portfolio and
schedule are used synonymously – all algorithms in the portfolio are selected
and run according to a schedule that allocates time slices to each of them. The
task of Algorithm Selection becomes determining the schedule rather than to
select algorithms.

[122] rank the portfolio algorithms in order of expected performance and
allocate time according to this ranking. [72] propose a round-robin schedule that
contains all algorithms in the portfolio. The order of the algorithms is deter-
mined by the expected run time and probability of success. The first algorithm
is allocated a time slice that corresponds to the expected time required to solve
the problem. If it is unable to solve the problem during that time, it and the
remaining algorithms are allocated additional time slices until the problem is
solved or a time limit is reached.

[118] determine a schedule according to three strategies. The first strategy is
to run all portfolio algorithms for a short time and if the problem has not been
solved after this, run the predicted best algorithm exclusively for the remain-
ing time. The second strategy runs all algorithms for the same amount of time,
regardless of what the predicted best algorithm is. The third variation allocates
exponentially increasing time slices to each algorithm such that the total time is
again distributed equally among them. In addition to the three different schedul-
ing strategies, the authors evaluate four different ways of ordering the portfolio
algorithms within a schedule that range from ranking based on past performance
to random. They conclude that ordering the algorithms based on their past per-
formance and allocating the same amount of time to all algorithms gives the
best overall performance.

[110] optimise the computed schedule with respect to the probability that
the problem will be solved. They use the past performance data of the portfolio
algorithms for this. However, they note that their approach of using a simple
complete search procedure to find this optimal schedule relies on small portfolio
sizes and that “for a large number of solvers, a more sophisticated approach
would be necessary”. Later approaches, e.g. the Sunny approach [3], improve
on this.

[80] formulate the problem of computing a schedule that solves most prob-
lems in a training set in the lowest amount of time as a resource constrained set
covering integer programme. They pursue similar aims as [110] but note that

Algorithm Selection for Combinatorial Search Problems: A Survey 163

their approach is more efficient and able to scale to larger schedules. However,
their evaluation concludes that the approach with the best overall performance
is to run the predicted best algorithm for 90 % of the total available time and dis-
tribute the remaining 10 % across the other algorithms in the portfolio according
to a static schedule.

[113] presents a framework for calculating optimal schedules. The approach
is limited by a number of assumptions about the algorithms and the execution
environment, but is applicable to a wide range of research in the literature.
[16,114] compute an optimal static schedule for allocating fixed time slices to
each algorithm. [127] propose an algorithm to efficiently compute an optimal
schedule for portfolios of fixed size and show that the problem of generating
or even approximating an optimal schedule is computationally intractable. [123]
explore different strategies for allocating time slices to algorithms. In a serial
execution strategy, each algorithm is run once for an amount of time determined
by the average time to find a solution on previous problems or the time that was
predicted for finding a solution on the current problem. A round-robin strategy
allocates increasing time slices to each algorithm. The length of a time slice
is based on the proportion of successfully solved training problems within this
time. [56] compute round-robin schedules following a similar approach. Not all
of their computed schedules contain all portfolio algorithms. [138] compute a
schedule with the aim of improving the average-case performance. In later work,
they compute theoretical guarantees for the performance of their schedule [140].

[155] approach scheduling the chosen algorithms in a different way and
assume a fixed limit on the amount of resources an algorithm can consume while
solving a problem. All algorithms are run sequentially for this fixed amount of
time. Similar to [56], they simulate the performance of different allocations and
select the best one based on the results of these simulations. [41] estimates the
performance of candidate allocations through bootstrap sampling. [57,59] also
evaluate the performance of different candidate portfolios, but take into account
how many algorithms can be run in parallel. They demonstrate that the opti-
mal schedule (in this case the number of algorithms that are being run) changes
as the number of available processors increases. [47] investigate how to allocate
resources to algorithms in the presence of multiple CPUs that allow to run more
than one algorithm in parallel. [165] craft portfolios with the specific aim of
running the algorithms in parallel.

[69] consider computing optimal schedules without selection. They note
that their approach can be used in a variety of settings, in particular paral-
lel portfolios.

Related research is concerned with the scheduling of restarts of stochastic
algorithms – it also investigates the best way of allocating resources. The chapter
that introduced algorithm portfolios [73] uses a portfolio of identical stochastic
algorithms that are run with different random seeds. There is a large amount of
research on how to determine restart schedules for randomised algorithms and
a survey of this is outside the scope of this chapter. A few approaches that are
particularly relevant to Algorithm Selection and portfolios are mentioned below.

164 L. Kotthoff

[70] determine the amount of time to allocate to a stochastic algorithm before
restarting it. They use dynamic policies that take performance predictions into
account, showing that it can outperform an optimal fixed policy.

[27] investigate a restart model that allocates resources to an algorithm pro-
portional to the number of times it has been successful in the past. In particular,
they note that the allocated resources should grow doubly exponentially in the
number of successes. Allocation of fewer resources results in over-exploration
(too many different things are tried and not enough resources given to each) and
allocation of more resources in over-exploitation (something is tried for to too
long before moving on to something different).

[139] compute restart schedules that take the runtime distribution of the
portfolio algorithms into account. They present an approach that does so stat-
ically based on the observed performance on a set of training problems as well
as an approach that learns the runtime distributions as new problems are solved
without a separate training set.

3.2 When to Select

In addition to whether they choose a single algorithm or compute a schedule,
existing approaches can also be distinguished by whether they operate before the
problem is being solved (offline) or while the problem is being solved (online).
The advantage of the latter is that more fine-grained decisions can be made and
the effect of a bad choice of algorithm is potentially less severe. The price for
this added flexibility is a higher overhead however, as algorithms are selected
more frequently.

Examples of approaches that only make offline decisions include [105,110,
131,159]. In addition to having no way of mitigating wrong choices, often these
will not even be detected. These approaches do not monitor the execution of the
chosen algorithms to confirm that they conform with the expectations that led
to them being chosen. Purely offline approaches are inherently vulnerable to bad
choices. Their advantage however is that they only need to select an algorithm
once and incur no overhead while the problem is being solved.

Moving towards online systems, the next step is to monitor the execution
of an algorithm or a schedule to be able to intervene if expectations are not
met. [39,40] investigates setting a time bound for the algorithm that has been
selected based on the predicted performance. If the time bound is exceeded, the
solution attempt is abandoned. More sophisticated systems furthermore adjust
their selection if such a bound is exceeded. [15] try to detect behaviour during
search that indicates that the algorithm is performing badly, for example visiting
nodes in a subtree of the search that clearly do not lead to a solution. If such
behaviour is detected, they propose switching the currently running algorithm
according to a fixed replacement list.

[125] explore the same basic idea. They switch between two algorithms for
solving constraint problems that achieve different levels of consistency. The level
of consistency refers to the amount of search space that is ruled out by infer-
ence before actually searching it. Their approach achieves the same level of

Algorithm Selection for Combinatorial Search Problems: A Survey 165

search space reduction as the more expensive algorithm at a significantly lower
cost. This is possible because doing more inference does not necessarily result
in a reduction of the search space in all cases. The authors exploit this fact by
detecting such cases and doing the cheaper inference. [112,136] also investigate
switching propagation methods during solving. [163,164] do not monitor the exe-
cution of the selected algorithm, but instead the values of the features used to
select it. They re-evaluate the selection function when its inputs change.

Further examples of approaches that monitor the execution of the selected
algorithm are [49,118], but also [70] where the offline selection of an algorithm is
combined with the online selection of a restart strategy. An interesting feature of
[118] is that the authors adapt the model used for the offline algorithm selection
if the actual run time is much higher than the predicted runtime. In this way,
they are not only able to mitigate bad choices during execution, but also prevent
them from happening again.

The approaches that make decisions during search, for example at every
node of the search tree, are necessarily online systems. [6] select the best search
strategy at checkpoints in the search tree. Similarly, [20] recursively partitions
the classification problem to be solved and selects an algorithm for each partition.
In this approach, a lower-level decision can lead to changing the decision at the
level above. This is usually not possible for combinatorial search problems, as
decisions at a higher level cannot be changed easily.

Closely related is the work by [90,91], which partitions the search space into
recursive subtrees and selects the best algorithm from the portfolio for every
subtree. They specifically consider recursive algorithms. At each recursive call,
the Algorithm Selection procedure is invoked. This is a more natural extension
of offline systems than monitoring the execution of the selected algorithms, as
the same mechanisms can be used. [126] also select algorithms for recursively
solving sub-problems.

The PRODIGY system [22] selects the next operator to apply in order to
reach the goal state of a planning problem at each node in the search tree.
Similarly, [92] learn weights for operators that can be applied at each search
state and select from among them accordingly.

Most approaches rely on an offline element that makes a decision before
search starts. In the case of recursive calls, this is no different from making a
decision during search however. [44,46,49] on the other hand learn the Algorithm
Selection model only dynamically while the problem is being solved. Initially, all
algorithms in the portfolio are allocated the same (small) time slice. As search
progresses, the allocation strategy is updated, giving more resources to algo-
rithms that have exhibited better performance. The expected fastest algorithm
receives half of the total time, the next best algorithm half of the remaining
time and so on. [7] also rely exclusively on a selection model trained online in a
similar fashion. They evaluate different strategies of allocating resources to algo-
rithms according to their progress during search. All of these strategies converge
to allocating all resources to the algorithm with the best observed performance.

166 L. Kotthoff

4 Portfolio Selectors

Research on how to select from a portfolio in an Algorithm Selection system has
generated the largest number of different approaches within the framework of
Algorithm Selection. In Rice’s framework, it roughly corresponds to the perfor-
mance mapping p(A, x), although only few approaches use this exact formula-
tion. Rice assumes that the performance of a particular algorithm on a particular
problem is of interest. While this is true in general, many approaches only take
this into account implicitly. Selecting the single best algorithm for a problem
for example has no explicit mapping into Rice’s performance measure space Rn

at all. The selection mapping S(f(x)) is also related to the problem of how to
select.

There are many different ways a mechanism to select from a portfolio can
be implemented. Apart from accuracy, one of the main requirements for such
a selector is that it is relatively cheap to run – if selecting an algorithm for
solving a problem is more expensive than solving the problem, there is no point
in doing so. [145] explicitly define the selector as “an efficient (polynomial time)
procedure”.

There are several challenges associated with making selectors efficient. Algo-
rithm Selection systems that analyse the problem to be solved, such as SATzilla,
need to take steps to ensure that the analysis does not become too expensive.
Two such measures are the running of a pre-solver and the prediction of the
time required to analyse a problem [159]. The idea behind the pre-solver is to
choose an algorithm with reasonable general performance from the portfolio and
use it to start solving the problem before starting to analyse it. If the problem
happens to be very easy, it will be solved even before the results of the analysis
are available. After a fixed time, the pre-solver is terminated and the results of
the Algorithm Selection system are used. [118] use a similar approach and run
all algorithms for a short time in one of their strategies. Only if the problem
has not been solved after that, they move on to the algorithm that was actually
selected.

Predicting the time required to analyse a problem is a closely related idea.
If the predicted required analysis time is too high, a default algorithm with
reasonable performance is chosen and run on the problem. This technique is
particularly important in cases where the problem is hard to analyse, but easy
to solve. As some systems use information that comes from exploring part of the
search space (cf. Sect. 5), this is a very relevant concern in practice. On some
problems, even probing just a tiny part of the search space may take a very long
time.

[54,55] report that using the misclassification penalty as a weight for the
individual problems during training improves the quality of the predictions. The
misclassification penalty quantifies the “badness” of a wrong prediction; in this
case as the additional time required to solve a problem. If an algorithm was
chosen that is only slightly worse than the best one, it has less impact than
choosing an algorithm that is orders of magnitude worse. Using the penalty

Algorithm Selection for Combinatorial Search Problems: A Survey 167

during training is a way of guiding the learned model towards the problems
where the potential performance improvement is large.

There are many different approaches to how portfolio selectors operate. The
selector is not necessarily an explicit part of the system. [105] compiles the Algo-
rithm Selection system into a Lisp programme for solving the original constraint
problem. The selection rules are part of the programme logic. [43,50] evolve
selectors and combinators of heuristic building blocks using genetic algorithms.
The selector is implicit in the evolved programme.

4.1 Performance Models

The way the selector operates is closely linked to the way the performance model
of the algorithms in the portfolio is built. In early approaches, the performance
model was usually not learned but given in the form of human expert knowledge.
[15,125] use hand-crafted rules to determine whether to switch the algorithm
during solving. [2] also have hand-crafted rules, but estimate the runtime per-
formance of an algorithm. More recent approaches sometimes use only human
knowledge as well. [150] select a local search heuristic for solving SAT problems
by a hand-crafted rule that considers the distribution of clause weights. [142]
model the performance space manually using statistical methods and use this
hand-crafted model to select a heuristic for solving constraint problems. [146]
learn rules automatically, but then filter them manually.

A more common approach today is to automatically learn performance mod-
els using Machine Learning on training data. The portfolio algorithms are run on
a set of representative problems and based on these experimental results, perfor-
mance models are built. This approach is used by [61,81,110,117,159], to name
but a few examples. A drawback of this approach is that the training time is
usually large. [45] investigate ways of mitigating this problem by using censored
sampling, which introduces an upper bound on the runtime of each experiment
in the training phase. [85] also investigate censored sampling where not all algo-
rithms are run on all problems in the training phase. Their results show that
censored sampling may not have a significant effect on the performance of the
learned model.

Models can also be built without a separate training phase, but while the
problem is solved. This approach is used by [7,46] for example. While this sig-
nificantly reduces the time to build a system, it can mean that the result is
less effective and efficient. At the beginning, when no performance models have
been built, the decisions of the selector might be poor. Furthermore, creating
and updating performance models while the problem is being solved incurs an
overhead.

The choice of Machine Learning technique is affected by the way the portfolio
selector operates. Some techniques are more amenable to offline approaches (e.g.
linear regression models used by [159]), while others lend themselves to online
methods (e.g. reinforcement learning used by [7]).

Performance models can be categorised by the type of entity whose per-
formance is modelled – the entire portfolio or individual algorithms within it.

168 L. Kotthoff

There are publications that use both of those categories however, e.g. [134]. In
some cases, no performance models as such are used at all. [8,25,105] run the
candidates on a set of test problems and select the one with the best perfor-
mance that way for example. [56,57,155] simulate the performance of different
selections on training data.

Per-Portfolio Models. One automated approach is to learn a performance
model of the entire portfolio based on training data. Usually, the prediction of
such a model is the best algorithm from the portfolio for a particular problem.
There is only a weak notion of an individual algorithm’s performance. In Rice’s
notation for the performance mapping P (A, x), A is the (subset of the) portfolio
instead of an individual algorithm, i.e. A ⊆ A instead of Rice’s A ∈ A.

This is used for example by [28,61,108,110,117]. Again there are different
ways of doing this. Lazy approaches do not learn an explicit model, but use the
set of training examples as a case base. For new problems, the closest problem
or the set of n closest problems in the case base is determined and decisions
made accordingly. [51,101,108,110,117,151] use nearest-neighbour classifiers to
achieve this. Apart from the conceptual simplicity, such an approach is attractive
because it does not try to abstract from the examples in the training data. The
problems that Algorithm Selection techniques are applied to are usually complex
and factors that affect the performance are hard to understand. This makes it
hard to assess whether a learned abstract model is appropriate and what its
requirements and limitations are.

Explicitly-learned models try to identify the concepts that affect performance
for a given problem. This acquired knowledge can be made explicit to improve
the understanding of the researchers of the problem domain. There are sev-
eral Machine Learning techniques that facilitate this, as the learned models are
represented in a form that is easy to understand by humans. [20,22,60,146]
learn classification rules that guide the selector. [146] note that the decision
to use a classification rule leaner was not so much guided by the performance
of the approach, but the easy interpretability of the result. [36,92,107] learn
weights for decision rules to guide the selector towards the best algorithms.
[12,28,54,61,63,122] go one step further and learn decision trees. [63] again note
that the reason for choosing decision trees was not primarily the performance,
but the understandability of the result. [116] show the set of learned rules in the
paper to illustrate its compactness. Similarly, [54] show their final decision tree
in the paper.

Some approaches learn probabilistic models that take uncertainty and vari-
ability into account. [60] use a probabilistic model to learn control rules. The
probabilities for candidate rules being beneficial are evaluated and updated on a
training set until a threshold is reached. This methodology is used to avoid hav-
ing to evaluate candidate rules on larger training sets, which would show their
utility more clearly but be more expensive. [29] learn multivariate Bayesian deci-
sion rules. [23] learn a Bayesian classifier to predict the best algorithm after a
certain amount of time. [137] learn Bayesian models that incorporate collabora-
tive filtering. [32] learn decision rules using näıve Bayes classifiers. [90,113] learn

Algorithm Selection for Combinatorial Search Problems: A Survey 169

performance models based on Markov Decision Processes. [85] use statistical
relational learning to predict the ranking of the algorithms in the portfolio on
a particular problem. None of these approaches make explicit use of the uncer-
tainty attached to a decision though.

Other approaches include support vector machines [6,71], reinforcement
learning [7], neural networks [44], decision tree ensembles [71], ensembles of gen-
eral classification algorithms [87], boosting [12], hybrid approaches that com-
bine regression and classification [83], multinomial logistic regression [126], self-
organising maps [134] and clustering [81,102,136]. [127,138] compute schedules
for running the algorithms in the portfolio based on a statistical model of the
problem instance distribution and performance data for the algorithms. This is
not an exhaustive list, but focuses on the most prominent approaches and pub-
lications. Within a single family of approaches, such as decision trees, there are
further distinctions that are outside the scope of this chapter, such as the type
of decision tree inducer.

[6] discuss a technical issue related to the construction of per-portfolio perfor-
mance models. A particular algorithm often exhibits much better performance
in general than other algorithms on a particular instance distribution. Therefore,
the training data used to learn the performance model will be skewed towards
that algorithm. This can be a problem for Machine Learning, as always predict-
ing this best algorithm might have a very high accuracy already, making it very
hard to improve on. The authors mention two means of mitigating this problem.
The training set can be under-sampled, where examples where the best overall
algorithm performs best are deliberately omitted. Alternatively, the set can be
over-sampled by artificially increasing the number of examples where another
algorithm is better.

Per-Algorithm Models. A different approach is to learn performance models
for the individual algorithms in the portfolio. The predicted performance of
an algorithm on a problem can be compared to the predicted performance of
the other portfolio algorithms and the selector can proceed based on this. The
advantage of this approach is that it is easier to add and remove algorithms from
the portfolio – instead of having to retrain the model for the entire portfolio,
it suffices to train a model for the new algorithm or remove one of the trained
models. Most approaches only rely on the order of predictions being correct. It
does not matter if the prediction of the performance itself is wildly inaccurate
as long as it is correct relative to the other predictions.

This is the approach that is implicitly assumed in Rice’s framework. The
prediction is the performance mapping P (A, x) for an algorithm A ∈ A on a
problem x ∈ P. Models for each algorithm in the portfolio are used for example
by [2,46,72,100,159].

A common way of doing this is to use regression to directly predict the perfor-
mance of each algorithm. This is used by [64,72,95,123,159]. The performance
of the algorithms in the portfolio is evaluated on a set of training problems, and
a relationship between the characteristics of a problem and the performance of

170 L. Kotthoff

an algorithm derived. This relationship usually has the form of a simple formula
that is cheap to compute at runtime.

[130] on the other hand learn latent class models of unobserved variables to
capture relationships between solvers, problems and run durations. Based on
the predictions, the expected utility is computed and used to select an algo-
rithm. [129] surveys sampling methods to estimate the cost of solving constraint
problems. [148] models the behaviour of local search algorithms with Markov
chains.

Another approach is to build statistical models of an algorithm’s performance
based on past observations. [149] use Bayesian belief propagation to predict the
runtime of a particular algorithm on a particular problem. Bayesian inference is
used to determine the class of a problem and the closest case in the knowledge
base. A performance profile is extracted from that and used to estimate the
runtime. The authors also propose an alternative approach that uses neural nets.
[39,40] computes the expected gain for time bounds based on past success times.
The computed values are used to choose the algorithm and the time bound for
running it. [17] compare algorithm rankings based on different past performance
statistics. Similarly, [94] maintain a ranking based on past performance. [27]
propose a bandit problem model that governs the allocation of resources to
each algorithm in the portfolio. [147] also use a bandit model, but furthermore
evaluate a Q-learning approach, where in addition to bandit model rewards, the
states of the system are taken into account. [56,57,155] use the past performance
of algorithms to simulate the performance of different algorithm schedules and
use statistical tests to select one of the schedules.

Hierarchical Models. There are some approaches that combine several models
into a hierarchical performance model. There are two basic types of hierarchical
models. One type predicts additional properties of the problem that cannot be
measured directly or are not available without solving the problem. The other
type makes intermediate predictions that do not inform Algorithm Selection
directly, but rather the final predictions.

[156] use sparse multinomial logistic regression to predict whether a SAT
problem instance is satisfiable and, based on that prediction, use a logistic regres-
sion model to predict the runtime of each algorithm in the portfolio. [64] also
predict the satisfiability of a SAT instance and then choose an algorithm from
a portfolio. Both report that being able to distinguish between satisfiable and
unsatisfiable problems enables performance improvements. The satisfiability of
a problem is a property that needs to be predicted in order to be useful for Algo-
rithm Selection. If the property is computed (i.e. the problem is solved), there is
no need to perform Algorithm Selection any more.

[55] use classifiers to first decide on the level of consistency a constraint prop-
agator should achieve and then on the actual implementation of the propagator
that achieves the selected level of consistency. A different publication that uses
the same data set does not make this distinction however [87], suggesting that
the performance benefits are not significant in practice.

Algorithm Selection for Combinatorial Search Problems: A Survey 171

[74] proposes a hierarchical model that has more than two levels – at the top,
the decision is made whether to solve a given constraint problem as a constraint
problem or convert it to SAT. At the second level, if the decision to convert to
SAT has been made, the encoding for the transformation is chosen. At the third
level, the constraint or SAT solver is chosen.

Such hierarchical models are only applicable in a limited number of scenar-
ios, which explains the comparatively small amount of research into them. For
many application domains, only a single property needs to be predicted and can
be predicted without intermediate steps with sufficient accuracy. [83] proposes a
hierarchical approach that is domain-independent. He uses the performance pre-
dictions of regression models as input to a classifier that decides which algorithm
to choose and demonstrates performance improvements compared to selecting an
algorithm directly based on the predicted performance. The idea is very similar
to that of stacking in Machine Learning [152].

Selection of Model Learner. Apart from the different types of performance
models, there are different Machine Learning algorithms that can be used to learn
a particular kind of model. While most of the approaches mentioned here rely
on a single way of doing this, some of the research compares different methods.

[159] mention that, in addition to the chosen ridge regression for predicting
the runtime, they explored using lasso regression, support vector machines and
Gaussian processes. They chose ridge regression not because it provided the most
accurate predictions, but the best trade-off between accuracy and cost to make
the prediction. [149] propose an approach that uses neural networks in addition
to the Bayesian belief propagation approach they describe initially. [28] compare
different decision tree learners, a Bayesian classifier, a nearest neighbour app-
roach and a neural network. They chose the C4.5 decision tree inducer because
even though it may be outperformed by a neural network, the learned trees
are easily understandable by humans and may provide insight into the problem
domain. [95] compare several versions of linear and non-linear regression. [75]
report having explored support vector machine regression, multivariate adaptive
regression splines (MARS) and lasso regression before deciding to use the linear
regression approach of [95]. They also report experimental results with sequen-
tial Bayesian linear regression and Gaussian Process regression. [62,63] explore
using decision trees, näıve Bayes rules, Bayesian networks and meta-learning
techniques. They also chose the C4.5 decision tree inducer because it is one of
the top performers and creates models that are easy to understand and quick to
execute. [52] compare nearest neighbour classifiers, decision trees and statistical
models. They show that a nearest neighbour classifier outperforms all the other
approaches on their data sets.

[71] use decision tree ensembles and support vector machines. [12] investigate
alternating decision trees and various forms of boosting, while [117] use decision
trees, decision rules, logistic regression and nearest neighbour approaches. They
do not explicitly choose one of these methods in the paper, but their Algorithm
Selection system AQME uses a nearest neighbour classifier by default. [123] use

172 L. Kotthoff

32 different Machine Learning algorithms to predict the runtime of algorithms
and probability of success. They attempt to provide explanations for the perfor-
mance of the methods they have chosen in [124]. [130] compare the performance
of different latent class models. [55] evaluate the performance of 19 different
Machine Learning classifiers on an Algorithm Selection problem in constraint
programming. The investigation is extended to include more Machine Learning
algorithms as well as different performance models and more problem domains in
[85]. They identify several Machine Learning algorithms that show particularly
good performance across different problem domains, namely linear regression
and alternating decision trees. They do not consider issues such as how easy the
models are to understand or how efficient they are to compute.

Only [52,55,63,71,85,117,130] quantify the differences in performance of the
methods they used. The other comparisons give only qualitative evidence. Not
all comparisons choose one of the approaches over the other or provide sufficient
detail to enable the reader to do so. In cases where a particular technique is
chosen, performance is often not the only selection criterion. In particular, the
ability to understand a learned model plays a significant role.

4.2 Types of Predictions

The way of creating the performance model of a portfolio or its algorithms is
not the only choice researchers face. In addition, there are different predictions
the performance model can make to inform the decision of the selector of a
subset of the portfolio algorithms. The type of decision is closely related to the
learned performance model however. The prediction can be a single categorical
value – the algorithm to choose. This type of prediction is usually the output of
per-portfolio models and used for example in [28,54,61,108,117]. The advantage
of this simple prediction is that it determines the choice of algorithm without
the need to compare different predictions or derive further quantities. One of its
biggest disadvantages however is that there is no flexibility in the way the system
runs or even the ability to monitor the execution for unexpected behaviour.

A different approach is to predict the runtime of the individual algorithms in
the portfolio. This requires per-algorithm models. For example [70,113,130] do
this. [159] do not predict the runtime itself, but the logarithm of the runtime.
They note that,

“In our experience, we have found this log transformation of runtime to
be very important due to the large variation in runtimes for hard combi-
natorial problems.”

[85] also compare predicting the runtime itself and the log thereof, but find no
significant difference between the two. [83] however also reports better results
with the logarithm.

[2] estimate the runtime by proxy by predicting the number of constraint
checks. [100] estimate the runtime by predicting the number of search nodes to
explore and the time per node. [90] talk of the cost of selecting a particular

Algorithm Selection for Combinatorial Search Problems: A Survey 173

algorithm, which is equal to the time it takes to solve the problem. [107] uses
the utility of a choice to make his decision. The utility is an abstract measure of
the “goodness” of an algorithm that is adapted dynamically. [142] use the value
of information of selecting an algorithm, defined as the amount of time saved by
making this choice. [160] predict the penalized average runtime score, a measure
that combines runtime with possible timeouts. This approach aims to provide
more realistic performance predictions when runtimes are capped.

More complex predictions can be made, too. In most cases, these are made
by combining simple predictions such as the runtime performance. [17,94,135]
produce rankings of the portfolio algorithms. [85] use statistical relational learn-
ing to directly predict the ranking instead of deriving it from other predictions.
[46,49,72,110,122] predict resource allocations for the algorithms in the port-
folios. [14,52,99] consider selecting the most appropriate formulation of a con-
straint problem. [8,19,131,151] select algorithms and data structures to be used
in a software system.

Some types of predictions require online approaches that make decisions dur-
ing search. [7,15,23,125] predict when to switch the algorithm used to solve a
problem. [70] predict whether to restart an algorithm. [90,91] predict the cost
to solve a sub-problem. However, most online approaches make predictions that
can also be used in offline settings, such as the best algorithm to proceed with.

The primary selection criteria and prediction for [135] and [94] is the quality
of the solution an algorithm produces rather than the time it takes the algorithm
to find that solution. In addition to the primary selection criteria, a number
of approaches predict secondary criteria. [40,72,123] predict the probability of
success for each algorithm. [149] predict the quality of a solution.

In Rice’s model, the prediction of an Algorithm Selection system is the per-
formance p ∈ Rn of an algorithm. This abstract notion does not rely on time
and is applicable to many approaches. It does not fit techniques that predict
the portfolio algorithm to choose or more complex measures such as a schedule
however. As Rice developed his approach long before the advent of algorithm
portfolios, it should not be surprising that the notion of the performance of
individual algorithms as opposed to sets of algorithms dominates. The model is
sufficiently general to be able to accommodate algorithm portfolios with only
minor modifications to the overall framework however.

5 Features

The different types of performance models described in the previous sections
usually use features to inform their predictions. Features are an integral part
of systems that do Machine Learning. They characterise the inputs, such as
the problem to be solved or the algorithm employed to solve it, and facilitate
learning the relationship between the inputs and the outputs, such as the time
it will take the algorithm to solve the problem. In Rice’s model, features f(x)
for a particular problem x are extracted from the feature space F .

The selection of the most suitable features is an important part of the design
of Algorithm Selection systems. There are different types of features researchers

174 L. Kotthoff

can use and different ways of computing these. They can be categorised according
to two main criteria.

First, they can be categorised according to how much background knowledge
a researcher needs to have to be able to use them. Features that require no or very
little knowledge of the application domain are usually very general and can be
applied to new Algorithm Selection problems with little or no modification. Fea-
tures that are specific to a domain on the other hand may require the researcher
building the Algorithm Selection system to have a thorough understanding of
the domain. These features usually cannot be applied to other domains, as they
may be non-existent or uninformative in different contexts.

The second way of distinguishing different classes of features is according to
when and how they are computed. Features can be computed statically, i.e. before
the search process starts, or dynamically, i.e. during search. These two categories
roughly align with the offline and online approaches to portfolio problem solving
described in Sect. 3.

[132] present a survey that focuses on what features can be used for Algorithm
Selection. This chapter categorises the features used in the literature.

5.1 Low and High-Knowledge Features

In some cases, researchers use a large number of features that are specific to
the particular problem domain they are interested in, but there are also publi-
cations that only use a single, general feature – the performance of a particular
algorithm on past problems. [27,49,113,130,138], to name but a few examples,
use this approach to build statistical performance models of the algorithms in
their portfolios. The underlying assumption is that all problems are similar with
respect to the relative performance of the algorithms in the portfolio – the algo-
rithm that has done best in the past has the highest chance of performing best
in the future.

Approaches that build runtime distribution models for the portfolio algo-
rithms usually do not select a single algorithm for solving a problem, but rather
use the distributions to compute resource allocations for the individual portfo-
lio algorithms. The time allocated to each algorithm is proportional to its past
performance.

Other sources of features that are not specific to a particular problem domain
are more fine-grained measures of past performance or measures that characterise
the behaviour of an algorithm during search. [93] for example determines whether
a search step performed by a particular algorithm is good, i.e. leading towards a
solution, or bad, i.e. straying from the path to a solution if the solution is known
or revisiting an earlier search state if the solution is not known. [57,59] use the
runtime distributions of algorithms over the size of a problem, as measured by
the number of backtracks. [40] uses the past success times of an algorithm as
candidate time bounds on new problems. [17] do not consider the runtime, but
the error rate of algorithms. [56] use both computation time and solution quality.

[11,23,24] evaluate the performance also during search. They explicitly focus
on features that do not require a lot of domain knowledge. [11] note that,

Algorithm Selection for Combinatorial Search Problems: A Survey 175

“While existing algorithm selection techniques have shown impressive
results, their knowledge-intensive nature means that domain and algorithm
expertise is necessary to develop the models. The overall requirement for
expertise has not been reduced: it has been shifted from algorithm selection
to predictive model building.”

They do, like several other approaches, assume anytime algorithms – after search
has started, the algorithm is able to return the best solution found so far at any
time. The features are based on how search progresses and how the quality of
solutions is improved by algorithms. While this does not require any knowledge
about the application domain, it is not applicable in cases when only a single
solution is sought.

Most approaches learn models for the performance on particular problems
and do not use past performance as a feature, but to inform the prediction to
be made. Considering problem features facilitates a much more nuanced app-
roach than a broad-brush general performance model. This is the classic super-
vised Machine Learning approach – given the correct prediction derived from
the behaviour on a set of training problems, learn a model that enables to make
this prediction.

The features that are considered to learn the model are specific to the prob-
lem domain or even a subset of the problem domain to varying extents. For
combinatorial search problems, the most commonly used basic features include,

– the number of variables,
– properties of the variable domains, i.e. the list of possible assignments,
– the number of clauses in SAT, the number of constraints in constraint prob-

lems, the number of goals in planning,
– the number of clauses/constraints/goals of a particular type (for example the

number of alldifferent constraints, [55]),
– ratios of several of the above features and summary statistics.

Such features are used for example in [72,110,117,149,159].
Other sources of features include the generator that produced the problem to

be solved [70], the runtime environment [7], structures derived from the problem
such as the primal graph of a constraint problem [51,54,61], specific parts of
the problem model such as variables [35], the algorithms in the portfolio them-
selves [71] or the domain of the problem to be solved [22,56] rely on the problem
domain as the only problem-specific feature and select based on past performance
data for the particular domain. [10] consider not only the values of properties
of a problem, but the changes of those values while the problem is being solved.
[131] consider features of abstract representations of the algorithms. [163,164]
use features that represent technical details of the behaviour of an algorithm
on a problem, such as the type of computations done in a loop. [74] consider
features not only of the instance being solved, but also of alternative encodings
of the same instance.

Most approaches use features that are applicable to all problems of the appli-
cation domain they are considering. However, [70] use features that are not only

176 L. Kotthoff

specific to their application domain, but also to the specific family of problems
they are tackling, such as the variance of properties of variables in different
columns of Latin squares. They note that,

“. . . the inclusion of such domain-specific features was important in learn-
ing strongly predictive models.”

5.2 Static and Dynamic Features

In most cases, the approaches that use a large number of domain-specific fea-
tures compute them offline, i.e. before the solution process starts (cf. Sect. 3.2).
Examples of publications that only use such static features are [61,95,117].

An implication of using static features is that the decisions of the Algorithm
Selection system are only informed by the performance of the algorithms on past
problems. Only dynamic features allow to take the performance on the current
problem into account. This has the advantage that remedial actions can be taken
if the problem is unlike anything seen previously or the predictions are wildly
inaccurate for another reason.

A more flexible approach than to rely purely on static features is to incor-
porate features that can be determined statically, but try to estimate the per-
formance on the current problem. Such features are computed by probing the
search space. This approach relies on the performance probes being sufficiently
representative of the entire problem and sufficiently equal across the different
evaluated algorithms. If an algorithm is evaluated on a part of the search space
that is much easier or harder than the rest, a misleading impression of its true
performance may result.

Examples of systems that combine static features of the problem to be solved
with features derived from probing the search space are [54,110,159]. There are
also approaches that use only probing features. We term this semi-static feature
computation because it happens before the actual solving of the problem starts,
but parts of the search space are explored during feature extraction. Examples
include [2,11,100].

The idea of probing the search space is related to landmarking [116], where
the performance of a set of initial algorithms (the landmarkers) is linked to the
performance of the set of algorithms to select from. The main consideration when
using this technique is to select landmarkers that are computationally cheap.
Therefore, they are usually versions of the portfolio algorithms that have either
been simplified or are run only on a subset of the data the selected algorithm
will run on.

While the work done during probing explores part of the search space and
could be used to speed search up subsequently by avoiding to revisit known
areas, almost no research has been done into this. [11] run all algorithms in
their (small) portfolio on a problem for a fixed time and select the one that
has made the best progress. The chosen algorithm resumes its earlier work, but
no attempt is made to avoid duplicating work done by the other algorithms.

Algorithm Selection for Combinatorial Search Problems: A Survey 177

To the best of our knowledge, there exist no systems that attempt to avoid
redoing work performed by a different algorithm during the probing stage.

For successful systems, the main source of performance improvements is the
selection of the right algorithm using the features computed through probing.
As the time to compute the features is usually small compared to the runtime
improvements achieved by Algorithm Selection, using the results of probing dur-
ing search to avoid duplicating work does not have the potential to achieve large
additional performance improvements.

The third way of computing features is to do so online, i.e. while search is
taking place. These dynamic features are computed by an execution monitor
that adapts or changes the algorithm during search based on its performance.
Approaches that rely purely on dynamic features are for example [15,107,136].

There are many different features that can be computed during search.
[105] determines how closely a generated heuristic approximates a generic target
heuristic by checking the heuristic choices at random points during search. He
selects the one with the closest match. Similarly, [107] learn how to select heuris-
tics during the search process based on their performance. [7] use an agent-based
model that rewards good actions and punishes bad actions based on computa-
tion time. [89] follow a very similar approach that also takes success or failure
into account.

[23,24] monitor the solution quality during search. They decide whether
to switch the current algorithm based on this by changing the allocation of
resources. [150] monitor a feature that is specific to their application domain,
the distribution of clause weights in SAT, during search and use it to decide
whether to switch a heuristic. [136] monitors propagation events in a constraint
solver to a similar aim. [25] evaluate the performance of candidate algorithms
in terms of number of calls to a specific high-level procedure. They note that in
contrast to using the runtime, their approach is machine-independent.

5.3 Feature Selection

The features used for learning the Algorithm Selection model are crucial to its
success. Uninformative features might prevent the model learner from recognis-
ing the real relation between problem and performance or the most important
feature might be missing. Many researchers have recognised this problem.

[72] manually select the most important features. They furthermore take the
unique approach of learning one model per feature for predicting the probability
of success and combine the predictions of the models. [95,159] perform automatic
feature selection by greedily adding features to an initially empty set. In addition
to the basic features, they also use the pairwise products of the features. [117]
also perform automatic greedy feature selection, but do not add the pairwise
products. [85] automatically select the most important subset of the original set
of features, but conclude that in practice the performance improvement com-
pared to using all features is not significant. [151] use genetic algorithms to
determine the importance of the individual features. [115] evaluate subsets of
the features they use and learn weights for each of them. [124] consider using a

178 L. Kotthoff

single feature and automatic selection of a subset of all features. [63,88] also use
techniques for automatically determining the most predictive subset of features.
[83] compares the performance of ten different sets of features.

It is not only important to use informative features, but also features that are
cheap to compute. If the cost of computing the features and making the decision
is too high, the performance improvement from selecting the best algorithm
might be eroded. [160] predict the feature computation time for a given problem
and fall back to a default selection if it is too high to avoid this problem. They also
limit the computation time for the most expensive features as well as the total
time allowed to compute features. [13] consider the computational complexity
of calculating problem features when selecting the features to use. They show
that while achieving comparable accuracy to the full set of features, the subset
of features selected by their method is significantly cheaper to compute. [54]
explicitly exclude features that are expensive to compute.

6 Application Domains

The approaches for solving the Algorithm Selection Problem that have been
surveyed here are usually not specific to a particular application domain, within
combinatorial search problems or otherwise. Nevertheless this survey would not
be complete without a brief exposition of the various contexts in which Algorithm
Selection techniques have been applied.

Over the years, Algorithm Selection systems have been used in many differ-
ent application domains. These range from Mathematics, e.g. differential equa-
tions [82,149], linear algebra [29] and linear systems [12,89], to the selection of
algorithms and data structures in software design [19,21,131,151]. A very com-
mon application domain are combinatorial search problems such as SAT [91,
130,159], constraints [36,105,110], Mixed Integer Programming [161], Quan-
tified Boolean Formulae [118,137], planning [22,38,72], scheduling [10,11,27],
combinatorial auctions [46,51,95], Answer Set Programming [53,67], the Trav-
elling Salesperson Problem [41,86], graph colouring [106] and general search
algorithms [28,93,100].

Other domains include Machine Learning [94,135], the most probable
explanation problem [63], parallel reduction algorithms [163,164] and simula-
tion [37,147]. It should be noted that a significant part of Machine Learning
research is concerned with developing Algorithm Selection techniques; the pub-
lications listed in this paragraph are the most relevant that use the specific
techniques and framework surveyed here.

Some publications consider more than one application domain. [137] choose
the best algorithm for Quantified Boolean Formulae and combinatorial auctions.
[2,88] look at SAT and constraints. [59] consider SAT and Mixed Integer Pro-
gramming. In addition to these two domains, [81] also investigate set covering
problems. [140] apply their approach to SAT, Integer Programming and plan-
ning. [48,83,85] compare the performance across Algorithm Selection problems
from constraints, Quantified Boolean Formulae and SAT.

Algorithm Selection for Combinatorial Search Problems: A Survey 179

In most cases, researchers take some steps to adapt their approaches to the
application domain. This is usually done by using domain-specific features, such
as the number of constraints and variables in constraint programming. In prin-
ciple, this is not a limitation of the proposed techniques as those features can be
exchanged for ones that are applicable in other application domains. While the
overall approach remains valid, the question of whether the performance would
be acceptable arises. [85] investigate how specific techniques perform across sev-
eral domains with the aim of selecting the one with the best overall performance.
There are approaches that have been tailored to a specific application domain to
such an extent that the technique cannot be used for other applications. This is
the case for example in the case of hierarchical models for SAT [64,156].

7 Summary

Over the years, there have been many approaches to solving the Algorithm Selec-
tion Problem. Especially in Artificial Intelligence and for combinatorial search
problems, researchers have recognised that using Algorithm Selection techniques
can provide significant performance improvements with relatively little effort.
Most of the time, the approaches involve some kind of Machine Learning that
attempts to learn the relation between problems and the performance of algo-
rithms automatically. This is not a surprise, as the relationship between an
algorithm and its performance is often complex and hard to describe formally.
In many cases, even the designer of an algorithm does not have a general model
of its performance.

Despite the theoretical difficulty of Algorithm Selection, dozens of systems
have demonstrated that it can be done in practice with great success. In some
sense, this mirrors achievements in other areas of Artificial Intelligence. Satis-
fiability is formally a problem that cannot be solved efficiently, yet researchers
have come up with ways of solving very large instances of satisfiability problems
with very few resources. Similarly, some Algorithm Selection systems have come
very close to always choosing the best algorithm.

This survey presented an overview of the Algorithm Selection research that
has been done to date with a focus on combinatorial search problems. A cate-
gorisation of the different approaches with respect to fundamental criteria that
determine Algorithm Selection systems in practice was introduced. This categori-
sation abstracts from many of the low level details and additional considerations
that are presented in most publications to give a clear view of the underlying
principles. We furthermore gave details of the many different ways that can be
used to tackle Algorithm Selection and the many techniques that have been used
to solve it in practice.

On a high level, the approaches surveyed here can be summarised as follows.

– Algorithms are chosen from portfolios, which can be statically constructed
or dynamically augmented with newly constructed algorithms as problems
are being solved. Portfolios can be engineered such that the algorithms in
it complement each other (i.e. are as diverse as possible), by automatically

180 L. Kotthoff

tuning algorithms on a set of training problems or by using a set of algorithms
from the literature or competitions. Dynamic portfolios can be composed of
algorithmic building blocks that are combined into complete algorithms by
the selection system. Compared to tuning the parameters of algorithms, the
added difficulty is that not all combinations of building blocks may be valid.

– A single algorithm can be selected from a portfolio to solve a problem to
completion or a set of larger size can be selected that is run in parallel or
according to a schedule. Another approach is to select a single algorithm to
start with and then decide if and when to switch to another algorithm. Some
approaches always select the entire portfolio and vary the resource allocation
to the algorithms.

– Algorithm Selection can happen offline, without any interaction with the Algo-
rithm Selection system after solving starts, or online. Some approaches mon-
itor the performance of the selected algorithm and take action if it does not
conform to the expectations or some other criteria. Others repeat the selection
process at specific points during the search (e.g. every node in the search tree),
skew a computed schedule towards the best performers or decide whether to
restart stochastic algorithms.

– Performance can be modelled and predicted either for a portfolio as a whole
(i.e. the prediction is the best algorithm) or for each algorithm independently
(i.e. the prediction is the performance). A few approaches use hierarchical
models that make a series of predictions to facilitate selection. Some publi-
cations make secondary predictions (e.g. the quality of a solution) that are
taken into account when selecting the most suitable algorithm, while others
make predictions that the desired output is derived from instead of predicting
it directly. The performance models are usually learned automatically using
Machine Learning, but a few approaches use hand-crafted models and rules.
Models can be learned from separate training data or incrementally while a
problem is being solved.

– Learning and using performance models is facilitated by features of the
algorithms, problems or runtime environment. Features can be domain-
independent or specific to a particular set of problems. Similarly, features
can be computed by inspecting the problem before solving or while it is being
solved. The use of feature selection techniques that automatically determine
the most important and relevant features is quite common.

Given the amount of relevant literature, it is infeasible to discuss every app-
roach in detail. The scope of this survey is necessarily limited to the detailed
description of high-level details and a summary overview of low-level traits. Work
in related areas that is not immediately relevant to Algorithm Selection for com-
binatorial search problems has been pointed to, but cannot be explored in more
detail.

The proliferation of different approaches, application domains and data sets
has stimulated the creation of a common data format and benchmark repository
for algorithm selection problems, http://aslib.net. It provides a starting point
for researchers wishing to compare their new approach to existing approaches.

http://aslib.net

Algorithm Selection for Combinatorial Search Problems: A Survey 181

A tabular summary of the literature organised according to the criteria intro-
duced here can be found at http://larskotthoff.github.io/assurvey/. This table
is updated continuously.

Acknowledgements. Ian Miguel and Ian Gent provided valuable feedback that
helped shape this chapter. We also thank the anonymous reviewers of a previous ver-
sion of this chapter whose detailed comments helped to greatly improve it. This work
was supported by an EPSRC doctoral prize and EU FP7 FET project ICON. A shorter
version of this chapter has appeared in AI Magazine [84].

References

1. Aha, D.W.: Generalizing from case studies: a case study. In: Proceedings of the
9th International Workshop on Machine Learning, pp. 1–10. Morgan Kaufmann
Publishers Inc, San Francisco (1992)

2. Allen, J.A., Minton, S.: Selecting the right heuristic algorithm: runtime perfor-
mance predictors. In: McCalla, G. (ed.) AI 1996. LNCS, vol. 1081, pp. 41–53.
Springer, Heidelberg (1996). doi:10.1007/3-540-61291-2 40

3. Amadini, R., Gabbrielli, M., Mauro, J.: SUNNY: a lazy portfolio approach for
constraint solving. TPLP 14(4–5), 509–524 (2014)

4. Ansel, J., Chan, C., Wong, Y.L., Olszewski, M., Zhao, Q., Edelman, A., Amaras-
inghe, S.: PetaBricks: a language and compiler for algorithmic choice. SIGPLAN
Not. 44(6), 38–49 (2009)

5. Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm
for the automatic configuration of algorithms. In: Gent, I.P. (ed.) CP 2009.
LNCS, vol. 5732, pp. 142–157. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-04244-7 14

6. Arbelaez, A., Hamadi, Y., Sebag, M.: Online heuristic selection in constraint
programming. In: Symposium on Combinatorial Search (2009)

7. Armstrong, W., Christen, P., McCreath, E., Rendell, A.P.: Dynamic algorithm
selection using reinforcement learning. In: International Workshop on Integrating
AI and Data Mining, pp. 18–25, December 2006

8. Balasubramaniam, D., Gent, I.P., Jefferson, C., Kotthoff, L., Miguel, I., Nightin-
gale, P.: An automated approach to generating efficient constraint solvers. In:
34th International Conference on Software Engineering, pp. 661–671, June 2012

9. Bauer, E., Kohavi, R.: An empirical comparison of voting classification algo-
rithms: bagging, boosting, and variants. Mach. Learn. 36(1–2), 105–139 (1999)

10. Beck, J.C., Fox, M.S.: Dynamic problem structure analysis as a basis for
constraint-directed scheduling heuristics. Artif. Intell. 117(1), 31–81 (2000)

11. Beck, J.C., Freuder, E.C.: Simple rules for low-knowledge algorithm selection.
In: Régin, J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp. 50–64.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-24664-0 4

12. Bhowmick, S., Eijkhout, V., Freund, Y., Fuentes, E., Keyes, D.: Application of
machine learning in selecting sparse linear solvers. Technical report, Columbia
University (2006)

13. Bhowmick, S., Toth, B., Raghavan, P.: Towards low-cost, high-accuracy classifiers
for linear solver selection. In: Allen, G., Nabrzyski, J., Seidel, E., Albada, G.D.,
Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2009. LNCS, vol. 5544, pp. 463–472.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-01970-8 45

http://larskotthoff.github.io/assurvey/
http://dx.doi.org/10.1007/3-540-61291-2_40
http://dx.doi.org/10.1007/978-3-642-04244-7_14
http://dx.doi.org/10.1007/978-3-642-04244-7_14
http://dx.doi.org/10.1007/978-3-540-24664-0_4
http://dx.doi.org/10.1007/978-3-642-01970-8_45

182 L. Kotthoff

14. Borrett, J.E., Tsang, E.P.K.: A context for constraint satisfaction problem for-
mulation selection. Constraints 6(4), 299–327 (2001)

15. Borrett, J.E., Tsang, E.P.K., Walsh, N.R.: Adaptive constraint satisfaction: The
quickest first principle. In: ECAI, pp. 160–164 (1996)

16. Bougeret, M., Dutot, P., Goldman, A., Ngoko, Y., Trystram, D.: Combining multi-
ple heuristics on discrete resources. In: IEEE International Symposium on Parallel
and Distributed Processing, pp. 1–8. IEEE Computer Society, Washington, DC
(2009)

17. Brazdil, P.B., Soares, C.: A comparison of ranking methods for classification
algorithm selection. In: López de Mántaras, R., Plaza, E. (eds.) ECML 2000.
LNCS (LNAI), vol. 1810, pp. 63–75. Springer, Heidelberg (2000). doi:10.1007/
3-540-45164-1 8

18. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)
19. Brewer, E.A.: High-level optimization via automated statistical modeling. In: Pro-

ceedings of the 5th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming PPOPP 1995, pp. 80–91. ACM, New York (1995)

20. Brodley, C.E.: Addressing the selective superiority problem: automatic algo-
rithm/model class selection. In: ICML, pp. 17–24 (1993)

21. Cahill, E.: Knowledge-based algorithm construction for real-world engineering
PDEs. Math. Comput. Simul. 36(4–6), 389–400 (1994)

22. Carbonell, J., Etzioni, O., Gil, Y., Joseph, R., Knoblock, C., Minton, S., Veloso,
M.: PRODIGY: an integrated architecture for planning and learning. SIGART
Bull. 2, 51–55 (1991)

23. Carchrae, T., Beck, J.C.: Low-knowledge algorithm control. In: AAAI, pp. 49–54
(2004)

24. Carchrae, T., Beck, J.C.: Applying machine learning to Low-knowledge control
of optimization algorithms. Comput. Intell. 21(4), 372–387 (2005)

25. Caseau, Y., Laburthe, F., Silverstein, G.: A meta-heuristic factory for vehicle
routing problems. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 144–158.
Springer, Heidelberg (1999). doi:10.1007/978-3-540-48085-3 11

26. Cheeseman, P., Kanefsky, B., Taylor, W.M.: Where the really hard problems are.
In: 12th International Joint Conference on Artificial Intelligence, pp. 331–337.
Morgan Kaufmann Publishers Inc, San Francisco, CA, USA (1991)

27. Cicirello, V.A., Smith, S.F.: The max k-armed bandit: a new model of explo-
ration applied to search heuristic selection. In: Proceedings of the 20th National
Conference on Artificial Intelligence, pp. 1355–1361. AAAI Press (2005)

28. Cook, D.J., Varnell, R.C.: Maximizing the benefits of parallel search using
machine learning. In: Proceedings of the 14th National Conference on Artificial
Intelligence, pp. 559–564. AAAI Press (1997)

29. Demmel, J., Dongarra, J., Eijkhout, V., Fuentes, E., Petitet, A., Vuduc, R., Wha-
ley, R.C., Yelick, K.: Self-adapting linear algebra algorithms and software. Proc.
IEEE 93(2), 293–312 (2005)

30. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F.
(eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000). doi:10.
1007/3-540-45014-9 1

31. Domingos, P.: How to get a free lunch: a simple cost model for machine learning
applications. In: AAAI98/ICML98 Workshop on the Methodology of Applying
Machine Learning, pp. 1–7. AAAI Press (1998)

32. Domshlak, C., Karpas, E., Markovitch, S.: To max or not to max: online learning
for speeding up optimal planning. In: AAAI (2010)

http://dx.doi.org/10.1007/3-540-45164-1_8
http://dx.doi.org/10.1007/3-540-45164-1_8
http://dx.doi.org/10.1007/978-3-540-48085-3_11
http://dx.doi.org/10.1007/3-540-45014-9_1
http://dx.doi.org/10.1007/3-540-45014-9_1

Algorithm Selection for Combinatorial Search Problems: A Survey 183

33. Elsayed, S.A.M., Michel, L.: Synthesis of search algorithms from high-level CP
models. In: Proceedings of the 9th International Workshop on Constraint Mod-
elling and Reformulation, September 2010

34. Elsayed, S.A.M., Michel, L.: Synthesis of search algorithms from high-level CP
models. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 256–270. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-23786-7 21

35. Epstein, S.L., Freuder, E.C.: Collaborative learning for constraint solving. In:
Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 46–60. Springer, Heidelberg (2001).
doi:10.1007/3-540-45578-7 4

36. Epstein, S.L., Freuder, E.C., Wallace, R., Morozov, A., Samuels, B.: The adaptive
constraint engine. In: Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 525–540.
Springer, Heidelberg (2002). doi:10.1007/3-540-46135-3 35

37. Ewald, R., Schulz, R., Uhrmacher, A.M.: Selecting simulation algorithm portfo-
lios by genetic algorithms. In: IEEE Workshop on Principles of Advanced and
Distributed Simulation PADS 2010, IEEE Computer Society, Washington, DC
(2010)

38. Fawcett, C., Vallati, M., Hutter, F., Hoffmann, J., Hoos, H., Leyton-Brown, K.:
Improved features for runtime prediction of domain-independent planners. In:
ICAPS (2014)

39. Fink, E.: Statistical selection among problem-solving methods. Technical report
CMU-CS-97-101. Carnegie Mellon University (1997)

40. Fink, E.: How to solve it automatically: selection among problem-solving meth-
ods. In: Proceedings of the 4th International Conference on Artificial Intelligence
Planning Systems, pp. 128–136. AAAI Press (1998)

41. Fukunaga, A.S.: Genetic algorithm portfolios. IEEE Congr. Evol. Comput. 2,
1304–1311 (2000)

42. Fukunaga, A.S.: Automated discovery of composite SAT variable-selection heuris-
tics. In: 18th National Conference on Artificial Intelligence, pp. 641–648. American
Association for Artificial Intelligence, Menlo Park (2002)

43. Fukunaga, A.S.: Automated discovery of local search heuristics for satisfiability
testing. Evol. Comput. 16, 31–61 (2008)

44. Gagliolo, M., Schmidhuber, J.: A neural network model for inter-problem adaptive
online time allocation. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.)
ICANN 2005. LNCS, vol. 3697, pp. 7–12. Springer, Heidelberg (2005). doi:10.
1007/11550907 2

45. Gagliolo, M., Schmidhuber, J.: Impact of censored sampling on the performance of
restart strategies. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 167–181.
Springer, Heidelberg (2006). doi:10.1007/11889205 14

46. Gagliolo, M., Schmidhuber, J.: Learning dynamic algorithm portfolios. Ann.
Math. Artif. Intell. 47(3–4), 295–328 (2006)

47. Gagliolo, M., Schmidhuber, J.: Towards distributed algorithm portfolios. In: Cor-
chado, J.M., Rodŕıguez, S., Llinas, J., Molina, J.M. (eds.) Advances in Soft Com-
puting. AINSC, vol. 50, pp. 634–643. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-85863-8 75

48. Gagliolo, M., Schmidhuber, J.: Algorithm portfolio selection as a bandit problem
with unbounded losses. Ann. Math. Artif. Intell. 61(2), 49–86 (2011)

49. Gagliolo, M., Zhumatiy, V., Schmidhuber, J.: Adaptive online time allocation to
search algorithms. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D.
(eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 134–143. Springer, Heidelberg
(2004). doi:10.1007/978-3-540-30115-8 15

http://dx.doi.org/10.1007/978-3-642-23786-7_21
http://dx.doi.org/10.1007/3-540-45578-7_4
http://dx.doi.org/10.1007/3-540-46135-3_35
http://dx.doi.org/10.1007/11550907_2
http://dx.doi.org/10.1007/11550907_2
http://dx.doi.org/10.1007/11889205_14
http://dx.doi.org/10.1007/978-3-540-85863-8_75
http://dx.doi.org/10.1007/978-3-540-85863-8_75
http://dx.doi.org/10.1007/978-3-540-30115-8_15

184 L. Kotthoff

50. Garrido, P., Riff, M.: DVRP: a hard dynamic combinatorial optimisation problem
tackled by an evolutionary hyper-heuristic. J. Heuristics 16, 795–834 (2010)

51. Gebruers, C., Guerri, A., Hnich, B., Milano, M.: Making choices using structure
at the instance level within a case based reasoning framework. In: CPAIOR, pp.
380–386 (2004)

52. Gebruers, C., Hnich, B., Bridge, D., Freuder, E.: Using CBR to select solution
strategies in constraint programming. In: Proceedings of ICCBR 2005, pp. 222–
236 (2005)

53. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T., Schneider, M.T., Ziller, S.:
A portfolio solver for answer set programming: preliminary report. In: Delgrande,
J.P., Faber, W. (eds.) LPNMR 2011. LNCS (LNAI), vol. 6645, pp. 352–357.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-20895-9 40

54. Gent, I., Jefferson, C., Kotthoff, L., Miguel, I., Moore, N., Nightingale, P., Petrie,
K.: Learning when to use lazy learning in constraint solving. In: 19th European
Conference on Artificial Intelligence, pp. 873–878, August 2010

55. Gent, I., Kotthoff, L., Miguel, I., Nightingale, P.: Machine learning for constraint
solver design - a case study for the alldifferent constraint. In: 3rd Workshop on
Techniques for implementing Constraint Programming Systems (TRICS), pp. 13–
25 (2010)

56. Gerevini, A.E., Saetti, A., Vallati, M.: An automatically configurable portfolio-
based planner with macro-actions: PbP. In: Proceedings of the 19th International
Conference on Automated Planning and Scheduling, pp. 350–353 (2009)

57. Gomes, C.P., Selman, B.: Algorithm portfolio design: theory vs. practice. In: UAI,
pp. 190–197 (1997)

58. Gomes, C.P., Selman, B.: Practical aspects of algorithm portfolio design. In: Pro-
ceedings of 3rd ILOG International Users Meeting (1997)

59. Gomes, C.P., Selman, B.: Algorithm portfolios. Artif. Intell. 126(1–2), 43–62
(2001)

60. Gratch, J., DeJong, G.: COMPOSER: a probabilistic solution to the utility prob-
lem in speed-up learning. In: AAAI, pp. 235–240 (1992)

61. Guerri, A., Milano, M.: Learning techniques for automatic algorithm portfolio
selection. In: ECAI, pp. 475–479 (2004)

62. Guo, H.: Algorithm selection for sorting and probabilistic inference: a machine
learning-based approach. Ph.D. thesis, Kansas State University (2003)

63. Guo, H., Hsu, W.H.: A learning-based algorithm selection meta-reasoner for
the real-time MPE problem. In: Webb, G.I., Yu, X. (eds.) AI 2004. LNCS
(LNAI), vol. 3339, pp. 307–318. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-30549-1 28

64. Haim, S., Walsh, T.: Restart strategy selection using machine learning tech-
niques. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 312–325. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-02777-2 30

65. Hogg, T., Huberman, B.A., Williams, C.P.: Phase transitions and the search prob-
lem. Artif. Intell. 81(1–2), 1–15 (1996)

66. Hong, L., Page, S.E.: Groups of diverse problem solvers can outperform groups of
high-ability problem solvers. Proc. Natl. Acad. Sci. U.S.A. 101(46), 16385–16389
(2004)

67. Hoos, H., Lindauer, M., Schaub, T.: claspfolio 2: Advances in algorithm selection
for answer set programming. TPLP 14(4–5), 569–585 (2014)

68. Hoos, H.H.: Programming by optimization. Commun. ACM 55(2), 70–80 (2012)

http://dx.doi.org/10.1007/978-3-642-20895-9_40
http://dx.doi.org/10.1007/978-3-540-30549-1_28
http://dx.doi.org/10.1007/978-3-540-30549-1_28
http://dx.doi.org/10.1007/978-3-642-02777-2_30

Algorithm Selection for Combinatorial Search Problems: A Survey 185

69. Hoos, H.H., Kaminski, R., Lindauer, M., Schaub, T.: aspeed: Solver scheduling
via answer set programming. Theory Pract. Logic Program. FirstView 15, 1–26
(2014)

70. Horvitz, E., Ruan, Y., Gomes, C.P., Kautz, H.A., Selman, B., Chickering, D.M.:
A Bayesian approach to tackling hard computational problems. In: Proceedings of
the 17th Conference in Uncertainty in Artificial Intelligence, pp. 235–244. Morgan
Kaufmann Publishers Inc., San Francisco (2001)

71. Hough, P.D., Williams, P.J.: Modern machine learning for automatic optimization
algorithm selection. In: Proceedings of the INFORMS Artificial Intelligence and
Data Mining Workshop, November 2006

72. Howe, A.E., Dahlman, E., Hansen, C., Scheetz, M., Mayrhauser, A.: Exploit-
ing competitive planner performance. In: Biundo, S., Fox, M. (eds.) ECP 1999.
LNCS (LNAI), vol. 1809, pp. 62–72. Springer, Heidelberg (2000). doi:10.1007/
10720246 5

73. Huberman, B.A., Lukose, R.M., Hogg, T.: An economics approach to hard com-
putational problems. Science 275(5296), 51–54 (1997)

74. Hurley, B., Kotthoff, L., Malitsky, Y., O’Sullivan, B.: Proteus: a hierarchical port-
folio of solvers and transformations. In: CPAIOR, May 2014

75. Hutter, F., Hamadi, Y., Hoos, H.H., Leyton-Brown, K.: Performance prediction
and automated tuning of randomized and parametric algorithms. In: Benhamou,
F. (ed.) CP 2006. LNCS, vol. 4204, pp. 213–228. Springer, Heidelberg (2006).
doi:10.1007/11889205 17

76. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based opti-
mization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION
2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-25566-3 40

77. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Parallel algorithm configuration. In:
Hamadi, Y., Schoenauer, M. (eds.) LION. LNCS, vol. 7219, pp. 55–70. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-34413-8 5

78. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic
algorithm configuration framework. J. Artif. Int. Res. 36(1), 267–306 (2009)

79. Hutter, F., Hoos, H.H., Stützle, T.: Automatic algorithm configuration based
on local search. In: Proceedings of the 22nd National Conference on Artificial
Intelligence, pp. 1152–1157. AAAI Press (2007)

80. Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algo-
rithm selection and scheduling. In: 17th International Conference on Principles
and Practice of Constraint Programming, pp. 454–469 (2011)

81. Kadioglu, S., Malitsky, Y., Sellmann, M., Tierney, K.: ISAC instance-specific algo-
rithm configuration. In: 19th European Conference on Artificial Intelligence, pp.
751–756. IOS Press (2010)

82. Kamel, M.S., Enright, W.H., Ma, K.S.: ODEXPERT: an expert system to select
numerical solvers for initial value ODE systems. ACM Trans. Math. Softw. 19(1),
44–62 (1993)

83. Kotthoff, L.: Hybrid regression-classification models for algorithm selection. In:
20th European Conference on Artificial Intelligence, pp. 480–485, August 2012

84. Kotthoff, L.: Algorithm selection for combinatorial search problems: a survey. AI
Mag. 35(3), 48–60 (2014)

85. Kotthoff, L., Gent, I.P., Miguel, I.: An evaluation of machine learning in algorithm
selection for search problems. AI Commun. 25(3), 257–270 (2012)

http://dx.doi.org/10.1007/10720246_5
http://dx.doi.org/10.1007/10720246_5
http://dx.doi.org/10.1007/11889205_17
http://dx.doi.org/10.1007/978-3-642-25566-3_40
http://dx.doi.org/10.1007/978-3-642-25566-3_40
http://dx.doi.org/10.1007/978-3-642-34413-8_5

186 L. Kotthoff

86. Kotthoff, L., Kerschke, P., Hoos, H., Trautmann, H.: Improving the state of the
art in inexact TSP solving using per-instance algorithm selection. In: Dhaenens,
C., Jourdan, L., Marmion, M.-E. (eds.) LION 2015. LNCS, vol. 8994, pp. 202–217.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-19084-6 18

87. Kotthoff, L., Miguel, I., Nightingale, P.: Ensemble classification for constraint
solver configuration. In: 16th International Conference on Principles and Practices
of Constraint Programming, pp. 321–329, September 2010

88. Kroer, C., Malitsky, Y.: Feature filtering for Instance-Specific algorithm configura-
tion. In: Proceedings of the 23rd International Conference on Tools with Artificial
Intelligence (2011)

89. Kuefler, E., Chen, T.-Y.: On using reinforcement learning to solve sparse linear
systems. In: Bubak, M., Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS
2008. LNCS, vol. 5101, pp. 955–964. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-69384-0 100

90. Lagoudakis, M.G., Littman, M.L.: Algorithm selection using reinforcement learn-
ing. In: Proceedings of the 17th International Conference on Machine Learning,
pp. 511–518. Morgan Kaufmann Publishers Inc., San Francisco (2000)

91. Lagoudakis, M.G., Littman, M.L.: Learning to select branching rules in the DPLL
procedure for satisfiability. In: LICS/SAT, pp. 344–359 (2001)

92. Langley, P.: Learning effective search heuristics. In: IJCAI, pp. 419–421 (1983)
93. Langley, P.: Learning search strategies through discrimination. Int. J. Man-Mach.

Stud. 18, 513–541 (1983)
94. Leite, R., Brazdil, P., Vanschoren, J., Queiros, F.: Using active testing and meta-

level information for selection of classification algorithms. In: 3rd PlanLearn
Workshop, August 2010

95. Leyton-Brown, K., Nudelman, E., Shoham, Y.: Learning the empirical hardness
of optimization problems: the case of combinatorial auctions. In: Hentenryck, P.
(ed.) CP 2002. LNCS, vol. 2470, pp. 556–572. Springer, Heidelberg (2002). doi:10.
1007/3-540-46135-3 37

96. Leyton-Brown, K., Nudelman, E., Shoham, Y.: Empirical hardness models:
methodology and a case study on combinatorial auctions. J. ACM 56, 1–52 (2009)

97. Lindauer, M., Hoos, H., Hutter, F.: From sequential algorithm selection to par-
allel portfolio selection. In: Dhaenens, C., Jourdan, L., Marmion, M.-E. (eds.)
LION 2015. LNCS, vol. 8994, pp. 1–16. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-19084-6 1

98. Lindauer, M., Hoos, H.H., Hutter, F., Schaub, T.: AutoFolio: algorithm configu-
ration for algorithm selection. In: Twenty-Ninth AAAI Workshops on Artificial
Intelligence, January 2015

99. Little, J., Gebruers, C., Bridge, D., Freuder, E.: Capturing constraint program-
ming experience: a case-based approach. In: Modref (2002)

100. Lobjois, L., Lemâıtre, M.: Branch and bound algorithm selection by performance
prediction. In: Proceedings of the 15th National/10th Conference on Artificial
Intelligence/Innovative Applications of Artificial Intelligence, pp. 353–358. Amer-
ican Association for Artificial Intelligence, Menlo Park (1998)

101. Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Non-model-based
algorithm portfolios for SAT. In: Sakallah, K.A., Simon, L. (eds.) SAT
2011. LNCS, vol. 6695, pp. 369–370. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-21581-0 33

102. Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algorithm portfolios
based on cost-sensitive hierarchical clustering. In: IJCAI, August 2013

http://dx.doi.org/10.1007/978-3-319-19084-6_18
http://dx.doi.org/10.1007/978-3-540-69384-0_100
http://dx.doi.org/10.1007/978-3-540-69384-0_100
http://dx.doi.org/10.1007/3-540-46135-3_37
http://dx.doi.org/10.1007/3-540-46135-3_37
http://dx.doi.org/10.1007/978-3-319-19084-6_1
http://dx.doi.org/10.1007/978-3-319-19084-6_1
http://dx.doi.org/10.1007/978-3-642-21581-0_33
http://dx.doi.org/10.1007/978-3-642-21581-0_33

Algorithm Selection for Combinatorial Search Problems: A Survey 187

103. Minton, S.: An analytic learning system for specializing heuristics. In: Proceedings
of the 13th International Joint Conference on Artifical Intelligence IJCAI 1993,
pp. 922–928. Morgan Kaufmann Publishers Inc., San Francisco (1993)

104. Minton, S.: Integrating heuristics for constraint satisfaction problems: a case
study. In: Proceedings of the 11th National Conference on Artificial Intelligence,
pp. 120–126. AAAI (1993)

105. Minton, S.: Automatically configuring constraint satisfaction programs: a case
study. Constraints 1, 7–43 (1996)

106. Musliu, N., Schwengerer, M.: Algorithm selection for the graph coloring problem.
In: Nicosia, G., Pardalos, P. (eds.) LION 2013. LNCS, vol. 7997, pp. 389–403.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-44973-4 42

107. Nareyek, A.: Choosing search heuristics by non-stationary reinforcement learning.
In: Nareyek, A. (ed.) Metaheuristics: Computer Decision-Making. Applied Opti-
mization, vol. 86, pp. 523–544. Kluwer Academic Publishers, New York (2001)

108. Nikolić, M., Marić, F., Janičić, P.: Instance-based selection of policies for SAT
solvers. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 326–340. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-02777-2 31

109. Nudelman, E., Leyton-Brown, K., Hoos, H.H., Devkar, A., Shoham, Y.: Under-
standing random SAT: beyond the clauses-to-variables ratio. In: Wallace, M. (ed.)
CP 2004. LNCS, vol. 3258, pp. 438–452. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-30201-8 33

110. O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using case-
based reasoning in an algorithm portfolio for constraint solving. In: Proceedings of
the 19th Irish Conference on Artificial Intelligence and Cognitive Science (2008)

111. Opitz, D., Maclin, R.: Popular ensemble methods: an empirical study. J. Artif.
Intell. Res. 11, 169–198 (1999)

112. Paparrizou, A., Stergiou, K.: Evaluating simple fully automated heuristics for
adaptive constraint propagation. In: ICTAI (2012)

113. Petrik, M.: Statistically optimal combination of algorithms. In: Local Proceedings
of SOFSEM 2005 (2005)

114. Petrik, M., Zilberstein, S.: Learning parallel portfolios of algorithms. Ann. Math.
Artif. Intell. 48(1–2), 85–106 (2006)

115. Petrovic, S., Qu, R.: Case-based reasoning as a heuristic selector in hyper-heuristic
for course timetabling problems. In: KES, pp. 336–340 (2002)

116. Pfahringer, B., Bensusan, H., Giraud-Carrier, C.G.: Meta-Learning by landmark-
ing various learning algorithms. In: 17th International Conference on Machine
Learning ICML 2000, pp. 743–750, Morgan Kaufmann Publishers Inc., San
Francisco (2000)

117. Pulina, L., Tacchella, A.: A multi-engine solver for quantified Boolean formulas.
In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 574–589. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-74970-7 41

118. Pulina, L., Tacchella, A.: A self-adaptive multi-engine solver for quantified
boolean formulas. Constraints 14(1), 80–116 (2009)

119. Rao, R.B., Gordon, D., Spears, W.: For every generalization action, is there really
an equal and opposite reaction? Analysis of the conservation law for generalization
performance. In: Proceedings of the 12th International Conference on Machine
Learning, pp. 471–479. Morgan Kaufmann (1995)

120. Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)
121. Rice, J.R., Ramakrishnan, N.: How to get a free lunch (at no cost). Techical report

99–014, Purdue University, April 1999

http://dx.doi.org/10.1007/978-3-642-44973-4_42
http://dx.doi.org/10.1007/978-3-642-02777-2_31
http://dx.doi.org/10.1007/978-3-540-30201-8_33
http://dx.doi.org/10.1007/978-3-540-30201-8_33
http://dx.doi.org/10.1007/978-3-540-74970-7_41

188 L. Kotthoff

122. Roberts, M., Howe, A.E.: Directing a portfolio with learning. In: AAAI 2006
Workshop on Learning for Search (2006)

123. Roberts, M., Howe, A.E.: Learned models of performance for many planners. In:
ICAPS 2007 Workshop AI Planning and Learning (2007)

124. Roberts, M., Howe, A.E., Wilson, B., des Jardins, M.: What makes planners
predictable? In: ICAPS, pp. 288–295 (2008)

125. Sakkout, H., Wallace, M.G., Richards, E.B.: An instance of adaptive constraint
propagation. In: Freuder, E.C. (ed.) CP 1996. LNCS, vol. 1118, pp. 164–178.
Springer, Heidelberg (1996). doi:10.1007/3-540-61551-2 73

126. Samulowitz, H., Memisevic, R.: Learning to solve QBF. In: Proceedings of the
22nd National Conference on Artificial Intelligence, pp. 255–260. AAAI Press
(2007)

127. Sayag, T., Fine, S., Mansour, Y.: Combining multiple heuristics. In: Durand,
B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 242–253. Springer,
Heidelberg (2006). doi:10.1007/11672142 19

128. Schapire, R.E.: The strength of weak learnability. Mach. Learn. 5(2), 197–227
(1990)

129. Sillito, J.: Improvements to and estimating the cost of solving constraint satisfac-
tion problems. Master’s thesis, University of Alberta (2000)

130. Silverthorn, B., Miikkulainen, R.: Latent class models for algorithm portfolio
methods. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence
(2010)

131. Smith, T.E., Setliff, D.E.: Knowledge-based constraint-driven software synthe-
sis. In: Knowledge-Based Software Engineering Conference, pp. 18–27, September
1992

132. Smith-Miles, K., Lopes, L.: Measuring instance difficulty for combinatorial opti-
mization problems. Comput. Oper. Res. 39(5), 875–889 (2012)

133. Smith-Miles, K.A.: Cross-disciplinary perspectives on meta-learning for algorithm
selection. ACM Comput. Surv. 41, 6: 1–6: 25 (2008)

134. Smith-Miles, K.A.: Towards insightful algorithm selection for optimisation using
meta-learning concepts. In: IEEE International Joint Conference on Neural Net-
works, pp. 4118–4124, June 2008

135. Soares, C., Brazdil, P.B., Kuba, P.: A meta-learning method to select the kernel
width in support vector regression. Mach. Learn. 54(3), 195–209 (2004)

136. Stergiou, K.: Heuristics for dynamically adapting propagation in constraint sat-
isfaction problems. AI Commun. 22(3), 125–141 (2009)

137. Stern, D.H., Samulowitz, H., Herbrich, R., Graepel, T., Pulina, L., Tacchella, A.:
Collaborative expert portfolio management. In: AAAI, pp. 179–184 (2010)

138. Streeter, M.J., Golovin, D., Smith, S.F.: Combining multiple heuristics online.
In: Proceedings of the 22nd National Conference on Artificial Intelligence, pp.
1197–1203. AAAI Press (2007)

139. Streeter, M.J., Golovin, D., Smith, S.F.: Restart schedules for ensembles of prob-
lem instances. In: Proceedings of the 22nd National Conference on Artificial Intel-
ligence, pp. 1204–1210. AAAI Press (2007)

140. Streeter, M.J., Smith, S.F.: New techniques for algorithm portfolio design. In:
UAI, pp. 519–527 (2008)

141. Terashima-Maŕın, H., Ross, P., Valenzuela-Rendón, M.: Evolution of constraint
satisfaction strategies in examination timetabling. In: Proceedings of the Genetic
and Evolutionary Computation Conference, pp. 635–642. Morgan Kaufmann
(1999)

http://dx.doi.org/10.1007/3-540-61551-2_73
http://dx.doi.org/10.1007/11672142_19

Algorithm Selection for Combinatorial Search Problems: A Survey 189

142. Tolpin, D., Shimony, S.E.: Rational deployment of CSP heuristics. In: IJCAI, pp.
680–686 (2011)

143. Tsang, E.P.K., Borrett, J.E., Kwan, A.C.M.: An attempt to map the performance
of a range of algorithm and heuristic combinations. In: Proceedings of AISB 1995,
pp. 203–216. IOS Press (1995)

144. Utgoff, P.E.: Perceptron trees: a case study in hybrid concept representations. In:
National Conference on Artificial Intelligence, pp. 601–606 (1988)

145. Vassilevska, V., Williams, R., Woo, S.L.M.: Confronting hardness using a hybrid
approach. In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete
Algorithms SODA 2006, pp. 1–10. ACM, New York (2006)

146. Vrakas, D., Tsoumakas, G., Bassiliades, N., Vlahavas, I.: Learning rules for adap-
tive planning. In: Proceedings of the 13th International Conference on Automated
Planning and Scheduling, pp. 82–91 (2003)

147. Wang, J., Tropper, C.: Optimizing time warp simulation with reinforcement learn-
ing techniques. In: Proceedings of the 39th Conference on Winter simulation WSC
2007, pp. 577–584. IEEE Press, Piscataway (2007)

148. Watson, J.: Empirical modeling and analysis of local search algorithms for the job-
shop scheduling problem. Ph.D. thesis, Colorado State University, Fort Collins,
CO, USA (2003)

149. Weerawarana, S., Houstis, E.N., Rice, J.R., Joshi, A., Houstis, C.E.: PYTHIA: a
knowledge-based system to select scientific algorithms. ACM Trans. Math. Softw.
22(4), 447–468 (1996)

150. Wei, W., Li, C.M., Zhang, H.: Switching among non-weighting, clause weight-
ing, and variable weighting in local search for SAT. In: Stuckey, P.J. (ed.) CP
2008. LNCS, vol. 5202, pp. 313–326. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-85958-1 21

151. Wilson, D., Leake, D., Bramley, R.: Case-based recommender components for
scientific problem-solving environments. In: Proceedings of the 16th International
Association for Mathematics and Computers in Simulation World Congress (2000)

152. Wolpert, D.H.: Stacked generalization. Neural Netw. 5, 241–259 (1992)
153. Wolpert, D.H.: The supervised learning no-free-lunch theorems. In: Proceedings

of the 6th Online World Conference on Soft Computing in Industrial Applications,
pp. 25–42 (2001)

154. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE
Trans. Evol. Comput. 1(1), 67–82 (1997)

155. Wu, H., van Beek, P.: On portfolios for backtracking search in the presence of
deadlines. In: Proceedings of the 19th IEEE International Conference on Tools
with Artificial Intelligence, pp. 231–238. IEEE Computer Society, Washington,
DC (2007)

156. Xu, L., Hoos, H.H., Leyton-Brown, K.: Hierarchical hardness models for SAT. In:
CP, pp. 696–711 (2007)

157. Xu, L., Hoos, H.H., Leyton-Brown, K.: Hydra: automatically configuring algo-
rithms for portfolio-based selection. In: 24th Conference of the Association for
the Advancement of Artificial Intelligence (AAAI 2010), pp. 210–216 (2010)

158. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla-07: the design and
analysis of an algorithm portfolio for SAT. In: CP, pp. 712–727 (2007)

159. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: portfolio-based algo-
rithm selection for SAT. J. Artif. Intell. Res. (JAIR) 32, 565–606 (2008)

160. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla2009: an automatic
algorithm portfolio for SAT. In: 2009 SAT Competition (2009)

http://dx.doi.org/10.1007/978-3-540-85958-1_21
http://dx.doi.org/10.1007/978-3-540-85958-1_21

190 L. Kotthoff

161. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Hydra-MIP: automated algo-
rithm configuration and selection for mixed integer programming. In: RCRA
Workshop on Experimental Evaluation of Algorithms for Solving Problems with
Combinatorial Explosion at the International Joint Conference on Artificial Intel-
ligence (IJCAI) (2011)

162. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: Evaluating component solver con-
tributions to portfolio-based algorithm selectors. In: Cimatti, A., Sebastiani, R.
(eds.) SAT 2012. LNCS, vol. 7317, pp. 228–241. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-31612-8 18

163. Yu, H., Rauchwerger, L.: An adaptive algorithm selection framework for reduction
parallelization. IEEE Trans. Parallel Distrib. Syst. 17(10), 1084–1096 (2006)

164. Yu, H., Zhang, D., Rauchwerger, L.: An adaptive algorithm selection framework.
In: Proceedings of the 13th International Conference on Parallel Architectures
and Compilation Techniques, pp. 278–289. IEEE Computer Society, Washington,
DC (2004)

165. Yun, X., Epstein, S.L.: Learning algorithm portfolios for parallel execution. In:
Hamadi, Y., Schoenauer, M. (eds.) Proceedings of the 6th International Confer-
ence Learning and Intelligent Optimisation LION. LNCS, vol. 7219, pp. 323–338.
Springer, Heidelberg (2012)

http://dx.doi.org/10.1007/978-3-642-31612-8_18

Advanced Portfolio Techniques

Barry Hurley1, Lars Kotthoff2(B), Yuri Malitsky1, Deepak Mehta1,
and Barry O’Sullivan1

1 Insight Centre for Data Analytics, University College Cork, Cork, Ireland
2 University of British Columbia, Vancouver, Canada

larsko@cs.ubc.ca

Abstract. There exists a proliferation of different approaches to using
portfolios and algorithm selection to make solving combinatorial search
and optimisation problems more efficient, as surveyed in the previous
chapter. In this chapter, we take a look at a detailed case study that lever-
ages transformations between problem representations to make portfolios
more effective, followed by extensions to the state of the art that make
algorithm selection more robust in practice.

1 Outline

In the previous chapter, a number of different portfolio and algorithm selection
techniques was introduced. At the start of this chapter, we take a detailed look at
a specific example system, Proteus, that leverages not only algorithm selection
techniques, but also the fact that there exist polynomial time transformations
between different representations of NP-complete problems. Using this novel
methodology, we combine the best of the worlds of SAT and CSP solving to create
Proteus, a hierarchical portfolio approach that achieves significant performance
improvements over approaches that do not use transformations.

After that, we present a series of techniques that can be used to improve the
performance of portfolios and algorithm selection. Specifically, we discuss two
novel algorithm portfolio techniques, ISAC+ and EISAC, showing how to first
iteratively train solvers for a better portfolio and then how to dynamically adapt
to changes in the observed problem instances. Finally, the chapter will show how
the performance of portfolios can be improved through the introduction of better
features, and will present a technique for automatically identifying the properties
of these desired features.

2 Proteus: A Hierarchical Portfolio of Solvers
and Transformations

The pace of development in both csp and sat solver technology has been
rapid. Combined with portfolio and algorithm selection technology, impres-
sive performance improvements over systems that have been developed only a

c© Springer International Publishing AG 2016
C. Bessiere et al. (Eds.): Data Mining and Constraint Programming, LNAI 10101, pp. 191–225, 2016.
DOI: 10.1007/978-3-319-50137-6 8

192 B. Hurley et al.

few years previously have been demonstrated. Constraint satisfaction problems
and satisfiability problems are both NP-complete and, therefore, there exist
polynomial-time transformations between them. We can leverage this fact to
convert csps into sat problems and solve them using sat solvers.

In this chapter we exploit the fact that different sat solvers have different
performances on different encodings of the same csp. In fact, the particular
choice of encoding that will give good performance with a particular sat solver
is dependent on the problem instance to be solved. We show that, in addition to
using dedicated csp solvers, to achieve the best performance for solving a csp
the best course of action might be to translate it to sat and solve it using a
sat solver. We name our approach Proteus, after the Greek god Proteus, the
shape-shifting water deity that can foretell the future.

Our approach offers a novel perspective on using sat solvers for constraint
solving. The idea of solving csps as sat instances however is not new; the solvers
Sugar, Azucar, and CSP2SAT4J are three examples of sat-based csp solving.
Sugar [42] has been very competitive in recent csp solver competitions. It con-
verts the csp to sat using a specific encoding, known as the order encoding,
which will be discussed in more detail later in this chapter. Azucar [43] is a
related sat-based csp solver that uses the compact order encoding. However,
both Sugar and Azucar use a single predefined solver to solve the encoded csp
instances. Our work does not assume that conversion using a specific encoding
to sat is the best way of solving a problem, but considers multiple candidate
encodings and solvers. CSP2SAT4J [23] uses the SAT4J library as its sat back-end
and a set of static rules to choose either the direct or the support encoding for
each constraint. For intensional and extensional binary constraints that spec-
ify the supports, it uses the support encoding. For all other constraints, it uses
the direct encoding. Our approach does not have predefined rules but instead
chooses the encoding and solver based on features of the problem instance to
solve.

Our approach employs algorithm selection techniques to dynamically choose
whether to translate to sat, and if so, which sat encoding and solver to use,
otherwise it selects which csp solver to use. However, the Proteus approach is
not a straightforward application of portfolio techniques. In particular, there is a
series of decisions to make that affect not only the solvers that will be available,
but also the information that can be used to make the decision. Because of this,
the different choices of conversions, encodings and solvers cannot simply be seen
as different algorithms or different configurations of the same algorithm.

2.1 Multiple Encodings and Solvers

To motivate our work, we performed a detailed investigation for two solvers to
assess the relationship between solver and problem encoding with features of
the problem to be solved. For this experiment we considered uniform random
binary (urb) csps with a fixed number of variables, domain size and number
of constraints, and varied the constraint tightness. The constraint tightness t
is a measure of the proportion of forbidden to allowed possible assignments to

Advanced Portfolio Techniques 193

the variables in the scope of the constraint. We vary it from 0 to 1, where
0 means that all assignments are allowed and 1 that no assignments are part
of a solution, in increments of 0.005. At each tightness the mean run-time of
the solver on 100 random csp instances is reported. Each instance contains 30
variables with domain size 20 and 300 constraints. This allowed us to study the
performance of sat encodings and solvers across the phase transition.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 1

R
un

-ti
m

e
fo

r m
in

is
at

 (s
)

S
at

is
fia

bi
lit

y

Constraint Tightness (t)

Run-time for minisat on SAT-encoded URB CSP

Direct
Order

Support
Satisfiability

Fig. 1. Performance using MiniSat on random binary csps.

Figures 1 and 2 plot the run-time for MiniSat and Clasp on uniformly ran-
dom binary csps that have been translated to sat using three different encod-
ings. Observe that in Fig. 1 there is a distinct difference in the performance of
MiniSat on each of the encodings, sometimes an order of magnitude. Before the
phase transition, we see that the order encoding achieves the best performance
and maintains this until the phase transition. Beginning at constraint tightness
0.41, the order encoding gradually starts achieving poorer performance and the
support encoding now achieves the best performance.

Notably, if we rank the encodings based on their performance, the ranking
changes after the phase transition. This illustrates that there is not just a single
encoding that will perform best overall and that the choice of encoding mat-
ters, but also that this choice is dependent on problem characteristics such as
constraint tightness.

Around the phase transition, we observe contrasting performance for Clasp,
as illustrated in Fig. 2. Using Clasp, the ranking of encodings around the phase
transition is direct � support � order; whereas for MiniSat the ranking is

194 B. Hurley et al.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 1
R

un
-ti

m
e

fo
r c

la
sp

 (s
)

S
at

is
fia

bi
lit

y

Constraint Tightness (t)

Run-time for clasp on SAT-encoded URB CSP

Direct
Order

Support
Satisfiability

Fig. 2. Performance using Clasp on random binary csps.

order � direct � support. Note also that the peaks at the phase transition differ
in magnitude between the two solvers. These differences underline the impor-
tance of the choice of solver, in particular in conjunction with the choice of
encoding – making the two choices in isolation does not consider the interdepen-
dencies that affect performance in practice.

In addition to the random csp instances, our analysis also comprises 1493
challenging benchmark problem instances from the csp solver competitions that
involve global and intensional constraints. Figure 3 illustrates the respective per-
formance of the best csp-based and sat-based methods on these instances.
Unsurprisingly the dedicated csp methods often achieve the best performance.
There are, however, numerous cases where considering sat-based methods has
the potential to yield significant performance improvements. In particular, there
are a number of instances that are unsolved by any csp solver but can be solved
quickly using sat-based methods. The Proteus approach aims to unify the best
of both worlds and take advantage of the potential performance gains.

Setup. The hierarchical model we present in this chapter consists of a number
of layers to determine how the instance should be solved. At the top level, we
decide whether to solve the instance using a csp or using a sat-based method.
If we choose to leave the problem as a csp, then one of the dedicated csp solvers
must be chosen. Otherwise, we must choose the sat encoding to apply, followed
by the choice of sat solver to run on the sat-encoded instance.

Each decision of the hierarchical approach aims to choose the direction which
has the potential to achieve the best performance in that sub-tree. For example,

Advanced Portfolio Techniques 195

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

V
irt

ua
l B

es
t S

A
T

Virtual Best CSP

Fig. 3. Performance of the virtual best csp portfolio and the virtual best sat-based
portfolio. Each point represents the time in seconds of the two approaches. A point
below the dashed line indicates that the virtual best sat portfolio was quicker, whereas
a point above means the virtual best csp portfolio was quicker. Clearly the two
approaches are complementary: there are numerous instances for which a sat-based
approach does not perform well or fails to solve the instance but a csp solver does
extremely well, and vice-versa.

for the decision to choose whether to solve the instance using a sat-based method
or not, we choose the sat-based direction if there is a sat solver and encoding
that will perform faster than any csp solver would. Whether this particular
encoding-solver combination will be selected subsequently depends on the per-
formance of the algorithm selection models used in that sub-tree of our decision
mechanism. For regression models, the training data is the best performance of
any solver under that branch of the tree. For classification models, it is the label
of the sub-branch with the virtual best performance.

This hierarchical approach presents the opportunity to employ different deci-
sion mechanisms at each level. We consider 6 regression, 19 classification, and 3
clustering algorithms, which are listed below. For each of these algorithms, we
evaluate the performance using 10-fold cross-validation. The dataset is split into
10 partitions with approximately the same size and the same distribution of the
best solvers. One partition is used for testing and the remaining 9 partitions as
the training data for the model. This process is repeated with a different par-
tition considered for testing each time until every partition has been used for
testing. We measure the performance in terms of PAR10 score. The PAR10 score

196 B. Hurley et al.

for an instance is the time it takes the solver to solve the instance, unless the
solver times out. In this case, the PAR10 score is ten times the timeout value.
The sum over all instances is divided by the number of instances.

Instances. In our evaluation, we consider csp problem instances from the csp
solver competitions [1]. Of these, we consider all instances defined using global
and intensional constraints that are not trivially solved during 2 s of feature
computation. We also exclude all instances which were not solved by any csp or
sat solver within the time limit of 1 h. Altogether, we obtain 1,493 non-trivial
instances from problem classes such as Timetabling, Frequency Assignment, Job-
Shop, Open-Shop, Quasi-group, Costas Array, Golomb Ruler, Latin Square, All
Interval Series, Balanced Incomplete Block Design, and many others. This set
includes both small and large arity constraints and all of the global constraints
used during the csp solver competitions: all-different, element, weighted sum,
and cumulative.

For the sat-based approaches, Numberjack [15] was used to translate a csp
instance specified in xcsp format [38] into sat (cnf).

Features. A fundamental requirement of any machine learning algorithm is a
set of representative features. We explore a number of different feature sets to
train our models: (i) features of the original csp instance, (ii) features of the
direct-encoded sat instance, (iii) features of the support-encoded sat instance,
(iv) features of the direct-order-encoded sat instance and (v) a combination of
all four feature sets. These features are described in further detail below.

We computed the 36 features used in CPhydra for each csp instance using
Mistral; for reasons of space we will not enumerate them all here. The set
includes static features like statistics about the types of constraints used, average
and maximum domain size; and dynamic statistics recorded by running Mistral
for 2 s: average and standard deviation of variable weights, number of nodes,
number of propagations and a few others. Instances which are solved by Mistral
during feature computation are filtered out from the dataset.

In addition to the csp features, we computed the 54 sat features used by
SATzilla [53] for each of the encoded instances and different encodings. The
features encode a wide range of different information on the problem such as
problem size, features of the graph-based representation, balance features, the
proximity to a Horn formula, DPLL probing features and local search probing
features.

Solvers. Our csp models are able to choose from 4 complete csp solvers:

– Abscon [24],
– Choco [44],

– Gecode [11], and
– Mistral [14].

We additionally considered the following 6 complete sat solvers:

Advanced Portfolio Techniques 197

– clasp [10],
– cryptominisat [40],
– glucose [4],

– lingeling [5],
– riss [30], and
– MiniSat [9].

The performance of each of the 6 sat solvers was evaluated on the three
sat encodings of 1,493 csp competition benchmarks with a time-out of 1 h and
limited to 2 GB of RAM. The 4 csp solvers were evaluated on the original csps.
Our results report the PAR10 score and number of instances solved for each
of the algorithms we evaluate. The PAR10 is the sum of the runtimes over all
instances, counting 10 times the timeout if that was reached. Data was collected
on a cluster of Intel Xeon E5430 Processors (2.66 Ghz) running CentOS 6.4. This
data is available as ASlib1 scenario PROTEUS-20142.

Learning Algorithms. We evaluate a number of regression, classification, and
clustering algorithms using WEKA [13]. All algorithms, unless otherwise stated
use the default parameters. The regression algorithms we used were Linear-
Regression, PaceRegression, REPTree, M5Rules, M5P, and SMOreg. The clas-
sification algorithms were BayesNet, BFTree, ConjunctiveRule, DecisionTable,
FT, HyperPipes, IBk (nearest neighbour) with 1, 3, 5 and 10 neighbours, J48,
J48graft, JRip, LADTree, MultilayerPerceptron, OneR, PART, RandomForest,
RandomForest with 99 random trees, RandomTree, REPTree, and SimpleLogis-
tic. For clustering, we considered EM, FarthestFirst, and SimplekMeans. The
FarthestFirst and SimplekMeans algorithms require the number of clusters to
be given as input. We evaluated with multiples of 1 through 5 of the number of
solvers in the respective data set given as the number of clusters. The number of
clusters is represented by 1n, 2n and so on in the name of the algorithm, where
n stands for the number of solvers.

We use the LLAMA toolkit [22] to train and test the algorithm selection
models.

Portfolio Results. The performance of a number of hierarchical approaches is
given in Table 1. The hierarchy of algorithms which produced the best overall
results for our dataset involves M5P regression with csp features at the root node
to choose sat or csp, M5P regression with csp features to select the csp solver,
LinearRegression with csp features to select the sat encoding, LinearRegres-
sion with csp features to select the sat solver for the direct encoded instance,
LinearRegression with csp features to select the sat solver for the direct-order
encoded instance, and LinearRegression with the direct-order features to select
the sat solver for the support encoded instance. The hierarchical tree of specific
machine learning approaches we found to deliver the best overall performance
on our data set is labelled Proteus and is depicted in Fig. 4.

We would like to point out that in many solver competitions the difference
between the top few solvers is fewer than 10 additional instances solved. In the
1 http://aslib.net.
2 https://github.com/coseal/aslib data/tree/master/PROTEUS-2014.

http://aslib.net
https://github.com/coseal/aslib_data/tree/master/PROTEUS-2014

198 B. Hurley et al.

Table 1. Performance of the learning algorithms for the hierarchical approach. The
‘Category Bests’ consists of the hierarchy of algorithms where at each node of the
tree of decisions we take the algorithm that achieves the best PAR10 score for that
particular decision.

Classifier Mean PAR10 Number solved

VBS 97 1493

Proteus 1774 1424

M5P with csp features 2874 1413

Category Bests 2996 1411

M5Rules with csp features 3225 1398

M5P with all features 3405 1397

LinearRegression with all features 3553 1391

LinearRegression with csp features 3588 1383

MultilayerPerceptron with csp features 3594 1382

lm with csp features 3654 1380

RandomForest99 with csp features 3664 1379

IBk10 with csp features 3720 1377

RandomForest99 with all features 3735 1383

2012 sat Challenge for example, the difference between the first and second place
single solver was only 3 instances and the difference among the top 4 solvers was
only 8 instances. The results we present in Table 1 are therefore very significant
in terms of the gains we are able to achieve.

Our results demonstrate the power of Proteus. The performance it delivers is
very close to the virtual best (VBS), that is the best performance possible if an
oracle could identify the best choice of representation, encoding, and solver, on an
instance by instance basis. The improvements we achieve over other approaches
are similarly impressive. The results conclusively demonstrate that having the
option to convert a csp to sat does not only have the potential to achieve
significant performance improvements, but also does so in practice.

An interesting observation is that the csp features are consistently used in
each of the top performing approaches. One reason for this is that it is quicker
to compute only the csp features instead of the csp features, then converting
to sat and computing the sat features in addition. The additional overhead
of computing sat features is worthwhile in some cases though, for example for
LinearRegression, which is at its best performance using all the different feature
sets. Note that for the best tree of models (cf. Fig. 4), it is better to use the
features of the direct-order encoding for the decision of which solver to choose
for a support-encoded sat instance despite the additional overhead.

We also compare the hierarchical approach to that of a flattened setting
with a single portfolio of all solvers and encoding solver combinations. The flat-
tened portfolio includes all possible combinations of the 3 encodings and the 6
sat solvers and the 4 csp solvers for a total of 22 solvers. Table 2 shows these

Advanced Portfolio Techniques 199

Fig. 4. Overview of the machine learning models used in the hierarchical approach.

Table 2. Ranking of each classification, regression, and clustering algorithm to choose
the solving mechanism in a flattened setting. The portfolio consists of all possible
combination of the 3 encodings and the 6 sat solvers and the 4 csp solvers for a total
of 22 solvers.

Classifier Mean PAR10 Number solved

VBS 97 1493

Proteus 1774 1424

LinearRegression with all features 2144 1416

M5P with csp features 2315 1401

LinearRegression with csp features 2334 1401

lm with all features 2362 1407

lm with csp features 2401 1398

M5P with all features 2425 1404

RandomForest99 with all features 2504 1401

SMOreg with all features 2749 1391

RandomForest with all features 2859 1386

IBk3 with csp features 2877 1378

results. The regression algorithm LinearRegression with all features gives the
best performance using this approach. However, it is significantly worse than
the performance achieved by the hierarchical approach of Proteus.

Greater Than the Sum of Its Parts. Given the performance of Proteus, the
question remains as to whether a different portfolio approach that considers just
csp or just sat solvers could do better. Table 3 summarizes the virtual best per-
formance that such portfolios could achieve. We use all the csp and sat solvers

200 B. Hurley et al.

Table 3. Virtual best performances ranked by PAR10 score.

Method Mean PAR10 Number solved

VB Proteus 97 1493

Proteus 1774 1424

VB CSP 3577 1349

VB CPHydra 4581 1310

VB SAT 17373 775

VB DirectOrder Encoding 17637 764

VB Direct Encoding 21736 593

VB Support Encoding 21986 583

for the respective portfolios to give us VB CSP and VB SAT, respectively. The
former is the approach that always chooses the best csp solver for the current
instance, while the latter chooses the best sat encoding/solver combination.
VB Proteus is the portfolio that chooses the best overall approach/encoding.
We show the actual performance of Proteus for comparison. Proteus is better
than the virtual bests for all portfolios that consider only one encoding. This
result makes a very strong point for the need to consider encoding and solver in
combination.

Proteus outperforms four other VB portfolios. Specifically, the VB CPhydra
is the best possible performance that could be obtained from that portfolio if a
perfect choice of solver was made. Neither SATzilla nor isac-based portfolios
consider different sat encodings. Therefore, the best possible performance either
of them could achieve for a specific encoding is represented in the last three lines
of Table 3.

These results do not only demonstrate the benefit of considering the differ-
ent ways of solving csps, but also eliminate the need to compare with existing
portfolio systems since we are computing the best possible performance that any
of those systems could theoretically achieve. Proteus impressively demonstrates
its strengths by significantly outperforming oracle approaches that use only a
single encoding.

3 Advanced Portfolio Techniques

3.1 Automated Portfolio Generation

Algorithm selection is a great tool in practice, but in order for it to work, a
diverse set of solvers is essential. This is not usually a problem for well established
benchmark problem sets where solvers compete on a regular basis, but for the
more esoteric domains, it is possible for only a handful, if not a single solver to
exist. The question then becomes, if the sole existing solver is parameterized, is it
possible to effectively generate multiple configurations of this solver to comprise
a portfolio.

Advanced Portfolio Techniques 201

Note that it is certainly possible to create a portfolio that simply incorpo-
rates all possible configurations, thus choosing to rely on the algorithm selector to
make the correct decisions. This approach of course also quickly degrades when
the parameter space grows, not to mention that each of the possible parameter-
izations will need to be evaluated on all the instances. Even choosing a random
subset of parameterizations will lead to problems if those parameterizations are
not diverse or simply not particularly good. This section therefore shows how
the existing ISAC portfolio methodology can be adjusted to this problem.

Note how ISAC solves a core problem of instance-specific algorithm tuning,
namely the selection of a parameterization out of a very large and possibly even
infinite pool of possible parameter settings. In algorithm portfolios we are dealing
with a small set of solvers, and all methods devised for algorithm selection make
heavy use of that fact. Clearly, this approach will not work when the number
of solvers explodes. ISAC overcomes this problem by clustering the training
instances. This is a key step in the ISAC methodology as described in [21]:
Training instances are first clustered into groups and then a high-performance
parameterization is computed for each of the clusters. That is, in ISAC clustering
is used both for the generation of high-quality solver parameterizations, and then
for the subsequent selection of the parameterization for a given test instance.

Beyond Cluster-Based Algorithm Selection. While [28] showed that
cluster-based solver selection outperforms SATzilla-2009, this alone does not
fully explain why ISAC often outperforms other instance-specific algorithm con-
figurators like Hydra. Clustering instances upfront appears to give us an advan-
tage when tuning individual parameterizations. Not only do we save a lot of tun-
ing time with this methodology, since the training set for the instance-oblivious
tuner is much smaller than the whole set. We also bundle instances together,
hoping that they are somewhat similar and thus amenable for being solved effi-
ciently with just one parameterization.

Consequently, we want to keep clustering in ISAC. However, and this is the
core observation in this section, once the parameterizations for each cluster have
been computed, there is no reason why we would need to stick to these clusters
for selecting the best parameterization for a given test instance. Consequently,
we propose to use an alternate state-of-the-art algorithm selector to choose the
best parameterization for the instance we are to solve.

To this end, after ISAC finishes clustering and tuning the parameters of exist-
ing solvers on each cluster, we can then use any algorithm selector to choose one
of the parameterizations, independent of the cluster an instance belongs to. For
this final stage, we can use any efficient algorithm selector rather than contin-
uing to rely on the original clusters. We call this overall process of configuring
multiple solvers through clustering and effectively utilizing those solvers with
state-of-the-art algorithm selection, as ISAC+.

Comparison of ISAC+ with ISAC and Hydra. Let us first compare the
ISAC+ methodology with the popular alternatives, ISAC and Hydra. Note that

202 B. Hurley et al.

Table 4. SAT experiments

Average PAR1 PAR10 Solved % solved

BS 28.71 289.3 2753 93 54.39

Hydra 19.80 260.7 2503 100 58.48

ISAC-GGA 18.79 297.5 2887 89 52.05

ISAC-MSC 18.24 273.4 2642 96 56.14

ISAC+ 22.09 251.9 2395 103 60.23

VBS 16.40 228.0 2186 109 64.33

(a) HAND

Average PAR1 PAR10 Solved % solved

BS 27.37 121.0 1004 486 83.64

Hydra 20.88 75.7 586.9 526 90.53

ISAC-GGA 22.11 154.4 1390 448 77.11

ISAC-MSC 27.47 79.7 572.3 528 90.88

ISAC+ 24.77 71.1 506.3 534 91.91

VBS 15.96 61.2 479.5 536 92.25

(b) RAND

Hydra takes an iterative approach to portfolio generation. It first configures a
solver over all of the instances, and subsequently trains new solvers with the
objective of best complementing the existing set. Once the set of solvers is com-
prised, a SATzilla based portfolio algorithm is run to determine when each of
them should be used. Note that unlike the ISAC based approaches, Hydra can
potentially suffer since each configuration run is done in sequence, which can
take a very long time.

For our comparison we use the benchmark set from [51] where Hydra was
first introduced. In particular, there are two non-trivial sets of instances: Random
(RAND) and Crafted (HAND).

Following the previously established methodology, we start our portfolio con-
struction with 11 local search solvers: paws [45], rsaps [19], saps [47], agwsat0 [49],
agwsat+ [50], agwsatp [48], gnovelty+ [34], g2wsat [27], ranov [33], vw [36], and
anov09 [17]. We augment these solvers by adding six fixed parameterizations of
SATenstein to this set, giving us a total of 17 constituent solvers.

We cluster the training instances of each dataset and add GGA [2] trained
versions of SATenstein for each cluster, resulting in 11 new solvers for Random
and 8 for Crafted. We use a timeout of 50 s when training these solvers, but
employ a 600 s timeout to evaluate the solvers on each respective dataset. The
times were measured on dual Intel Xeon 5540 (2.53 GHz) quad-core Nehalem
processors and 24 GB of DDR-3 memory (1333 GHz).

Table 4a shows the test performance of various solvers on the HAND bench-
mark set (342 train and 171 test instances). We conduct 5 runs on each instance

Advanced Portfolio Techniques 203

for each solver. When referring to a value as ‘Average’, given is the mean time
it takes to solve only those instances that do not timeout. Like always, the value
‘PAR1’ includes the timeout instances when computing the average. ‘PAR10’,
then gives a penalized average, where every instance that times out is treated as
having taken 10 times the timeout to complete. Finally presented is the number
of instances solved and the corresponding percentage of solved instances in the
test set.

The best single solver (BS) is one of the SATenstein parameterizations tuned
by GGA and is able to solve about 54% of all instances. Hydra solves 58% while
ISAC-GGA (using only SATenstein) solves only 52%. Using the whole set of
solvers for tuning (not just SATenstein), ISAC-MSC solves about 56% of all
instances, which is worse than always selecting the best base solver. Of course,
we only know a posteriori that this parameterization of SATenstein is the best
solver for this test set. However, ISAC’s performance is still not convincing. By
augmenting the approach using a final portfolio selection stage, we can boost
performance. ISAC+ solves ∼60% of all test instances, outperforming all other
approaches and closing almost 30% of the gap between Hydra and the Virtual
Best Solver (VBS), an imaginary perfect oracle that always correctly picks the
best solver and parameterization for each instance which marks an upper bound
on the performance we may realistically hope for.

The second benchmark we present here is RAND. There are 581 test and
1141 train instances in this benchmark. In Table 4b we see that the best single
solver (BS – gnovelty+) solves ∼84% of the 581 instances in this test set. Hydra
improves this to ∼91%, roughly equal in performance to ISAC-MSC. ISAC+
improves performance again and leads to almost 92% of all instances solved
within the time limit. The improved approach outperforms all other methods,
and ISAC+ closes over 37% of the gap between the original ISAC and the VBS.

Note that using portfolios of the untuned SAT solvers only is in general not
competitive as shown in [21,51]. To verify this finding we also ran a comparison
using untuned base solvers only. On the SAT RAND data set, for example, we
find that the portfolio algorithm using only 17 base solvers can only solve 520
instances, which is not competitive.

Extended Applicability. In the preceding section we demonstrated the poten-
tial effectiveness of the ISAC+ approach on SAT problems. We now apply this
methodology to a larger problem than what the original Hydra and ISAC were
tested on: the MaxSAT problem. Formally, the MaxSAT problem is the optimiza-
tion version of the regular SAT problem. A weighted clause is a pair (C,w), where
C is a clause and w is a natural number or infinity, indicating the penalty for fal-
sifying the clause C. A Weighted Partial MaxSAT formula (WPMS) is a multiset
of weighted clauses ϕ = {(C1, w1), . . . , (Cm, wm), (Cm+1,∞), . . . , (Cm+m′ ,∞)}
where the first m clauses are soft and the last m′ clauses are hard. Here, a hard
clause is one that must be satisfied, while also satisfying the maximum combined
weight of soft clauses. A Partial MaxSAT formula (PMS) is a WPMS formula

204 B. Hurley et al.

where the weights of soft clauses are equal. The set of variables occurring in a
formula ϕ is noted as var(ϕ).

A (total) truth assignment for a formula ϕ is a function I : var(ϕ) → {0, 1},
that can be extended to literals, clauses, SAT formulas. For MaxSAT formulas
is defined as I({(C1, w1), . . . , (Cm, wm)}) =

∑m
i=1 wi (1 − I(Ci)). The optimal

cost of a formula is cost(ϕ) = min{I(ϕ) | I : var(ϕ) → {0, 1}} and an optimal
assignment is an assignment I such that I(ϕ) = cost(ϕ).

The Weighted Partial MaxSAT problem for a Weighted Partial MaxSAT for-
mula ϕ is the problem of finding an optimal assignment.

Given this setup, we conduct a 10-fold cross validation on the four categories
of the 2012 MaxSAT Evaluation [3]. These are plain MaxSAT instances, weighted
MaxSAT, partial MaxSAT, and weighted partial MaxSAT. The results of the
cross validation are presented in Tables 5a–d. Specifically, each data set is broken
uniformly at random into non overlapping subsets. Each of these subsets is then
used as the test set (one at a time) while the instances from all other folds
are used as training data. The tables present the average performance over 10-
folds. Furthermore, all experiments were run with a 2,100 s timeout, on the
same machines we used in the previous section. We use the following solvers:
akmaxsat ls, akmaxsat, bincd2, WPM1-2012, pwbo2.1, wbo1.6-cnf, QMaxSat-
g2, ShinMaxSat, WMaxSatz09, and WMaxSatz+. We also employ the highly
parameterized solver QMaxSat-g2 for the configuration aspect of the approach.

The MS data set has 600 instances, split among random, crafted and indus-
trial. Each fold has 60 test instances. Results in Table 5a confirm the findings
observed in previous experiments. In this case, ISAC-MSC struggles to improve
over the best single solver. At the same time ISAC+ nearly completely closes
the gap between BS and VBS.

The partial MaxSAT dataset is similar to the one used in the previous section,
but in this case we also augment it with randomly generated instances bringing
the count up to 1,086 instances. The Weighted MaxSAT problems consist of
only crafted and random instances creating a dataset of size 277. Finally, the
weighted partial MaxSAT problems number 718.

All in all, we observe that ISAC+ always outperforms the original ISAC
methodology significantly, closing the gap between ISAC-MSC and the VBS by
90%, 74%, 100%, and 52%. The tables give the average performance of the single
best solver for each fold (which may of course differ from fold to fold) in the row
indexed BS. Note this value is better than what the previous best single MaxSAT
solver had to offer. Still, on plain MaxSAT, ISAC+ solves 8% more instances,
58% more on partial MaxSAT, 6% more on weighted MaxSAT, and 29% more
instances on weighted partial MaxSAT instances within the timeout. This was a
significant improvement in the communities ability to solve MaxSAT instances
in practice.

These results were subsequently independently confirmed at the 2013
MaxSAT Evaluation where our portfolios, built based on the methodology
described in this paper, won six out of eleven categories and came in second
in another three.

Advanced Portfolio Techniques 205

Table 5. MaxSAT cross-validation

Average PAR1 PAR10 Solved % solved

BS 117.0 600.5 5199 45.4 75.7

ISAC-MSC 146.3 603.3 4887 47.2 78.7

ISAC+ 134.5 487.7 3952 49.0 81.7

VBS 115.9 473.8 3876 49.2 82.0

(a) MS MIX has 60 test instances per fold

Average PAR1 PAR10 Solved % solved

BS 68.0 822.3 7834 68.0 63.0

ISAC-MSC 100.1 328.3 2398 96.1 89.0

ISAC+ 98.4 232.7 1713 99.6 92.2

VBS 69.9 206.2 1476 100.8 93.3

(b) PMS MIX has 108 test instances per fold

Average PAR1 PAR10 Solved % solved

BS 50.2 302.7 2633 23.7 87.9

SAC-MSC 65.6 323.5 2653 23.7 87.9

ISAC+ 58.8 184.3 1349 25.3 93.8

VBS 58.6 184.3 1349 25.3 93.8

(c) WMS MIX has 27 test instances per fold

Average PAR1 PAR10 Solved % solved

BS 56.3 632.1 5949 51.1 72.0

ISAC-MSC 47.1 229.0 1914 64.7 91.1

ISAC+ 54.6 168.6 1511 66.0 92.9

VBS 15.5 131.8 1185 67.1 94.5

(d) WPMS MIX has 71 test instances per fold

3.2 Dynamically Adapting Portfolios

As has been made clear in the previous chapter, there are already many success-
ful portfolio based approaches that vary the employed solver depending on the
problems. Yet the scenarios we have explored so far can be categorized as one-
shot learning approaches, as the construction of a portfolio optimizing a given
objective function is done only once on a chosen set of training instances and
then used without change.

In a real world setting it is possible that a distribution of instances chosen
for the training phase might not reflect the instances that are being solved in
the online phase. Consequently it might be possible to improve the initially
constructed portfolio. Therefore, one might desire to have a portfolio approach
that evolves based on the set of instances that are solved in the online-phase. One
possible direct solution to this is simply periodically relaunching the training
approach. However, this can be very computationally expensive. This section

206 B. Hurley et al.

Fig. 5. Initial offline phase of EISAC

therefore shows how to augment an existing portfolio approach, ISAC, to one
that evaluates the current portfolio and provides ways to continuously improve
it by taking advantage of a growing set of available instances, enriched feature
set and more up to-date set of available solvers. This extended approach will be
referred to as EISAC as it evolves over time.

For the purposes of this section, let I = {I1, . . . , In} be the set of problem
instances chosen as a training set. Let F = {f1, . . . , fm} be the set of features
that are associated with each problem instance during the initial training phase.
Let S = {s1, . . . , sk} be the set of solvers chosen for the initial training phase. As
was shown in the previous chapter, the ISAC based portfolio approach uses the
feature set F to partition the set I. Let C = {C1, . . . , Cs} be such a partition of
I. It then determines a best solver from the set S for each cluster Ci. When an
instance is given to be solved in the online phase, its closest cluster is determined
and the corresponding solver is used to solve it.

Let It, Ft, and St denote the set of instances, the feature set and the set of
solvers known at time t and let Ct denotes the clustering of instances at time t.
We assume that each time period is associated with one or more changes in these
sets. Following this notation I0, F0, and S0 denotes the initial set of training
instances, features, and solvers. The offline phase of EISAC is divided in to 2
phases: initial phase and evolving phase. Given a initial set of instances, I0, and
a initial set of features F0, EISAC finds a initial set of clusters C0 and determines
one or more best solvers from set S0 for each cluster in the initial offline phase as
shown in Fig. 5. In the evolving phase EISAC updates the current clusters if the
current set of features or instances changes, and it updates the set of solvers for
each cluster if the current set of solvers or clusters changes as shown in Fig. 6.
In the online phase, given a new instance, EISAC determines the best cluster
and run one or more solvers associated with the selected cluster for solving the
instance as shown in Fig. 7. The following section provides the details of how
and when EISAC updates the clusters and the set of solvers for each cluster.

Updating Clusters. EISAC updates the current clustering of the instances in
the following scenarios:

– When a new instance is made available in the online phase the instance is
added to the current set of instances.

Advanced Portfolio Techniques 207

Fig. 6. Evolving offline phase of EISAC

– If at most m instances are maintained at any point, then one or more instances
are removed when the number of instances exceeds the value of m

– A new feature is added to the current set of features or if an existing feature
is removed for some reason.

In each of these cases one would like to determine whether the existing clus-
tering is still appropriate or should it be modified and so EISAC recomputes
the clusters for the entire set of instances. In most cases, the two clusterings
one obtained by re-clustering the entire set and another by modifying the cur-
rent clusters will be similar, so nothing needs to be done. But as the number of
modification increases the similarity between the two clusterings might decrease.

Let δ be the time difference between the last time when EISAC was activated
and the current time. Given a value δ, EISAC recomputes the partition of the
instances and compares it with the current partition. In the following we describe
one way of comparing the similarity between two partitions.

The Rand index [18,37] or Rand measure (named after William M. Rand) is
a measure of the similarity between two data clusterings. Given a set of instances
It and two partitions of It to compare, X = {X1, . . . , Xk} a partition of It into
k subsets, and, Y = {Y1, . . . , Ys} a partition of Ik into s subsets, the Rand index
is defined as follows:

– Let N11 denotes the number of pairs of instances in It that are in the same
set in X and in the same set in Y .

– Let N00 denotes the number of pairs of instances in It that are in different
sets in X and in different sets in Y .

– Let N10 denotes the number of pairs of instances in It that are in the same
set in X and in different sets in Y .

– Let N01 denotes the number of pairs of instances in It that are in different
sets in X and in the same set in Y .

208 B. Hurley et al.

Fig. 7. Online phase of EISAC

The Rand index is defined as follows:

R =
N11 + N00

N11 + N00 + N10 + N01
=

2(N11 + N00)
n ∗ (n − 1)

Intuitively, N11 + N00 can be considered as the number of agreements between
X and Y and N10 + N01 as the number of disagreements between X and Y .

If X is the current partition and Y is the new partition and if the Rand index
is less than some chosen threshold λ then we replace the current partition of the
instances with the new partition. If the current partition is replaced by the new
partition then we may need to update the solvers for one or more clusters of the
new partition. In the next section we describe how the solvers are updated for
the clusters.

Updating Solver Selection for a Cluster. Once the clustering of instances
is known, ISAC determines the best solver for each cluster. As the current trend
is to create computers with 2, 4 or even 8 cores, it is unusual to find single
core machines still in use, and the number of cores will probably continue to
double in the coming years. It is for this reason that for EISAC we also consider
scenarios where κ cores are available. Therefore instead of just finding one best
solver we solve the optimization problem as described below to find κ solvers for
each cluster.

Let xij be a Boolean variable that determines if solver j ∈ St is chosen
for instance i of some cluster C. Let Tij denotes the time required for solving
instance i using solver j ∈ Si. Let yj be a Boolean that denotes whether solver
j is selected for the cluster C. For each instance i ∈ C exactly one solver is
selected:

∀i∈C :
∑

j∈Sk

xij = 1 (1)

Advanced Portfolio Techniques 209

The solver j is selected if it is chosen for any instance i:

∀i∈C∀j∈St
: xij ⇒ yj (2)

The number of selected solvers should be equal to κ:
∑

j∈St

yj = κ (3)

The objective is to minimize the time required to solve all the instances of
the cluster, i.e.,

min
∑

i∈C

∑

j∈St

Tij · xij (4)

Given a cluster C, a constant κ, the set of solvers, St at time t, and the
function T , computeBestSolvers(C, κ,St, T) denotes the κ best solvers obtained
by solving the MIP problem composed of constraints (1)–(3) and the objective
function (4). In the following we consider four cases when EISAC might update
the set of κ best solvers for a cluster.

Removing Solvers. It may happen that for some reason a previously available
solver is no longer available now. This could happen when a solver is no longer
supported by the developers, or when a new release is made then one would like
to discard the previous version and update it with the new version. If the removed
solver is used by any cluster then one can re-solve the above optimization problem
for finding the current κ solvers.

Adding Solvers. When a new solver s is added to the set of solvers St at time
t it can have an impact on the current portfolio. One way to determine this is
to run the solver s for all the instances It and then reconstruct the portfolio for
each cluster based on the above described optimization problem. Another way
could be to select a sample of an appropriate size from each cluster and run the
solver s for only those samples. If adding the new solver to St improves the total
execution time of solving the sample instances then we run the solver s for all
the instances of the corresponding cluster, otherwise we avoid running the solver
s for remaining instances of each cluster. In EISAC the sample size for a cluster
C is set to (|I0|/|It|)∗|C|. The idea behind this is to always maintain full matrix
of all the runtimes for at least |I0| number of instances.

Removing Instances. If the clustering changes because of removing instances or
because of change in the feature set, we just need to re-solve the above opti-
mization problem for each cluster to update the current set of solvers associated
with each cluster.

210 B. Hurley et al.

Algorithm 1. updateBestSolvers(C,κ)
1: loop
2: Cu ← {i|i ∈ C ∧ |Sti| < |St|}
3: for all i ∈ Cu do
4: p ← |St| − |Sti| + 1
5: b ← arg minj∈Sti(Tij)
6: ∀j ∈ St − Sti : Tij ← ep × tib
7: NC ← computeBestSolvers(C, κ, St)
8: if NC �= BC then
9: for all i ∈ Cu ∧ j ∈ NC − Sti do

10: Tij ← computeRuntime(i, j)
11: Sti ← Sti ∪ {j}
12: BC ← NC

13: else
14: return BC

Adding Instances. If the clustering changes because of adding new instances to
the current set of instances then the current κ best solvers for one or more clusters
might change. An obvious way is to determine the run-times of the solvers for
each new instance of the cluster and then recompute the κ best solver for each
cluster using the above discussed optimization problem. However, it would be
more desirable if the κ best solvers for a cluster can be computed without solving
all the instances of a cluster using all the solvers. In order to do so we propose
an approach that under-estimates the run-times of the solvers for computing κ
best solvers, and runs the solvers only if required as described in Algorithm1.

Let Sti be the set of solvers at time t for which we know the run-times for
solving an instance i. When a new instance i is added to the current set of
instances we assume that Sti is initialised to κ solvers which are used in the
on-line phase to solve i. Let BC be the currently known κ best solvers for the
cluster C. Let Cu ⊆ C be the set of instances for which the run-times of one or
more solvers in the set St are unknown. The general idea is to under-estimate
the run-time for solving each instance in Cu using St − Sti solvers, and use it to
compute κ best solvers for a cluster C, denoted by NC , until NC is same as BC .
If NC is same as BC then it means that the currently known κ solvers are best
even when the runtimes are under-estimated for each solver in St − Sti. If NC is
different to BC then each instance i ∈ Cu is solved with each solver j ∈ NC −Sti

for computing the actual runtime, denoted by computeRuntime(i, j), and BC is
set to NC . Notice that the actual run-time of each solver in BC for each instance
in C is always known.

The estimated run-time of a solver j ∈ St − Sti for an instance i ∈ Cu is
computed as described below. Let Ita be the set of instances at time t for which
we know the run-times of all the solvers. Let rip denotes the runtime of pth best
solver for instance i. Let ep denotes the average ratio between the runtimes of the
best solver and the pth best solver for instance i, which is computed as follows:

Advanced Portfolio Techniques 211

ep =
1

|Ita|
∑

i∈Ita

ri1
rip

For each instance i ∈ Cu, if we assume that Sti is the set of the |Sti| worst solvers
for i then the runtime of the best solver, b, of Sit would have the pth best runtime
over all the solvers, where p = |St| − |Sit| + 1. The expected best runtime of a
solver in j ∈ St − Sit would be then tib · ep. Different values of p would result in
different performance of EISAC. If p = 1 then it means we are optimistic and
the current best solvers will never change, and if p = |St| − |Sti| + 1 then we are
pessimistic and assuming that the known runtimes are the |Sti| worst runtimes.

Numerical Results. As for the sections in the last chapter, for numerical
results, we use the SAT portfolio data made available by the SATzilla team
after the 2011 SAT Competition [8]. This dataset provides the runtimes of 31
top-tier SAT solvers with a 1,200 s timeout on over 3,000 instances spread across
the Random, Crafted and Industrial categories. After filtering out the instances
where every solver times-out, we are left with 2,524 instances. For each of these
instances the dataset also provides all of the known SAT features, but we restrict
our study to the 52 standard features [32] that do not rely on local search probing.

We use this dataset to simulate the scenario where instances are made avail-
able one at a time. Specifically, we start with a set of I0 instances for which
we know the performance of every solver. Based on this initial set, we generate
our initial clusters and select the solver that minimizes the PAR10 score of each
cluster. We then add δ instances to our dataset, evaluate them with the current
portfolio, and then evaluate whether we should retrain. We use two thresholds
for the adjusted rand index, 0.5 and 0.95. Simulating the scenario where we can
only keep a certain number of instances for the retraining, once we add the δ
new instances, we also remove the oldest δ instances.

Lets first consider the scenario where all the instances are shuffled and come
randomly. We then also consider an ordering on the data, where first we iterate
through the industrial instances, followed by the crafted, and finally the instances
that were randomly generated. This last experiment is meant to simulate the case
where instances change over time. This is also the case where traditional portfolio
approaches would fail because eventually they are tasked to solve instances they
have never observed during training.

Table 6 presents our first test case where the instances come from a shuffled
dataset. This is the typical case observed in competitions, where a representative
set of the test data is available for training. The table presents the performance
of a portfolio which have been given 200 or 500 training instances. The single
best solver (BS) is chosen as a single solver during training and then always using
it during the test phase. Alternatively, the virtual best solver (VBS) is an oracle
portfolio that for every instance always runs the best solver. The VBS represents
the limit of what can be achieved by a portfolio. We also evaluate ISAC-c50 and
ISAC-c100, trained with a minimum of 50 (respectively 100) instances in each
cluster. Note that in this setting ISAC is performing better than BS. It is also

212 B. Hurley et al.

Table 6. Comparison of performance of ISAC and EISAC on shuffled and ordered
datasets using 200 or 500 training instances. We set the minimum cluster size to be
either 50 or 100 and the adjusted rand index to either 0.5 or 0.95.

Shuffled BS ISAC EISAC EISAC ISAC EISAC EISAC VBS

c50 c50-λ0.5 c50-λ0.95 c100 c100-λ0.5 c100-λ0.95

200 Solved 1760 1776 1753 1759 1776 1752 1752 2324

% solved 75.7 76.0 75.4 75.7 76.0 75.4 75.4 100

PAR10 3001 2923 3037 3006 2923 3038 3038 75.2

Train 1 1 275 329 1 166 166 -

500 Solved 1532 1548 1548 1539 1548 1548 1544 2024

% solved 75.7 76.4 76.4 76.0 76.4 76.4 76.3 100

PAR10 3004 2912 2912 2962 2912 2912 2935 74.82

Train 1 1 1 674 1 1 104 -

Ordered BS ISAC EISAC EISAC ISAC EISAC EISAC VBS

c50 c50-λ0.5 c50-λ0.95 c100 c100-λ0.5 c100-λ0.95

200 Solved 1078 1078 1725 1793 1078 1741 1741 2324

% solved 46.3 46.3 74.2 77.2 46.3 74.9 74.9 100

PAR10 6484 6484 3160 2821 6484 3084 3084 70.42

Train 1 1 49 160 1 9 9 -

500 Solved 791 795 1261 1606 817 817 1373 2024

% solved 39.1 39.3 62.3 79.3 40.4 40.4 67.8 100

PAR10 7357 7334 4578 2556 7205 7205 3910 70.79

Train 1 1 4 611 1 1 97 -

important to note here that in the 2012 SAT Competition, the difference between
the winning and second placed single engine solver was 3 instances and only 8
instances between the top 4 solvers. Therefore the improvement of 16 instances
when training on 500 instances is significant. When compared to ISAC on this
shuffled data, we see that EISAC is performing comparably to ISAC, although
requiring significantly more training sessions. For each version of EISAC in the
table we present the minimum cluster size and the adjusted rand index threshold.
So EISAC-c100-λ0.95 has clusters with at least 100 instances and retrains as soon
as the adjusted rand index drops below 0.95.

This comparable performance on shuffled data is to be expected. As the
data is coming randomly, the initial training data was representative enough to
capture the diversity. And even if the clusters change a little overtime, the basic
assignment of solvers to instances doesn’t really change. Note that the slight
degradation between for the higher threshold in EISAC-c100 for 500 training
instance, can likely be attributed to over-tuning (or overfitting) in the numerous
re-training steps. Also note that the lower performance for 500 training instances
is misleading, since by adding 300 instances to our training set, we are removing
300 instances from the test set.

Advanced Portfolio Techniques 213

Table 7. Comparison of performance on ordered dataset using an approximation learn-
ing technique.

BS ISAC EISAC EISAC+ VBS

c50 c50-λ0.5 c50-λ0.5

200 Solved 1078 1078 1725 1671 2324

PAR10 6484 6484 3160 3440 70.42

train 1 1 49 44 -

% eval 100 100 100 59.5 -

500 Solved 791 795 1261 1264 2024

PAR10 7357 7334 4578 4561 70.79

train 1 1 4 3 -

% eval 100 100 100 83.8 -

The story becomes significantly different if the data is not shuffled as is the
case at the bottom of Table 6. Here we see that the clusters and solvers chosen by
ISAC initially are ill equipped to solve the future instances. EISAC on the other
hand, is able to adapt to the changes and outperform ISAC by almost a factor
of 2 in terms of the instances solved. What is also interesting is that for the case
of 500 training instances and small clusters, this performance is achieved with
only four re-training steps.

Table 7 examines the effectiveness of our proposed training technique. Instead
of computing the time of every solver on every training instance during re-tuning,
we lazily fill in this data until we converge on the expected best solver for a
cluster. We call this approach EISAC+. Due to space limitations, we only present
a comparison on the ordered dataset and for algorithms tuned with a minimum
cluster size of 50. What we observe is that while performance is maintained
with this lazy selection, we cut down the number of evaluations we need to 80%
and occasionally to as low as 50%. This means that we can potentially speed
up each training stage by a factor of 2 while still maintaining nearly identical
performance.

3.3 Feature Generation

Up to this point we have now seen a myriad of ways in which algorithm portfolios
can be created, expanded, and utilized. In all cases portfolios were shown to
significantly outperform any single solver. Yet while there is now a plethora
of competing approaches, all of them are dependent on the quality of a set of
structural features they use to distinguish amongst the instances. Over the years,
each domain has defined and refined its own set of features, yet at their core they
are mostly a collection of everything that was considered useful in the past. As
an alternative to this shotgun generation of features, this section will instead
show a more systematic approach. Specifically, this section will show how latent

214 B. Hurley et al.

features gathered from matrix decomposition are enough for a linear model to
achieve a level of performance comparable to a perfect Oracle portfolio.

The reason we emphasize the fact that a linear model can achieve great
performance is because while the performance of algorithm selection techniques
is continually improving, it does so at the cost of transparency of the employed
models. The version of SATzilla that won in 2012, trains a tree to predict the
winner between every pair of solvers [52]. CSHC, the 2013 winner, takes an
alternate approach of introducing a new splitting criterion for trees that makes
sure that each subtree is more consistent on the preferred solver than its root [29].
But in order to make the approach competitive, many of these trees need to be
grouped into a forest. Yet other approaches create schedules of solvers to improve
the chances of solving each instance [16,20]. Unfortunately, even though all these
approaches are highly effective at solving instances, once they are trained they
are nearly impossible to use to get a better understanding of the fundamental
issues of a particular problem domain. In short, we can now answer what we
should do when we see a new instance, the new question should therefore be
why a particular solver is chosen and we should use this information to spur the
development of a new wave of solvers. The focus of this section is therefore to
present a new portfolio approach that can achieve similar performance to leading
portfolios while also presenting a human interpretable model.

In this section, as our running example, we consider the three standard
datasets we have seen before of SAT, MaxSAT, and CSP instances. Specifically,
here the SAT dataset is comprised of 1,098 industrial instances gathered from
SAT Competitions dating back to 2006 and considers 28 solvers from 2012 each
run with a 5,000 s timeout. The MaxSAT dataset is comprised of 1,077 instances
gathered from the 2013 MaxSAT Evaluation, evaluated by the top 15 solvers
from 2013 with a 1,800 s timeout. Finally the CSP dataset considers the 2,207
instances used to train the Proteus portfolio. For all experiments the presented
numbers are based on 10-fold cross validation.

Latent Features. A latent variable is by definition something that is not
directly observable but rather inferred from observations. This is a concept that
is highly related to that of hidden variables, and is employed in a number of
disciplines including economics [39], medicine [54], and machine learning [12].
This section introduces the idea of collecting latent variables that best describe
the changes in the actual performance of solvers on instances. Thereby instead
of composing a large set of structural features that might possibly correlate with
the performance, here we present a top down approach.

Singular Value Decomposition. The ideas behind Singular Value Decomposition
herald back to the late 1800’s when they were independently discovered by five
mathematicians: Eugenio Beltrami, Camille Jordan, James Joseph Sylvester,
Erhard Schmidt, and Hermann Weyl. In practice, the technique is now currently
embraced for tasks like image compression [35] and data mining [31] by reducing
massive systems to manageable problems by eliminating redundant information
and retaining data critical to the system.

Advanced Portfolio Techniques 215

At its essence, Singular Value Decomposition is a method for identifying and
ordering the dimensions along which data points exhibit the most variation,
which is mathematically represented by the following equation:

M = UΣV T ,

where M is the m × n matrix representing the original data. Here, there are
m instances each described by n values. The columns of U are the orthonormal
eigenvectors of MMT , the columns of V are orthonormal eigenvectors of MTM ,
and Σ is a diagonal matrix containing the square roots of eigenvalues from U or
V in descending order.

Note that if m > n then, being a diagonal matrix, most of the rows in Σ will
be zeros. This means that after multiplication, only the first n columns of U are
needed. So for all intents and purposes, for m > n, U is an m × n matrix, while
both Σ and V T are n × n.

Because U and V are orthonormal, intuitively one can interpret the columns
of these matrices as a linear vector in the problem space that captures most of
the variance in the original matrix M . The values in Σ then specify how much of
the variance each column captures. The lower the value in Σ, the less important
a particular column is. This is where the concept of compression comes into play,
when the amount of columns in U and V can be reduced while still capturing
most of the variability in the original matrix.

From the perspective of data mining, the columns of the U matrix and the
rows of the V matrix have an additional interpretation. Let us assume that our
matrix M records the performance of n solvers over m instances. In such a case it
is usually safe to assume that m > n. So each row of the U matrix still describes
each of the original instances in M . But now each column can be interpreted as
a latent topic or feature that describes that instance. Meanwhile, each column
of the V T matrix refers to each solver, while each row presents how active, or
important a particular topic is for that solver.

These latent features in U give us exactly the information necessary to deter-
mine the runtime of each solver. This is because once the three matrices are
multiplied out we are able to reconstruct the original performance matrix M . So
if we are given a new instance i, if we are able to identify its latent features, we
could multiply by the existing Σ and V T matrices to get back the performance
of each solver.

Therefore, if we had the latent features for an instance as computed after
the Singular Value Decomposition, it would be possible to train a linear model
to accurately predict the performance of every solver. A linear model where
we can see exactly which features influence the performance of each solver.
Table 8 demonstrates this idea. For simplicity, here we consider very basic regres-
sion based portfolios that predict the runtime of each solver, choosing the one
expected to take the least amount of time. Naturally, if we are using the standard
features available for each dataset, a random forest with 500 trees is very good
at picking the best solver. Now for each training set we also compute matrices
U , V and Σ and train each a number of models to use the latent features in U

216 B. Hurley et al.

Table 8. Performance of algorithm selection techniques using the latent features com-
puted after singular value decomposition on SAT, MaxSAT and CSP datasets. The
algorithms are compared using the average runtime (AVG), the timeout penalized run-
time (PAR10), and the number of instances not solved (NS). We therefore observe that
a linear model using the SVD features could potentially perform as well as an oracle.

SAT MaxSAT CSP

AVG PAR10 NS AVG PAR10 NS AVG PAR10 NS

Standard
portfolio

BSS 672 3,620 69 739 6,919 412 1,156 9,851 362

Forest-500 381 1,382 23 47.1 227 12 225 994 32

VBS 245 245 0 26.6 26.6 0 131 131 0

SVD-based
portfolio

Tree 508 1,635 26 98.0 563 31 167 287 5

Linear 245 245 0 26.6 26.6 0 131 131 0

SVM (radial) 286 373 2 38.8 114 5 134 134 0

K-NN 331 589 6 34.1 109 5 135 159 1

Forest-500 300 386 2 32.0 77.0 3 135 231 4

to predict the solver performances. For the test instances, we use the runtimes,
P , to compute what the values of U should be by computing PV Σ−1. These
latent features are then used by the trained models to predict the best solver.

Unfortunately, these latent features are only available by decomposing the
original performance matrix. This is information that we only have available after
all the solvers have been run on an instance. Information that once computed
means we already know which solver should have been run.

Yet, note that the performance of the models is much better than it was using
the original features, especially for the linear model. This is again a completely
unfair comparison, but it is not as obvious as it first appears. What we can
gather from these results is that the matrix V and Σ are still relevant even
when applied to previously unseen instances. This means that the differences
between solvers can in fact be differentiated by a linear model, provided it has
the correct structural information about the instance. This also means that if we
are able to replicate the latent features of a new instance, the supporting matrices
computed by the decomposition will be able to establish the performances.

Recall also that the values in Σ are based on the eigenvalues of M . This means
that the columns associated with the lower valued entries in Σ encapsulate less
of the variance in the data than the higher valued entries. Figure 8 therefore
shows the performance of the linear model as more of the latent features are
removed under the MaxSAT WPMS dataset. We just use the MaxSAT dataset
for the example because the CSP dataset only has 4 solvers and the results for
the SAT dataset are similar to those presented. Note that while all of the latent
features are necessary to recreate the performance of the VBS, it is possible to
remove over half the latent features and still be able to solve all but 4 instances.

Advanced Portfolio Techniques 217

Fig. 8. Number of unsolved instances remaining after using a linear model trained on
the latent features after singular value decomposition. The features were removed with
those with lowest eigenvalues first. The data is collected on the WPMS dataset. This
means that even removing over half the latent features, a portfolio can be trained that
solves all but 4 instances.

Estimating Latent Features. Although we do not have direct access to the latent
features for a previously unseen instance, we can still estimate them using the
original set of features.

Note that while it is possible to use the result of ΣV ′ as a means of computing
the final times, training a linear model on top of the latent features is the better
option. True, both approaches would be performing a linear transformation of
the features, but the linear model will also be able to automatically take into
account any small errors in the predictions of the latent features. Therefore, the
method proposed in this section would use a variety of models to predict each
latent feature using the original features. The resulting predicted features will
then be used to train a set of linear models to predict the runtime of each solver.
The solver with the best predicted runtime will be evaluated.

To predict each of our latent features it is of course possible to use any
regression based approach available in machine learning. From running just the
five approaches that we have utilized in the previous sections, unsurprisingly we
observe that a random forest provides the highest quality prediction. The results
are presented in Table 9. Here SVD predicted uses a random forest to predict
the values of each latent feature and then trains a secondary linear model over
the latent features to predict the runtime of each solver.

From the numbers we observe in Table 9, we see that a linear model portfolio
using latent features behaves similarly to the original Random Forest approach
that simply predicts the runtime of each solver. This is to be expected since

218 B. Hurley et al.

Table 9. Performance of an algorithm selection technique that predicts the latent
features of each instance using a random forest on the SAT, MaxSAT and CSP datasets.
The algorithms are compared using the average runtime (AVG), the timeout penalized
runtime (PAR10), and the number of instances not solved (NS). Note that even using
predicted latent features, a linear model of “SVD (predicted)” can achieve the same
level of performance as the more powerful, but more opaque, random forest.

SAT MaxSAT CSP

AVG PAR10 NS AVG PAR10 NS AVG PAR10 NS

BSS 672 3,620 69 739 6,919 412 1,156 9,851 362

Forest-500 (orig) 381 1,382 23 47.1 227 12 225 994 32

VBS 245 245 0 26.6 26.6 0 131 131 0

SVD (predicted) 379 1277 21 49.6 274 15 219 964 31

the entire procedure as we described so far can be seen as simply adding a
single meta-layer to the model. After all, one of the nice properties of forests is
that they are able to capture highly nonlinear relations between the features and
target value. All we are doing here is adding several forests that are then linearly
combined into a single value. But this procedure does provide one crucial piece
of new information.

Whereas before there was little feedback as to which features were causing
the issues, we now know that if we have a perfect prediction of the latent fea-
tures we can dramatically improve the performance of the resulting portfolio.
Furthermore, we know that we don’t even need to focus on all of the latent
features equally, since Fig. 8 revealed that we can survive with less than half of
them.

Therefore, using singular value decomposition we can now identify the latent
features that are hard to predict, the ones resulting in the highest error. We can
then subsequently use this information to claim that the reason we are unable
to predict this value is because the regular features we have available are not
properly capturing all of the structural nuances that are needed to distinguish
instances. This observation can subsequently be used to split the instances into
two groups, one where the random forest over predicts and one where it under
predicts. This is information that can then help guide researchers to identify new
features that do capture the needed value to differentiate the two groups. This
therefore introduces a more systematic approach to generating new features.

Just from the results in Table 9 we know that our current feature vectors are
not enough when compared to what is achievable in Table 8. We also see that
for the well studied SAT and CSP instances, the performance is better than for
MaxSAT where the feature vectors have only recently been introduced.

We can then just aim to observe the next latent feature to focus on. This can
be simply done by iterating over each latent feature and artificially assigning
it the “correct” value while maintaining all the other predictions. Whichever
feature thus corrected results in the most noticeable gains is the one that should

Advanced Portfolio Techniques 219

be focused on next. Whenever two latent features tie in the possible gains, we
should also focus on matching the one with the lower index, since mathematically,
that is the feature that captures more of the variance.

If we go by instance names as a descriptive marker, surprisingly following
our approach results in a separation where both subsets have instances with the
same names. So following the latent feature suggested for the MaxSAT dataset we
observe that there is a difference between “ped2.G.recomb10-0.10-8.wcnf” and
“ped2.G.recomb1-0.20-14.wcnf”. For CSP, we are told that “fapp26-2300-8.xml”
and “fapp26-2300-3.xml” should be different. This means that the performance
of a solver on an instance goes beyond just the way that instance was generated.
There are still some fundamental structural differences between instances that
our current features are not able to identify. This only highlights the need for a
systematic way in which to continue to expand our feature sets.

Practical Application. One of the underlying messages of this section has
been that one of the things that makes algorithm portfolios so successful in
practice is the presence of highly descriptive features. Yet as we have shown so
far, the features we typically use could be refined using a systematic approach
that helps us identify when certain information is missing and helps us define the
properties of those missing features. In this part we will therefore go through the
full process on a domain where portfolios are only beginning to be introduced
and no high quality feature set exists. Specifically we will use the container
pre-marshaling process as an example of how features should be developed.

The container pre-marshalling problem (CPMP) is a well-known NP-hard
problem in the container terminals and stacking literature [7,26,41], first intro-
duced in [25]. The CPMP deals with the sorting of containers in a set of stacks
(called a bay) of intermodal containers based on their exit times from the stacks,
such that containers that must leave the stacks first are placed on top of contain-
ers that must leave later. This prevents mis-overlaid containers from blocking
the timely exit of other containers. The goal of the CPMP is to find the minimal
number of container movements necessary to ensure that all of the stacks are
sorted by the exit time of each container without exceeding the maximum height
of each stack. Solving the CPMP assists container terminals in reducing delays
and increasing the efficiency of their operations.

Given an initial layout of a bay with a fixed number of stacks and tiers
(stack height), the goal of the CPMP is to find the minimal number of container
movements (or rehandles) necessary to eliminate all mis-overlays in the bay.
Every container is assigned a group that indicates when it must leave the bay.
A mis-overlaid container is defined as a container with a group that is higher than
the group of any container underneath it, or a container above a mis-overlaid
container.

Consider the simple example of Fig. 9, which shows a bay composed of three
stacks of containers in which containers can be stacked at most four tiers high.

220 B. Hurley et al.

Fig. 9. An example solution to the CPMP with mis-overlays highlighted. (Reproduced
from [46]).

Each container is represented by a box with its corresponding group.3 This is
not an ideal layout as the containers with groups 2, 4 and 5 will need to be
relocated in order to retrieve the containers with higher groups (1 and 3). That
is, containers with groups 2, 4 and 5 are mis-overlaid. Consider a container
movement (f, t) defining the relocation of the container on top of the stack f to
the top position of the stack t. The containers in the initial layout of Fig. 9 can
reach the final layout (d) with three relocation moves: (2, 3) reaching layout (b),
(2, 3) reaching layout (c) and (1, 2) reaching layout (d) where no mis-overlays
occur.

Pre-marshalling is important both in terms of operational and tactical goals
at a container terminal. In particular, effective pre-marshalling of containers can
help reduce delays moving containers from the terminal yard onto vessels, as
well as from the yard onto trucks or trains. Consider [46] for more information
and a discussion of related work.

The features used in our dataset are given in Fig. 10, split into three cat-
egories. Features 1 through 16 were designed before performing latent feature
analysis. Features 17 through 20 were created based on our first iteration of
latent feature analysis, and features 21 and 22 using our second iteration.

Original features are created in the standard way for algorithm selection
benchmarks, based on domain knowledge. The first 5 features address the prob-
lem size and density of containers. Feature 6 counts the number of mis-overlaid
containers, a naive lower bound to the problem, whereas Feature 7 counts how
many stacks contain mis-overlaid containers. Feature 8 provides the lower bound
from [6], analyzing indirect container movements in addition to the mis-overlays
present in feature 7. Features 9 through 12 offer information on how many con-
tainers belong to each group. Features 12 through 15 attempt to uncover the
structure of the groups of the top non-mis-overlaid container on each stack.

LFA features are constructed based on the suggestions of the latent features.
Feature 17 is the density of containers on the “left” side of the instance. We

3 We note that multiple containers may have the same group, but in order to make
containers easily identifiable, in this example we have assigned a different group to
each container.

Advanced Portfolio Techniques 221

Fig. 10. Features for the CPMP.

note that this feature is likely “overtuned” to the algorithms in our benchmark.
Feature 18 measures whether containers with high group values are on high or
low tiers by multiplying the tier of a container by its group, summing these
values together and dividing by the maximum this value could take (namely
if the highest group container was in each slot). Feature 19 measures the L1
(manhattan) distance from the top left of a problem to each container in the
latest exit time, averaging these distances if there are multiple containers in the
latest exit group. The final feature from iteration 1 computes the percentage of
empty space in the instance in which an area of contiguous empty space includes
at least one empty stack. Features 21 and 22 come from LFA iteration 2. Feature
21 counts how many stacks with more than two containers are mis-overlaid, and
Feature 22 counts “low” (≤ max -group/4) valued containers on the top of stacks.

Using the four available solvers to tackle the pre-marshaling problem, we
evaluate the feature sets using a typical portfolio approach. Table 10 provides
the performances of a portfolio when trained on the three datasets versus the
best single solver (BSS) and the virtual best solver (VBS), which is a portfolio
that always picks the correct solver. As is typical, using just the initial arbi-
trary features the portfolio already performs significantly better than the BSS,
indicating even the original features have descriptive value.

When a portfolio is trained on the first iteration of features, the performance
improves not only in the number of instances solved, but also on the average
time taken to solve each instance. This shows that by utilizing the latent feature
analysis, a researcher is able to develop a richer set of features to describe the

222 B. Hurley et al.

Table 10. Performance of a portfolio trained on the three feature sets.

Solver Avg PAR-10 Solved

BSS 78.6 5,923 458

Original features 51.6 3,469 495

LFA iteration 1 features 46.6 2,741 506

LFA iteration 2 features 45.4 2,543 509

VBS 12.8 12.8 547

instances. Furthermore, the process can be repeated, as is evidenced by the
performance of the portfolio on the second iteration of features. Note that the
overall performance is again improved not only in the number of instances solved,
but the time taken to solve them on average. Thus, multiple iterations of the
latent feature analysis process can lead to even better features, although there
are clearly diminishing returns.

3.4 Conclusions

We have presented a number of advanced portfolio techniques. Specifically, one
portfolio approach that does not rely on a single problem representation or set
of solvers, but leverages our ability to convert between problem representations
to increase the space of possible solving approaches. In doing so, the contrasting
performance among solvers on different representations of the same problem can
be exploited. The overall performance can be improved significantly compared
to restricting the portfolio to a single problem representation. We demonstrated
empirically the significant performance improvements Proteus can achieve on a
large set of diverse benchmarks using a portfolio based on a range of different
state-of-the-art solvers.

Furthermore, we have presented novel algorithm portfolio techniques that
again help to improve performance by building the portfolio iteratively and
dynamically adapting it. Finally, we have investigated methods for construct-
ing enhanced instance features for algorithm selection.

Acknowledgements. This work is supported by Science Foundation Ireland (SFI)
Grant 10/IN.1/I3032 and FP7 FET-Open Grant 284715. The Insight Centre for Data
Analytics is supported by SFI Grant SFI/12/RC/2289.

References

1. CSP Solver Competition Benchmarks. http://www.cril.univ-artois.fr/∼lecoutre/
benchmarks.html (2009)

2. Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for the
automatic configuration of algorithms. In: Gent, I.P. (ed.) CP 2009. LNCS, vol.
5732, pp. 142–157. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04244-7 14

http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html
http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html
http://dx.doi.org/10.1007/978-3-642-04244-7_14

Advanced Portfolio Techniques 223

3. Argelich, J., Li, C., Manyà, F., Planes, J.: Maxsat evaluations (2012). www.maxsat.
udl.cat

4. Audemard, G., Simon, L.: Glucose 2.3 in the SAT 2013 competition. In: Proceed-
ings of SAT Competition 2013, p. 42 (2013)

5. Biere, A.: Lingeling, plingeling and treengeling entering the SAT competition 2013.
In: Proceedings of SAT Competition 2013 (2013)

6. Bortfeldt, A., Forster, F.: A tree search procedure for the container pre-marshalling
problem. Eur. J. Oper. Res. 217(3), 531–540 (2012)

7. Carlo, H., Vis, I., Roodbergen, K.: Storage yard operations in container terminals:
literature overview, trends, and research directions. Eur. J. Oper. Res. 235(2),
412–430 (2014)

8. Data, S.: (2011). http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/
9. Een, N., Sörensson, N.: Minisat 2.2 (2013). http://minisat.se

10. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: a conflict-driven
answer set solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007.
LNCS (LNAI), vol. 4483, pp. 260–265. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-72200-7 23

11. Gecode Team: Gecode: Generic Constraint Development Environment (2006).
http://www.gecode.org

12. Ghahramani, Z., Griffiths, T.L., Sollich, P.: Bayesian nonparametric latent feature
models. In: World Meeting on Bayesian Statistics (2006)

13. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18
(2009)

14. Hebrard, E.: Mistral, a constraint satisfaction library. In: Proceedings of the Third
International CSP Solver Competition (2008)

15. Hebrard, E., O’Mahony, E., O’Sullivan, B.: Constraint programming and com-
binatorial optimisation in numberjack. In: Lodi, A., Milano, M., Toth, P. (eds.)
CPAIOR 2010. LNCS, vol. 6140, pp. 181–185. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-13520-0 22

16. Helmert, M., Röger, G., Karpas, E.: Fast downward stone soup: a baseline for
building planner portfolios. In: ICAPS (2011)

17. Hoos, H.: Adaptive novelty+: novelty+ with adaptive noise. In: AAAI (2002)
18. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985).

http://dx.doi.org/10.1007/BF01908075
19. Hutter, F., Tompkins, D., Hoos, H.: Rsaps: reactive scaling and probabilistic

smoothing. In: CP (2002)
20. Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algo-

rithm selection and scheduling. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp.
454–469. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23786-7 35

21. Kadioglu, S., Malitsky, Y., Sellmann, M., Tierney, K.: ISAC - instance-specific
algorithm configuration. In: ECAI, pp. 751–756 (2010)

22. Kotthoff, L.: LLAMA: leveraging learning to automatically manage algorithms.
Technical report, June 2013. arXiv:1306.1031, http://arxiv.org/abs/1306.1031

23. Le Berre, D., Lynce, I.: CSP2SAT4J: a simple CSP to SAT translator. In: Pro-
ceedings of the Second International CSP Solver Competition (2008)

24. Lecoutre, C., Tabary, S.: Abscon 112, toward more robustness. In: Proceedings of
the Third International CSP Solver Competition (2008)

25. Lee, Y., Hsu, N.: An optimization model for the container pre-marshalling problem.
Comput. Oper. Res. 34(11), 3295–3313 (2007)

http://www.maxsat.udl.cat
http://www.maxsat.udl.cat
http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/
http://minisat.se
http://dx.doi.org/10.1007/978-3-540-72200-7_23
http://dx.doi.org/10.1007/978-3-540-72200-7_23
http://www.gecode.org
http://dx.doi.org/10.1007/978-3-642-13520-0_22
http://dx.doi.org/10.1007/978-3-642-13520-0_22
http://dx.doi.org/10.1007/BF01908075
http://dx.doi.org/10.1007/978-3-642-23786-7_35
http://arxiv.org/abs/1306.1031
http://arxiv.org/abs/1306.1031

224 B. Hurley et al.

26. Lehnfeld, J., Knust, S.: Loading, unloading and premarshalling of stacks in storage
areas: survey and classification. Eur. J. Oper. Res. 239(2), 297–312 (2014)

27. Li, C., Huang, W.: G2wsat: gradient-based greedy walksat. SAT 3569, 158–172
(2005)

28. Malitsky, Y., Sellmann, M.: Instance-specific algorithm configuration as a method
for non-model-based portfolio generation. In: Beldiceanu, N., Jussien, N., Pinson,
É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 244–259. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-29828-8 16

29. Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algorithm portfolios
based on cost-sensitive hierarchical clustering. In: IJCAI (2013)

30. Manthey, N.: The SAT solver RISS3G at SC 2013. In: Proceedings of SAT Com-
petition 2013, p. 72 (2013)

31. Martin, C., Porter, M.: The extraordinary SVD. Math. Assoc. Am. 119(10), 838–
851 (2012)

32. Nudelman, E., Leyton-Brown, K., Hoos, H.H., Devkar, A., Shoham, Y.: Under-
standing random SAT: beyond the clauses-to-variables ratio. In: Wallace, M. (ed.)
CP 2004. LNCS, vol. 3258, pp. 438–452. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-30201-8 33

33. Pham, D., Anbulagan: ranov. Solver description. SAT Competition (2007)
34. Pham, D., Gretton, C.: gnovelty+. Solver description. SAT Competition (2007)
35. Prasantha, H.: Image compression using SVD. In: Conference on Computational

Intelligence and Multimedia Applications, pp. 143–145 (2007)
36. Prestwich, S.: Vw: Variable weighting scheme. SAT (2005)
37. Rand, W.: Objective criteria for the evaluation of clustering methods. J. Am.

Statist. Assoc. 66(336), 846–850 (1971)
38. Roussel, O., Lecoutre, C.: XML Representation of Constraint Networks: Format

XCSP 2.1. CoRR abs/0902.2362 (2009)
39. Rutz, O.J., Bucklin, R.E., Sonnier, G.P.: A latent instrumental variables approach

to modeling keyword conversion in paid search advertising. J. Mark. Res. 49, 306–
319 (2012)

40. Soos, M.: Cryptominisat 2.9.0 (2011)
41. Stahlbock, R., Voß, S.: Operations research at container terminals: a literature

update. OR Spectr. 30(1), 1–52 (2008)
42. Tamura, N., Tanjo, T., Banbara, M.: System description of a SAT-based CSP

solver sugar. In: Proceedings of the Third International CSP Solver Competition,
pp. 71–75 (2009)

43. Tanjo, T., Tamura, N., Banbara, M.: Azucar: a SAT-based CSP solver using com-
pact order encoding. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol.
7317, pp. 456–462. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31612-8 37

44. Choco team: choco: an Open Source Java Constraint Programming Library (2008)
45. Thornton, J., Pham, D., Bain, S., Ferreira, V.: Additive versus multiplicative clause

weighting for SAT. In: PRICAI, pp. 405–416 (2008)
46. Tierney, K., Pacino, D., Voß, S.: Solving the pre-marshalling problem to optimal-

ity with A* and IDA*. Technical report, WP#1401, DS&OR Lab, University of
Paderborn (2014)

47. Tompkins, D., Hutter, F., Hoos, H.: saps. Solver description. SAT Competi-
tion(2007)

48. Wei, W., Li, C., Zhang, H.: adaptg2wsatp. Solver description. SAT Competi-
tion(2007)

49. Wei, W., Li, C., Zhang, H.: Combining adaptive noise and promising decreasing
variables in local search for SAT. Solver description. SAT Competition(2007)

http://dx.doi.org/10.1007/978-3-642-29828-8_16
http://dx.doi.org/10.1007/978-3-540-30201-8_33
http://dx.doi.org/10.1007/978-3-540-30201-8_33
http://dx.doi.org/10.1007/978-3-642-31612-8_37

Advanced Portfolio Techniques 225

50. Wei, W., Li, C., Zhang, H.: Deterministic and random selection of variables in local
search for sat. Solver description. SAT Competition (2007)

51. Xu, L., Hoos, H., Leyton-Brown, K.: Hydra: automatically configuring algorithms
for portfolio-based selection. In: AAAI (2010)

52. Xu, L., Hutter, F., Shen, J., Hoos, H., Leyton-Brown, K.: SATzilla 2012: improved
algorithm selection based on cost-sensitive classification models. SAT Competition
(2012)

53. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: portfolio-based algo-
rithm selection for SAT. J. Artif. Intell. Res. 32, 565–606 (2008)

54. Yang, W., Yi, D., Xie, Y., Tian, F.: Statistical identification of syndromes feature
and structure of disease of western medicine based on general latent structure
mode. Chin. J. Integr. Med. 18, 850–861 (2012)

Adapting Consistency in Constraint Solving

Amine Balafrej1(B), Christian Bessiere2, Anastasia Paparrizou2,
and Gilles Trombettoni2

1 TASC (INRIA/CNRS), Mines Nantes, Nantes, France
amine.balafrej@mines-nantes.fr

2 CNRS, University of Montpellier, Montpellier, France
bessiere@lirmm.fr

Abstract. State-of-the-art constraint solvers uniformly maintain the
same level of local consistency (usually arc consistency) on all the
instances. We propose two approaches to adjust the level of consis-
tency depending on the instance and on which part of the instance we
propagate. The first approach, parameterized local consistency, uses as
parameter the stability of values, which is a feature computed by arc
consistency algorithms during their execution. Parameterized local con-
sistencies choose to enforce arc consistency or a higher level of local
consistency to a value depending on whether the stability of the value
is above or below a given threshold. In the adaptive version, the para-
meter is dynamically adapted during search, and so is the level of local
consistency. In the second approach, we focus on partition-one-AC, a
singleton-based consistency. We propose adaptive variants of partition-
one-AC that do not necessarily run until having proved the fixpoint. The
pruning can be weaker than the full version, but the computational effort
can be significantly reduced. Our experiments show that adaptive para-
meterized maxRPC and adaptive partition-one-AC can obtain significant
speed-ups over arc consistency and over the full versions of maxRPC and
partition-one-AC.

1 Introduction

Enforcing local consistency by applying constraint propagation during search is
one of the strengths of constraint programming (CP). It allows the constraint
solver to remove locally inconsistent values. This leads to a reduction of the
search space. Arc consistency is the oldest and most well-known way of propagat-
ing constraints [Bes06]. It has the nice feature that it does not modify the struc-
ture of the constraint network. It just prunes infeasible values. Arc consistency is
the standard level of consistency maintained in constraint solvers. Several other
local consistencies pruning only values and stronger than arc consistency have
been proposed, such as max restricted path consistency or singleton arc con-
sistency [DB97]. These local consistencies are seldom used in practice because
of the high computational cost of maintaining them during search.However, on

The results contained in this chapter have been presented in [BBCB13] and
[BBBT14]. This work has been funded by the EU project ICON (FP7-284715).

c© Springer International Publishing AG 2016
C. Bessiere et al. (Eds.): Data Mining and Constraint Programming, LNAI 10101, pp. 226–253, 2016.
DOI: 10.1007/978-3-319-50137-6 9

Adapting Consistency in Constraint Solving 227

some instances of problems, maintaining arc consistency is not a good choice
because of the high number of ineffective revisions of constraints that penalize
the CPU time. For instance, Stergiou observed that when solving the scen11, an
instance from the radio link frequency assignment problem (RLFAP) class, with
an algorithm maintaining arc consistency, only 27 out of the 4103 constraints of
the problem were identified as causing a domain wipe-out and 1921 constraints
did not prune any value [Ste09].

Choosing the right level of local consistency for solving a problem requires
finding a good trade-off between the ability of this local consistency to remove
inconsistent values, and the cost of the algorithm that enforces it. The works of
[Ste08] and [PS12] suggest to take advantage of the power of strong propagation
algorithms to reduce the search space while avoiding the high cost of maintaining
them in the whole network. These methods result in a heuristic approach based
on the monitoring of propagation events to dynamically adapt the level of local
consistency (arc consistency or max restricted path consistency) to individual
constraints. This prunes more values than arc consistency and less than max
restricted path consistency. The level of propagation obtained is not character-
ized by a local consistency property. Depending on the order of propagation,
we can converge on different closures. In other work, a high level of consistency
is applied in a non exhaustive way, because it is very expensive when applied
exhaustively everywhere in the network during the whole search. In [SS09], a
preprocessing phase learns which level of consistency to apply on which parts
of the instance. When dealing with global constraints, some authors propose
to weaken arc consistency instead of strengthening it. In [KVH06], Katriel et
al. proposed a randomized filtering scheme for AllDifferent and Global Cardi-
nality Constraint. In [Sel03], Sellmann introduced the concept of approximated
consistency for optimization constraints and provided filtering algorithms for
Knapsack Constraints based on bounds with guaranteed accuracy.

In this chapter, we propose two approaches for adapting automatically the
level of consistency during search. Our first approach is based on the notion of
stability of values. This is an original notion independent of the characteristics of
the instance to be solved, but based on the state of the arc consistency algorithm
during its propagation. Based on this notion, we propose parameterized consis-
tencies, an original approach to adjust the level of consistency inside a given
instance. The intuition is that if a value is hard to prove arc consistent (i.e., the
value is not stable for arc consistency), this value will perhaps be pruned by a
stronger local consistency. The parameter p specifies the threshold of stability
of a value v below which we will enforce a stronger consistency to v. A para-
meterized consistency p-LC is thus an intermediate level of consistency between
arc consistency and another consistency LC, stronger than arc consistency. The
strength of p-LC depends on the parameter p. This approach allows us to find a
trade-off between the pruning power of local consistency and the computational
cost of the algorithm that achieves it. We apply p-LC to the case where LC is
max restricted path consistency. We describe the algorithm p-maxRPC3 (based
on maxRPC3 [BPSW11]) that achieves p-max restricted path consistency. Then,
we propose ap-LC, an adaptive variant of p-LC that uses the number of failures

228 A. Balafrej et al.

in which variables or constraints are involved to assess the difficulty of the dif-
ferent parts of the problem during search. ap-LC dynamically and locally adapts
the level p of local consistency to apply depending on this difficulty.

Our second approach is inspired by singleton-based consistencies. They have
been shown extremely efficient to solve some classes of hard problems [BCDL11].
Singleton-based consistencies apply the singleton test principle, which consists
of assigning a value to a variable and trying to refute it by enforcing a given level
of consistency. If a contradiction occurs during this singleton test, the value is
removed from its domain. The first example of such a local consistency is Sin-
gleton Arc Consistency (SAC), introduced in [DB97]. In SAC, the singleton test
enforces arc consistency. By definition, SAC can only prune values in the variable
domain on which it currently performs singleton tests. In [BA01], Partition-One-
AC (which we call POAC) has been proposed. POAC is an extension of SAC
that can prune values everywhere in the network as soon as a variable has been
completely singleton tested. As a consequence, the fixpoint in terms of filtering
is often quickly reached in practice. This observation has already been made
on numerical constraint problems. In [TC07,NT13], a consistency called Con-
structive Interval Disjunction (CID), close to POAC in its principle, gave good
results by simply calling the main procedure once on each variable or by adapt-
ing during search the number of times it is called. Based on these observations,
we propose an adaptive version of POAC, called APOAC, where the number of
times variables are processed for singleton tests on their values is dynamically
and automatically adapted during search. A sequence of singleton tests on all
values of one variable is called a varPOAC call. The number k of times varPOAC
is called will depend on how effective POAC is or not in pruning values. This
number k of varPOAC calls will be learned during a sequence of nodes of the
search tree (learning nodes) by measuring stagnation in the amount of pruned
values. This amount k of varPOAC calls will be applied at each node during
a sequence of nodes (called exploitation nodes) before we enter a new learning
phase to adapt k again. Observe that if the number of varPOAC calls learned is 0,
then adaptive POAC will mimic AC.

The aim of both of the proposed adaptive approaches (i.e., ap-LC and
APOAC) is to adapt the level of consistency automatically and dynamically
during search. ap-LC uses failure information to learn what are the most diffi-
cult parts of the problem and it increases locally and dynamically the parameter
p on those difficult parts. APOAC measures a stagnation in number of inconsis-
tent values removed for k calls of varPOAC. APOAC then uses this information
to stop enforcing POAC. APOAC avoids the cost of the last calls to varPOAC
that delete very few values or no value at all. We thus see that both ap-LC and
APOAC learn some information during search to adapt the level of consistency.
This allows them to benefit from the pruning power of a high level of consistency
while avoiding the prohibitive time cost of fully maintaining this high level.

The rest of the paper is organized as follows. Section 2 contains the necessary
formal background. Section 3 describes the parameterized consistency approach
and gives an algorithm for parameterized maxRPC. In Sect. 4, the adaptive

Adapting Consistency in Constraint Solving 229

variant of parameterized consistency is defined. Sections 5 and 6 are devoted
to our study of singleton-based consistencies. In Sect. 5, we propose an efficient
POAC algorithm that will be used as a basis for the adaptive versions of POAC.
Section 6 presents different ways to learn the number of variables on which to
perform singleton tests. All these sections contain experimental results that val-
idate the different contributions. Section 7 concludes this work.

2 Background

A constraint network is defined as a set of n variables X = {x1, . . . , xn}, a
set of ordered domains D = {D(x1), . . . , D(xn)}, and a set of e constraints
C = {c1, . . . , ce}. Each constraint ck is defined by a pair (var(ck), sol(ck)), where
var(ck) is an ordered subset of X, and sol(ck) is a set of combinations of values
(tuples) satisfying ck. In the following, we restrict ourselves to binary constraints,
because the local consistency (maxRPC) we use here to instantiate our approach
is defined on the binary case only. However, the notions we introduce can be
extended to non-binary constraints, by using maxRPWC for instance [BSW08].
A binary constraint c between xi and xj will be denoted by cij , and Γ(xi) will
denote the set of variables xj involved in a constraint with xi.

A value vj ∈ D(xj) is called an arc consistent support (AC support) for
vi ∈ D(xi) on cij if (vi, vj) ∈ sol(cij). A value vi ∈ D(xi) is arc consistent (AC)
if and only if for all xj ∈ Γ(xi) vi has an AC support vj ∈ D(xj) on cij . A
domain D(xi) is arc consistent if it is non empty and all values in D(xi) are arc
consistent. A network is arc consistent if all domains in D are arc consistent. If
enforcing arc consistency on a network N leads to a domain wipe out, we say
that N is arc inconsistent.

A tuple (vi, vj) ∈ D(xi)×D(xj) is path consistent (PC) if and only if for any
third variable xk there exists a value vk ∈ D(xk) such that vk is an AC support
for both vi and vj . In such a case, vk is called witness for the path consistency
of (vi, vj).

A value vj ∈ D(xj) is a max restricted path consistent (maxRPC) support for
vi ∈ D(xi) on cij if and only if it is an AC support and the tuple (vi, vj) is path
consistent. A value vi ∈ D(xi) is max restricted path consistent on a constraint
cij if and only if there exist vj ∈ D(xj) maxRPC support for vi on cij . A value
vi ∈ D(xi) is max restricted path consistent ifand only if for all xj ∈ Γ(xi) vi has
a maxRPC support vj ∈ D(xj) on cij . A variable xi is maxRPC if its domain
D(xi) is non empty and all values in D(xi) are maxRPC. A network is maxRPC
if all domains in D are maxRPC.

A value vi ∈ D(xi) is singleton arc consistent (SAC) if and only if the network
N |xi=vi

where D(xi) is reduced to the singleton {vi} is not arc inconsistent.
A variable xi is SAC if D(xi) �= ∅ and all values in D(xi) are SAC. A network
is SAC if all its variables are SAC.

A variable xi is partition-one-AC (POAC) if and only if D(xi) �= ∅, all values
in D(xi) are SAC, and ∀j ∈ 1 . . . n, j �= i,∀vj ∈ D(xj), ∃vi ∈ D(xi) such that
vj ∈ AC(N |xi=vi

). A constraint network N = (X,D,C) is POAC if and only if

230 A. Balafrej et al.

all its variables are POAC. Observe that POAC, as opposed to SAC, is able to
prune values from all variable domains when being enforced on a given variable.

Following [DB97], we say that a local consistency LC1 is stronger than a
local consistency LC2 (LC2 � LC1) if LC2 holds on any constraint network on
which LC1 holds. It has been shown in [BA01] that POAC is strictly stronger
than SAC. Hence, SAC holds on any constraint network on which POAC holds
and there exist constraint networks on which SAC holds but not POAC.

The problem of deciding whether a constraint network has solutions is called
the constraint satisfaction problem (CSP), and it is NP-complete. Solving a CSP
is mainly done by backtrack search that maintains some level of consistency
between each branching step.

3 Parameterized Consistency

In this section, we present an original approach to parameterize a level of consis-
tency LC stronger than arc consistency so that it degenerates to arc consistency
when the parameter equals 0, to LC when the parameters equals 1, and to levels
in between when the parameter is between 0 and 1. The idea behind this is to be
able to adjust the level of consistency to the instance to be solved, hoping that
such an adapted level of consistency will prune significantly more values than
arc consistency while being less time consuming than LC.

Parameterized consistency is based on the concept of stability of values. We
first need to define the ‘distance to end’ of a value in a domain. This captures
how far a value is from the last in its domain. In the following, rank(v, S) is the
position of value v in the ordered set of values S.

Definition 1 (Distance to end of a value). The distance to end of a value
vi ∈ D(xi) is the ratio

Δ(xi, vi) = (|Do(xi)| − rank(vi,Do(xi)))/|Do(xi)|,
where Do(xi) is the initial domain of xi.

We see that the first value in Do(xi) has distance (|Do(xi)|−1)/|Do(xi)| and
the last one has distance 0. Thus, ∀vi ∈ D(xi), 0 ≤ Δ(xi, vi) < 1.

We can now give the definition of what we call the parameterized stability
of a value for arc consistency. The idea is to define stability for values based
on the distance to the end of their AC supports. For instance, consider the
constraint x1 ≤ x2 with the domains D(x1) = D(x2) = {1, 2, 3, 4} (see Fig. 1).
Δ(x2, 1) = (4 − 1)/4 = 0.75, Δ(x2, 2) = 0.5, Δ(x2, 3) = 0.25 and Δ(x2, 4) = 0.
If p = 0.2, the value (x1, 4) is not p-stable for AC, because the first and only
AC support of (x1, 4) in the ordering used to look for supports, that is (x2, 4),
has a distance to end smaller than the threshold p. Proving that the pair (4, 4)
is inconsistent (by a stronger consistency) could lead to the pruning of (x1, 4).
In other words, applying a stronger consistency on (x1, 4) has a higher chance
to lead to its removal than applying it to for instance (x1, 1), which had no
difficulty to find its first AC support (distance to end of (x2, 1) is 0.75).

Adapting Consistency in Constraint Solving 231

Fig. 1. Stability of supports on the example of the constraint x1 ≤ x2 with the domains
D(x1) = D(x2) = {1, 2, 3, 4}. (x1, 4) is not p-stable for AC.

At this point, we want to emphasize that the ordering of values used to
look for supports in the domains is not related to the order in which values
are selected by the branching heuristic used by the backtrack search procedure.
That is, we can use a given order of values for looking for supports and another
one for exploring the search tree.

Definition 2 (p-stability for AC). A value vi ∈ D(xi) is p-stable for AC on
cij iff vi has an AC support vj ∈ D(xj) on cij such that Δ(xj , vj) ≥ p. A value
vi ∈ D(xi) is p-stable for AC iff ∀xj ∈ Γ(xi), vi is p-stable for AC on cij.

We are now ready to give the first definition of parameterized local consis-
tency. This first definition can be applied to any local consistency LC for which
the consistency of a value on a constraint is well defined. This is the case for
instance for all triangle-based consistencies [DB01,Bes06].

Definition 3 (Constraint-based p-LC). Let LC be a local consistency
stronger than AC for which the LC consistency of a value on a constraint is
defined. A value vi ∈ D(xi) is constraint-based p-LC on cij iff it is p-stable for
AC on cij, or it is LC on cij. A value vi ∈ D(xi) is constraint-based p-LC iff
∀cij, vi is constraint-based p-LC on cij. A constraint network is constraint-based
p-LC iff all values in all domains in D are constraint-based p-LC.

Theorem 1. Let LC be a local consistency stronger than AC for which the LC
consistency of a value on a constraint is defined. Let p1 and p2 be two parameters
in [0..1]. If p1 < p2, then AC � constraint-based p1-LC � constraint-based p2-
LC � LC.

Proof. Suppose that there exist two parameters p1, p2 such that 0 ≤ p1 < p2 ≤
1, and suppose that there exists a p2-LC constraint network N that contains
a p2-LC value (xi, vi) that is p1-LC inconsistent. Let cij be the constraint on
which (xi, vi) is p1-LC inconsistent. Then, �vj ∈ D(xj) that is an AC support
for (xi, vi) on cij such that Δ(xj , vj) ≥ p1. Thus, vi is not p2-stable for AC on
cij . In addition, vi is not LC on cij . Therefore, vi is not p2-LC, and N is not
p2-LC. �

232 A. Balafrej et al.

Definition 3 can be modified to a more coarse-grained version that is not
dependent on the consistency of values on a constraint. This will have the advan-
tage to apply to any type of strong local consistency, even those, like singleton arc
consistency, for which the consistency of a value on a constraint is not defined.

Definition 4 (Value-based p-LC). Let LC be a local consistency stronger
than AC. A value vi ∈ D(xi) is value-based p-LC if and only if it is p-stable
for AC or it is LC. A constraint network is value-based p-LC if and only if all
values in all domains in D are value-based p-LC.

Theorem 2. Let LC be a local consistency stronger than AC. Let p1 and p2 be
two parameters in [0..1]. If p1 < p2 then AC � value-based p1-LC � value-based
p2-LC � LC.

Proof. Suppose that there exist two parameters p1, p2 such that 0 ≤ p1 <
p2 ≤ 1, and suppose that there exists a p2-LC constraint network N that contains
a p2-LC value (xi, vi) that is p1-LC-inconsistent. vi is p1-LC-inconsistent means
that:

1. vi is not p1-stable for AC: ∃cij on which vi is not p1-stable for AC. Then
�vj ∈ D(xj) that is an AC support for (xi, vi) on cij such that Δ(xj , vj) ≥ p1.
Therefore, vi is not p2-stable for AC on cij , then vi is not p2-stable for AC.

2. vi is LC inconsistent.

(1) and (2) imply that vi is not p2-LC and N is not p2-LC. �

For both types of definitions of p-LC, we have the following property on the
extreme cases (p = 0, p = 1).

Corollary 1. Let LC1 and LC2 be two local consistencies stronger than AC.
We have: value-based 0-LC2 = AC and value-based 1-LC2 = LC. If the LC1

consistency of a value on a constraint is defined, we also have: constraint-based
0-LC1 = AC and constraint-based 1-LC1 = LC.

3.1 Parameterized MaxRPC: p-maxRPC

To illustrate the benefit of our approach, we apply parameterized consistency to
maxRPC to obtain the p-maxRPC level of consistency that achieves a consis-
tency level between AC and maxRPC.

Definition 5 (p-maxRPC). A value is p-maxRPC if and only if it is cons-
traint-based p-maxRPC. A network is p-maxRPC if and only if it is constraint-
based p-maxRPC.

From Theorem 1 and Corollary 1 we derive the following corollary.

Corollary 2. For any two parameters p1, p2, 0 ≤ p1 < p2 ≤ 1, AC � p1-
maxRPC � p2-maxRPC � maxRPC. 0-maxRPC = AC and 1-maxRPC =
maxRPC.

Adapting Consistency in Constraint Solving 233

Algorithm 1. Initialization(X,D,C,Q)
1 begin
2 foreach xi ∈ X do
3 foreach vi ∈ D(xi) do
4 foreach xj ∈ Γ(xi) do
5 p-support ← false;
6 foreach vj ∈ D(xj) do
7 if (vi, vj) ∈ cij then
8 LastACxi,vi,xj← vj ;
9 if Δ(xj , vj) ≥ p then

10 p-support ← true;
11 LastPCxi,vi,xj← vj ;
12 break;

13 if searchPCwit(vi, vj) then
14 p-support ← true;
15 LastPCxi,vi,xj← vj ;
16 break;

17 if ¬p-support then
18 remove vi from D(xi);
19 Q ← Q ∪ {xi};
20 break;

21 if D(xi) = ∅ then return false;

22 return true;

We propose an algorithm for p-maxRPC, based on maxRPC3, the best exist-
ing maxRPC algorithm. We do not describe maxRPC3 in full detail, as it can be
found in [BPSW11]. We only describe procedures where changes to maxRPC3
are necessary to design p-maxRPC3, a coarse grained algorithm that performs
p-maxRPC. We use light grey to emphasize the modified parts of the original
maxRPC3 algorithm.

maxRPC3 uses a propagation list Q where it inserts the variables whose
domains have changed. It also uses two other data structures: LastAC and
LastPC. For each value (xi, vi), LastACxi,vi,xj

stores the smallest AC support
for (xi, vi) on cij and LastPCxi,vi,xj

stores the smallest PC support for (xi, vi)
on cij (i.e., the smallest AC support (xj , vj) for (xi, vi) on cij such that (vi, vj)
is PC). This algorithm comprises two phases: initialization and propagation.

In the initialization phase (Algorithm1) maxRPC3 checks if each value
(xi, vi) has a maxRPC-support (xj , vj) on each constraint cij . If not, it removes
vi from D(xi) and inserts xi in Q. To check if a value (xi, vi) has a maxRPC-
support on a constraint cij , maxRPC3 looks first for an AC-support (xj , vj) for
(xi, vi) on cij , then it checks if (vi, vj) is PC. In this last step, changes were

234 A. Balafrej et al.

Algorithm 2. checkPCsupLoss(vj , xi)

1 begin
2 if LastACxj ,vj ,xi∈ D(xi) then
3 bi ← max(LastPCxj ,vj ,xi+1,LastACxj ,vj ,xi);
4 else
5 bi ← max(LastPCxj ,vj ,xi+1,LastACxj ,vj ,xi+1);

6 foreach vi ∈ D(xi), vi ≥ bi do
7 if (vj , vi) ∈ cji then
8 if LastACxj ,vj ,xi /∈ D(xi) & LastACxj ,vj ,xi>LastPCxj ,vj ,xi then
9 LastACxj ,vj ,xi← vi;

10 if Δ(xi, vi) ≥ p then
11 LastPCxj ,vj ,xi← vi;
12 return true;

13 if searchPCwit(vj , vi) then
14 LastPCxj ,vj ,xi← vi;
15 return true;

16 return false;

necessary to obtain p-maxRPC3 (lines 9–12). We check if (vi, vj) is PC (line 13)
only if Δ(xj , vj) is smaller than the parameter p (line 9).

The propagation phase of maxRPC3 involves propagating the effect of dele-
tions. While Q is non empty, maxRPC3 extracts a variable xi from Q and checks
for each value (xj , vj) of each neighboring variable xj ∈ Γ(xi) if it is not maxRPC
because of deletions of values in D(xi). A value (xj , vj) becomes maxRPC
inconsistent in two cases: if its unique PC-support (xi, vi) on cij has been
deleted, or if we deleted the unique witness (xi, vi) for a pair (vj , vk) such that
(xk, vk) is the unique PC-support for (xj , vj) on cjk. So, to propagate deletions,
maxRPC3 checks if the last maxRPC support (last known support) of (xj , vj)
on cij still belongs to the domain of xi, otherwise it looks for the next support
(Algorithm 2). If such a support does not exist, it removes the value vj and adds
the variable xj to Q. Then if (xj , vj) has not been removed in the previous step,
maxRPC3 checks (Algorithm 3) whether there is still a witness for each pair
(vj , vk) such that (xk, vk) is the PC support for (xj , vj) on cjk. If not, it looks
for the next maxRPC support for (xj , vj) on cjk. If such a support does not
exist, it removes vj from D(xj) and adds the variable xj to Q.

In the propagation phase, we also modified maxRPC3 to check if the values
are still p-maxRPC instead of checking if they are maxRPC. In p-maxRPC3, the
last p-maxRPC support for (xj , vj) on cij is the last AC support if (xj , vj) is p-
stable for AC on cij . If not, it is the last PC support. Thus, p-maxRPC3 checks if
the last p-maxRPC support (last known support) of (xj , vj) on cij still belongs
to the domain of xi. If not, it looks (Algorithm2) for the next AC support
(xi, vi) on cij , and checks if (vi, vj) is PC (line 13) only when Δ(xi, vi) < p

Adapting Consistency in Constraint Solving 235

Algorithm 3. checkPCwitLoss(xj , vj , xi)

1 begin
2 foreach xk ∈ Γ(xj) ∩ Γ(xi) do
3 witness ← false;
4 if vk ←LastPCxj ,vj ,xk∈ D(xk) then
5 if Δ(xk, vk) ≥ p then
6 witness ← true;

7 else
8 if LastACxj ,vj ,xi∈ D(xi) & LastACxj ,vj ,xi=LastACxk,vk,xi

9 OR LastACxj ,vj ,xi∈ D(xi) & (LastACxj ,vj ,xi , vk) ∈ cik
10 OR LastACxk,vk,xi∈ D(xi) & (LastACxk,vk,xi , vj) ∈ cij
11 then witness ← true ;
12 else
13 if searchACsup(xj , vj , xi) & searchACsup(xk, vk, xi) then
14 foreach

vi ∈ D(xi), vi ≥ max(LastACxj ,vj ,xi ,LastACxk,vk,xi)
do

15 if (vj , vi) ∈ cji & (vk, vi) ∈ cki then
16 witness ← true;
17 break;

18 if ¬witness & ¬checkPCsupLoss(vj , xk) then return false ;

19 return true;

(line 10). If no p-maxRPC support exists, p-maxRPC3 removes the value and
adds the variable xj to Q. If the value (xj , vj) has not been removed in the
previous phase, p-maxRPC3 checks (Algorithm 3) whether there is still a witness
for each pair (vj , vk) such that (xk, vk) is the p-maxRPC support for vj on cjk
and Δ(xk, vk) < p. If not, it looks for the next p-maxRPC support for vj on cjk.
If such a support does not exist, it removes vj from D(xj) and adds the variable
xj to Q.

p-maxRPC3 uses the data structure LastPC to store the last p-maxRPC
support (i.e., the latest AC support for the p-stable values and the latest
PC support for the others). Algorithms 1 and 2 update the data structure
LastPC of maxRPC3 to be LastAC for all the values that are p-stable for AC
(line 11 of Algorithm 1 and line 11 of Algorithm2) and avoid seeking witnesses
for those values. Algorithm3 avoids checking the loss of witnesses for the p-stable
values by setting the flag witness to true (line 6). Correctness of p-maxRPC3
directly comes from maxRPC3: The removed values are necessarily p-maxRPC-
inconsistent and all the values that are p-maxRPC-inconsistent are removed.

236 A. Balafrej et al.

3.2 Experimental Validation of p-maxRPC

To validate the approach of parameterized local consistency, we conducted a first
basic experiment. The purpose of this experiment is to see if there exist instances
on which a given level of p-maxRPC, with a value p that is uniform (i.e., identical
for the entire constraint network) and static (i.e., constant through the entire
search process), is more efficient than AC or maxRPC, or both.

We have implemented the algorithms that achieve p-maxRPC as described in
the previous section in our own binary constraint solver, in addition to maxRPC
(maxRPC3 version [BPSW11]) and AC (AC2001 version [BRYZ05]). All the
algorithms are implemented in our JAVA CSP solver. We tested these algo-
rithms on several classes of CSP instances from the International Constraint
Solver Competition 091. We have only selected instances involving binary con-
straints. To isolate the effect of propagation, we used the lexicographic ordering
for variables and values. We set the CPU timeout to one hour. Our experiments
were conducted on a 12-core Genuine Intel machine with 16 Gb of RAM running
at 2.92 GHz.

On each instance of our experiment, we ran AC, max-RPC, and p-maxRPC
for all values of p in {0.1, 0.2, . . . , 0.9}. Performance has been measured in terms
of CPU time in seconds, the number of visited nodes (NODE) and the number
of constraint checks (CCK). Results are presented as “CPU time (p)”, where p
is the parameter for which p-maxRPC gives the best result.

Table 1 reports the performance of AC, maxRPC, and p-maxRPC for the
value of p producing the best CPU time, on instances from Radio Link Frequency
Assignment Problems (RLFAPs), geom problems, and queens knights problems.
The CPU time of the best algorithm is bold-faced. On RLFAP and geom, we
observe the existence of a parameter p for which p-maxRPC is faster than both
AC and maxRPC for most instances of these two classes of problems. On the
queens-knight problem, however, AC is always the best algorithm. In Figs. 2
and 3, we try to understand more closely what makes p-maxRPC better or worse
than AC and maxRPC. Figures 2 and 3 plot the performance (CPU, NODE and
CCK) of p-maxRPC for all values of p from 0 to 1 by steps of 0.1 against
performance of AC and maxRPC. Figure 2 shows an instance where p-maxRPC
solves the problem faster than AC and maxRPC for values of p in the range
[0.3..0.8]. We observe that p-maxRPC is faster than AC and maxRPC when it
reduces the size of the search space as much as maxRPC (same number of nodes
visited) with a number of CCK closer to the number of CCK produced by AC.
Figure 3 shows an instance where the CPU time for p-maxRPC is never better
than both AC and maxRPC, whatever the value of p. We see that p-maxRPC
is two to three times faster than maxRPC. But p-maxRPC fails to improve AC
because the number of constraint checks performed by p-maxRPC is much higher
than the number of constraint checks performed by AC, whereas the number of
nodes visited by p-maxRPC is not significantly reduced compared to the number
of nodes visited by AC. From these observations, it thus seems that p-maxRPC

1 http://cpai.ucc.ie/09/.

http://cpai.ucc.ie/09/

Adapting Consistency in Constraint Solving 237

Table 1. Performance (CPU time, nodes and constraint checks) of AC, p-maxRPC,
and maxRPC on various instances.

AC p-maxRPC p maxRPC

scen1-f8 CPU >3600 1.39 (0.2) 6.10

#nodes – 927 917

#ccks – 1,397,440 26,932,990

scen2-f24 CPU >3600 0.13 (0.3) 0.65

#nodes – 201 201

#ccks – 296,974 3,462,070

scen3-f10 CPU >3600 0.89 (0.5) 2.80

#nodes – 469 408

#ccks – 874,930 13,311,797

geo50-20-d4-75-26 CPU 111.48 17.80 (1.0) 15.07

#nodes 477,696 3,768 3,768

#ccks 96,192,822 40,784,017 40,784,017

geo50-20-d4-75-43 CPU 1,671.35 1,264.36 (0.5) 1,530.02

#nodes 4,118,134 555,259 279,130

#ccks 1,160,664,461 1,801,402,535 3,898,964,831

geo50-20-d4-75-46 CPU 1,732.22 371.30 (0.6) 517.35

#nodes 3,682,394 125,151 64,138

#ccks 1,516,856,615 584,743,023 1,287,674,430

geo50-20-d4-75-84 CPU 404.63 0.44 (0.6) 0.56

#nodes 2,581,794 513 333

#ccks 293,092,144 800,657 1,606,047

queensKnights10-5-add CPU 27.14 30.79 (0.2) 98.44

#nodes 82,208 81,033 78,498

#ccks 131,098,933 148,919,686 954,982,880

queensKnights10-5-mul CPU 43.89 83.27 (0.1) 300.74

#nodes 74,968 74,414 70,474

#ccks 104,376,698 140,309,576 1,128,564,278

outperforms AC and maxRPC when it finds a compromise between the number
of nodes visited (the power of maxRPC) and the number of CCK needed to
maintain (the light cost of AC).

In Figs. 2 and 3 we can see that the CPU time for 1-maxRPC (respectively 0-
maxRPC) is greater than the CPU time for maxRPC (respectively AC), although
the two consistencies are equivalent. The reason is that p-maxRPC performs
tests on the distances. For p = 0, we also explain this difference by the fact that
p-maxRPC maintains data structures that AC does not use.

238 A. Balafrej et al.

Fig. 2. Instance where p-maxRPC out-
performs both AC and maxRPC.

Fig. 3. Instance where AC outperforms
p-maxRPC.

4 Adaptative Parameterized Consistency: ap-maxRPC

In the previous section, we have defined p-maxRPC, a version of parameterized
consistency where the strong local consistency is maxRPC. We have performed
some initial experiments where p has the same value during the whole search and
everywhere in the constraint network. However, the algorithm we proposed to
enforce p-maxRPC does not specify how p is chosen. In this section, we propose
two possible ways to dynamically and locally adapt the parameter p in order to
solve the problem faster than both AC and maxRPC. Instead of using a single
value for p during the whole search and for the whole constraint network, we pro-
pose to use several local parameters and to adapt the level of local consistency by
dynamically adjusting the value of the different local parameters during search.
The idea is to concentrate the effort of propagation by increasing the level of
consistency in the most difficult parts of the given instance. We can determine
these difficult parts using heuristics based on conflicts in the same vein as the
weight of a constraint or the weighted degree of a variable in [BHLS04].

4.1 Constraint-Based ap-maxRPC: apc-maxRPC

The first technique we propose, called constraint-based ap-maxRPC, assigns a
parameter p(ck) to each constraint ck in C. We define this parameter to be
correlated to the weight of the constraint. The idea is to apply a higher level of
consistency in parts of the problem where the constraints are the most active.

Definition 6 (The weight of a constraint [BHLS04]). The weight w(ck) of a
constraint ck ∈ C is an integer that is incremented every time a domain wipe-out
occurs while performing propagation on this constraint.

Adapting Consistency in Constraint Solving 239

We define the adaptive parameter p(ck) local to constraint ck in such a way
that it is greater when the weight w(ck) is higher w.r.t. other constraints.

∀ck ∈ C, p(ck) =
w(ck) − minc∈C(w(c))

maxc∈C(w(c)) − minc∈C(w(c))
(1)

Equation 1 is normalized so that we are guaranteed that 0 ≤ p(ck) ≤ 1 for
all ck ∈ C and that there exists ck1 with p(ck1) = 0 (the constraint with lowest
weight) and ck2 with p(ck2) = 1 (the constraint with highest weight).

We are now ready to define adaptive parameterized consistency based on
constraints.

Definition 7 (constraint-based ap-maxRPC). A value vi ∈ D(xi) is
constraint-based ap-maxRPC (or apc-maxRPC) on a constraint cij if and only
if it is constraint-based p(cij)-maxRPC. A value vi ∈ D(xi) is apc-maxRPC
iff ∀cij, vi is apc-maxRPC on cij. A constraint network is apc-maxRPC iff all
values in all domains in D are apc-maxRPC.

4.2 Variable-Based ap-maxRPC: apx-maxRPC

The technique proposed in Sect. 4.1 can only be used on consistencies where the
consistency of a value on a constraint is defined. We present a second technique
which can be used on constraint-based or variable-based local consistencies indif-
ferently. We instantiate our definitions to maxRPC but the extension to other
consistencies is direct. We call this new technique variable-based ap-maxRPC.
We need to define the weighted degree of a variable as the aggregation of the
weights of all constraints involving it.

Definition 8 (The weighted degree of a variable [BHLS04]). The weighted
degree wdeg(xi) of a variable xi is the sum of the weights of the constraints
involving xi and one other uninstantiated variable.

We associate each variable with an adaptive local parameter based on its
weighted degree.

∀xi ∈ X, p(xi) =
wdeg(xi) − minx∈X(wdeg(x))

maxx∈X(wdeg(x)) − minx∈X(wdeg(x))
(2)

As in Eq. 1, we see that the local parameter is normalized so that we are
guaranteed that 0 ≤ p(xi) ≤ 1 for all xi ∈ X and that there exists xk1 with
p(xk1) = 0 (the variable with lowest weighted degree) and xk2 with p(xk2) = 1
(the variable with highest weighted degree).

Definition 9 (variable-based ap-maxRPC). A value vi ∈ D(xi) is variable-
based ap-maxRPC (or apx-maxRPC) if and only if it is value-based p(xi)-
maxRPC. A constraint network is apx-maxRPC iff all values in all domains
in D are apx-maxRPC.

240 A. Balafrej et al.

4.3 Experimental Evaluation of ap-maxRPC

In Sect. 3.2 we have shown that maintaining a static form of p-maxRPC during
the entire search can lead to a promising trade-off between computational effort
and pruning when all algorithms follow the same static variable ordering. In
this section, we want to put our contributions in the real context of a solver
using the best known variable ordering heuristic, dom/wdeg, though it is known
that this heuristic is so good that it substantially reduces the differences in
performance that other features of the solver could provide. We have compared
the two variants of adaptive parameterized consistency, namely apc-maxRPC
and apx-maxRPC, to AC and maxRPC. We ran the four algorithms on instances
of radio link frequency assignment problems, geom problems, and queens knights
problems.

Table 2 reports some representative results. A first observation is that, thanks
to the dom/wdeg heuristic, we were able to solve more instances before the cutoff
of one hour, especially the scen11 variants of RLFAP. A second observation is
that apc-maxRPC and apx-maxRPC are both faster than at least one of the
two extreme consistencies (AC and maxRPC) on all instances except scen7-
w1-f4 and geo50-20-d4-75-30. Third, when apx-maxRPC and/or apc-maxRPC
are faster than both AC and maxRPC (scen1-f9, scen2-f25, scen11-f9, scen11-
f10 and scen11-f11), we observe that the gap in performance in terms of nodes
and CCKs between AC and maxRPC is significant. Except for scen7-w1-f4, the
number of nodes visited by AC is three to five times greater than the number
of nodes visited by maxRPC and the number of constraint checks performed by
maxRPC is twelve to sixteen times greater than the number of constraint checks
performed by AC. For the geom instances the CPU time of the ap-maxRPC
algorithms is between AC and maxRPC, and it is never lower than the CPU
time of AC. This probably means that when solving these instances with the
dom/wdeg heuristic, there is no need for sophisticated local consistencies. In
general we see that the ap-maxRPC algorithms fail to improve both the two
extreme consistencies simultaneously for the instances where the performance
gap between AC and maxRPC is low.

If we compare apx-maxRPC to apc-maxRPC, we observe that although apx-
maxRPC is coarser in its design than apc-maxRPC, apx-maxRPC is often faster
than apc-maxRPC. We can explain this by the fact that the constraints initially
all have the same weight equal to 1. Hence, all local parameters ap(ck) initially
have the same value 0, so that apc-maxRPC starts resolution by applying AC
everywhere. It will start enforcing some amount of maxRPC only after the first
wipe-out occurred. On the contrary, in apx-maxRPC, when constraints all have
the same weight, the local parameter p(xi) is correlated to the degree of the vari-
able xi. As a result, apx-maxRPC benefits from the filtering power of maxRPC
even before the first wipe-out.

In Table 2, we reported only the results on a few representative instances.
Table 3 summarizes the entire set of experiments. It shows the average CPU time
for each algorithm on all instances of the different classes of problems tested. We
considered only the instances solved before the cutoff of one hour by at least one

Adapting Consistency in Constraint Solving 241

Table 2. Performance (CPU time, nodes and constraint checks) of AC, variable-
based ap-maxRPC (apx-maxRPC), constraint-based ap-maxRPC (apc-maxRPC), and
maxRPC on various instances.

AC apx-maxRPC apc-maxRPC maxRPC

scen1-f9 CPU 90.34 31.17 33.40 41.56

#nodes 2,291 1,080 1,241 726

#ccks 3,740,502 3,567,369 2,340,417 50,045,838

scen2-f25 CPU 70.57 46.40 27.22 81.40

#nodes 12,591 4,688 3,928 3,002

#ccks 15,116,992 38,239,829 8,796,638 194,909,585

scen6-w2 CPU 7.30 1.25 2.63 0.01

#nodes 2,045 249 610 0

#ccks 2,401,057 1,708,812 1,914,113 85,769

scen7-w1-f4 CPU 0.28 0.17 0.54 0.30

#nodes 567 430 523 424

#ccks 608,040 623,258 584,308 1,345,473

scen11-f9 CPU 2,718.65 1,110.80 1,552.20 2,005.61

#nodes 103,506 40,413 61,292 32,882

#ccks 227,751,301 399,396,873 123,984,968 3,637,652,122

scen11-f10 CPU 225.29 83.89 134.46 112.18

#nodes 9,511 3,510 4,642 2,298

#ccks 12,972,427 17,778,458 6,717,485 156,005,235

scen11-f11 CPU 156.76 39.39 93.69 76.95

#nodes 7,050 2,154 3,431 1,337

#ccks 7,840,552 10,006,821 5,143,592 91,518,348

scen11-f12 CPU 139.91 69.50 88.76 61.92

#nodes 7,050 2,597 3,424 1,337

#ccks 7,827,974 11,327,536 5,144,835 91,288,023

geo50-20d4-75-19 CPU 242.13 553.53 657.72 982.34

#nodes 195,058 114,065 160,826 71,896

#ccks 224,671,319 594,514,132 507,131,322 2,669,750,690

geo50-20d4-75-30 CPU 0.84 1.01 1.07 1.02

#nodes 359 115 278 98

#ccks 261,029 432,705 313,168 1,880,927

geo50-20d4-75-84 CPU 0.02 0.09 0.05 0.29

#nodes 59 54 59 52

#ccks 33,876 80,626 32,878 697,706

queensK20-5-mul CPU 787.35 2,345.43 709.45 >3600

#nodes 55,596 40,606 41,743 –

#ccks 347,596,389 6,875,941,876 379,826,516 –

queensK15-5-add CPU 24.69 17.01 14.98 35.05

#nodes 24,639 12,905 12,677 11,595

#ccks 90,439,795 91,562,150 58,225,434 394,073,525

242 A. Balafrej et al.

Table 3. Average CPU time of AC, variable-based ap-maxRPC (apx-maxRPC),
constraint-based ap-maxRPC (apc-maxRPC), and maxRPC on all instances of each
class of problems tested, when the local parameters are updated at each node

class (#instances) AC apx-maxRPC apc-maxRPC maxRPC

geom (10) #solved 10 10 10 10

average CPU 69.28 180.57 191.03 279.30

scen (10) #solved 10 10 10 10

average CPU 18.95 9.63 8.30 13.94

scen11 (10) #solved 4 4 4 4

average CPU 810.15 325.90 467.28 564.17

queensK (11) #solved 6 6 6 5

average CPU 135.95 395.41 121.75 >610.51

Table 4. Average CPU time of AC, variable-based ap-maxRPC (apx-maxRPC),
constraint-based ap-maxRPC (apc-maxRPC), and maxRPC on all instances of each
class of problems tested, when the local parameters are updated every 10 nodes

class (#instances) AC apx-maxRPC apc-maxRPC maxRPC

geom (10) #solved 10 10 10 10

average CPU 69.28 147.20 189.42 279.30

scen (10) #solved 10 10 10 10

average CPU 18.95 7.40 8.86 13.94

scen11 (10) #solved 4 4 4 4

average CPU 810.15 311.74 417.97 564.17

queensK (11) #solved 6 6 6 5

average CPU 135.95 269.51 117.18 >610.52

of the four algorithms. To compute the average CPU time of an algorithm on
a class of instances, we add the CPU time needed to solve each instance solved
before the cutoff of one hour, and for the instances not solved before the cutoff,
we add one hour. We observe that the adaptive approach is, on average, faster
than the two extreme consistencies AC and maxRPC, except on the geom class.

In apx-maxRPC and apc-maxRPC, we update the local parameters p(xi) or
p(ck) at each node in the search tree. We could wonder if such a frequent update
does not produce too much overhead. To answer this question we performed a
simple experiment in which we update the local parameters every 10 nodes only.
We re-ran the whole set of experiments with this new setting. Table 4 reports the
average CPU time for these results. We observe that when the local parameters
are updated every 10 nodes, the gain for the adaptive approach is, on average,
greater than when the local parameters are updated at each node. This gives
room for improvement, by trying to adapt the frequency of update of these
parameters.

Adapting Consistency in Constraint Solving 243

5 Partition-One-Arc-Consistency

In this section, we describe our second approach, which is inspired from singleton-
based consistencies. Singleton Arc Consistency (SAC) [DB97] makes a single-
ton test by enforcing arc consistency and can only prune values in the vari-
able domain on which it currently performs singleton tests. Partition-One-AC
(POAC) [BA01] is an extension of SAC, which, as observed in [BD08], combines
singleton tests and constructive disjunction [VSD98]. POAC can prune values
everywhere in the network as soon as a variable has been completely singleton
tested.

We propose an adaptive version of POAC, where the number of times vari-
ables are processed for singleton tests on their values is dynamically and auto-
matically adapted during search. Before moving to adaptive partition-one-AC,
we first propose an efficient algorithm enforcing POAC and we compare its
behaviour to SAC.

5.1 The Algorithm

The efficiency of our POAC algorithm, POAC1, is based on the use of counters
associated with each value (xj , vj) in the constraint network. These counters are
used to count how many times a value vj from a variable xj is pruned during the
sequence of POAC tests on all the values of another variable xi (the varPOAC
call to xi). If vj is pruned |D(xi)| times, this means that it is not POAC and
can be removed from D(xj).

POAC1 (Algorithm 4) starts by enforcing arc consistency on the network
(line 2). Then it puts all variables in the ordered cyclic list S using any total
ordering on X (line 3). varPOAC iterates on all variables from S (line 7) to make
them POAC until the fixpoint is reached (line 12) or a domain wipe-out occurs
(line 8). The counter FPP (FixPoint Proof) counts how many calls to varPOAC
have been processed in a row without any change in any domain (line 9).

Algorithm 4. POAC1(X,D,C)
1 begin
2 if ¬EnforceAC(X,D,C) then return false ;
3 S ← CyclicList(Ordering(X));
4 FPP ← 0;
5 xi ← first(S);
6 while FPP < |X| do
7 if ¬varPOAC(xi, X,D,C,CHANGE) then
8 return false;

9 if CHANGE then FPP ← 1;
10 else FPP++;
11 xi ← NextElement(xi, S);

12 return true;

244 A. Balafrej et al.

Algorithm 5. varPOAC(xi,X,D,C, CHANGE)
1 begin
2 SIZE ← |D(xi)|; CHANGE ← false;
3 foreach vi ∈ D(xi) do
4 if ¬TestAC(X,D,C ∪ {xi = vi}) then
5 remove vi from D(xi);
6 if ¬EnforceAC(X,D,C, xi) then return false ;

7 if D(xi) = ∅ then return false;
8 if SIZE 	= |D(xi)| then CHANGE ← true;
9 foreach xj ∈ X\{xi} do

10 SIZE ← |D(xj)|;
11 foreach vj ∈ D(xj) do
12 if counter(xj , vj) = |D(xi)| then remove vj from D(xj) ;
13 counter(xj , vj) ← 0;

14 if D(xj) = ∅ then return false;
15 if SIZE 	= |D(xj)| then CHANGE ← true;

16 return true

Algorithm 6. TestAC(X,D,C ∪ {xi = vi})
1 begin
2 Q ← {(xj , ck) | ck ∈ Γ(xi), xj ∈ var(ck), xj 	= xi} ;
3 L ← ∅ ;
4 while Q 	= ∅ do
5 pick and delete (xj , ck) from Q ;
6 SIZE ← |D(xj)| ;
7 foreach vj ∈ D(xj) do
8 if ¬HasSupport(xj , vj , ck) then
9 remove vj from D(xj) ;

10 L ← L ∪ (xj , vj) ;

11 if D(xj) = ∅ then
12 RestoreDomains(L, false) ;
13 return false ;

14 if |D(xj)| < SIZE then
15 Q ← Q ∪ {(xj′ , ck′)|ck′ ∈ Γ(xj), xj′ ∈ var(ck′), xj′ 	= xj , ck′ 	= ck};

16 RestoreDomains(L, true) ;
17 return true ;

The procedure varPOAC (Algorithm 5) is called to establish POAC w.r.t. a
variable xi. It works in two steps. The first step enforces arc consistency in each
sub-network N = (X,D,C ∪ {xi = vi}) (line 4) and removes vi from D(xi)
(line 5) if the sub-network is arc-inconsistent. Otherwise, the procedure TestAC
(Algorithm 6) increments the counter associated with every arc inconsistent value

Adapting Consistency in Constraint Solving 245

Algorithm 7. RestoreDomains(L,UPDATE)
1 begin
2 if UPDATE then
3 foreach (xj , vj) ∈ L do
4 D(xj) ← D(xj) ∪ {vj} ;
5 counter(xj , vj) ← counter(xj , vj) + 1 ;

6 else
7 foreach (xj , vj) ∈ L do
8 D(xj) ← D(xj) ∪ {vj} ;

(xj , vj), j �= i in the sub-network N = (X,D,C ∪{xi = vi}). (Lines 6 and 7 have
been added for improving the performance in practice but are not necessary for
reaching the required level of consistency.) In line 8 the Boolean CHANGE is set
to true if D(xi) has changed. The second step deletes all the values (xj , vj), j �= i
with a counter equal to |D(xi)| and sets back the counter of each value to 0 (lines
12–13). Whenever a domain change occurs in D(xj), if the domain is empty,
varPOAC returns failure (line 14); otherwise it sets the Boolean CHANGE to
true (line 15).

Enforcing arc consistency on the sub-networks N = (X,D,C ∪ {xi = vi}) is
done by calling the procedure TestAC (Algorithm 6). TestAC just checks whether
arc consistency on the sub-network N = (X,D,C ∪{xi = vi}) leads to a domain
wipe-out or not. It is an instrumented AC algorithm that increments a counter for
all removed values and restores them all at the end. In addition to the standard
propagation queue Q, TestAC uses a list L to store all the removed values. After
the initialisation of Q and L (lines 2–3), TestAC revises each arc (xj , ck) in Q and
adds each removed value (xj , vj) to L (lines 5–10). If a domain wipe-out occurs
(line 11), TestAC restores all removed values (line 12) without incrementing the
counters (call to RestoreDomains with UPDATE = false) and it returns failure
(line 13). Otherwise, if values have been pruned from the revised variable (line 14)
it puts in Q the neighbouring arcs to be revised. At the end, removed values are
restored (line 16) and their counters are incremented (call to RestoreDomains
with UPDATE = true) before returning success (line 17).

Proposition 1. POAC1 has a worst-case time complexity in O(n2d2(T + n)),
where T is the time complexity of the arc-consistency algorithm used for singleton
tests, n is the number of variables, and d is the number of values in the largest
domain.

Proof. The cost of calling varPOAC on a single variable is O(dT + nd) because
varPOAC runs AC on d values and updates nd counters. In the worst case, each
of the nd value removals trigger n calls to varPOAC. Therefore POAC1 has a time
complexity in O(n2d2(T + n)). ��

246 A. Balafrej et al.

Fig. 4. The convergence speed of POAC and SAC.

5.2 Comparison of POAC and SAC Behaviors

Although POAC has a worst-case time complexity greater than SAC, we
observed in practice that maintaining POAC during search is often faster than
maintaining SAC. This behavior occurs even when POAC cannot remove more
values than SAC, i.e. when the same number of nodes is visited with the same
static variable ordering. This is due to what we call the (filtering) convergence
speed : when both POAC and SAC reach the same fixpoint, POAC reaches the
fixpoint with fewer singleton tests than SAC.

Figure 4 compares the convergence speed of POAC and SAC on an CSP
instance where they have the same fixpoint. We observe that POAC is able
to reduce the domains, to reach the fixpoint, and to prove the fixpoint, all in
fewer singleton tests than SAC. This pattern has been observed on most of the
instances and whatever ordering was used in the list S. The reason is that each
time POAC applies varPOAC to a variable xi, it is able to remove inconsistent
values from D(xi) (like SAC), but also from any other variable domain (unlike
SAC).

The fact that SAC cannot remove values in variables other than the one on
which the singleton test is performed makes it a poor candidate for adapting the
number of singleton tests. A SAC-inconsistent variable/value pair never singleton
tested has no chance to be pruned by such a technique.

6 Adaptive POAC

This section presents an adaptive version of POAC that approximates POAC by
monitoring the number of variables on which to perform singleton tests.

To achieve POAC, POAC1 calls the procedure varPOAC until it has proved
that the fixpoint is reached. This means that, when the fixpoint is reached,
POAC1 needs to call n (additional) times the procedure varPOAC without any
pruning to prove that the fixpoint was reached. Furthermore, we experimentally

Adapting Consistency in Constraint Solving 247

observed that in most cases there is a long sequence of calls to varPOAC that
prune very few values, even before the fixpoint has been reached (see Fig. 4 as an
example). The goal of Adaptive POAC (APOAC) is to stop iterating on varPOAC
as soon as possible. We want to benefit from strong propagation of singleton tests
while avoiding the cost of the last calls to varPOAC that delete very few values
or no value at all.

6.1 Principle

The APOAC approach alternates between two phases during search: a short
learning phase and a longer exploitation phase. One of the two phases is executed
on a sequence of nodes before switching to the other phase for another sequence
of nodes. The search starts with a learning phase. The total length of a pair of
sequences learning + exploitation is fixed to the parameter LE.

Before providing a more detailed description, let us define the (log2 of the)
volume of a constraint network N = (X,D,C), used to approximate the size of
the search space:

V = log2

n∏

i=1

|D(xi)|

We use the logarithm of the volume instead of the volume itself, because of
the large integers the volume generates. We also could have used the perimeter
(i.e.,

∑
i |D(xi)|) for approximating the search space size, as done in [NT13].

However, experiments have confirmed that the volume is a more precise and
effective criterion for adaptive POAC.

The ith learning phase is applied to a sequence of L = 1
10 · LE consecutive

nodes. During that phase, we learn a cutoff value ki, which is the maximum
number of calls to the procedure varPOAC that each node of the next (ith)
exploitation phase will be allowed to perform. A good cutoff ki is such that
varPOAC removes many inconsistent values (that is, obtains a significant volume
reduction in the network) while avoiding calls to varPOAC that delete very few
values or no value at all. During the ith exploitation phase, applied to a sequence
of 9

10 ·LE consecutive nodes, the procedure varPOAC is called at each node until
fixpoint is proved or the cutoff limit of ki calls to varPOAC is reached.

The ith learning phase works as follows. Let ki−1 be the cutoff learned at
the previous learning phase. We initialize maxK to max(2 · ki−1, 2). At each
node nj in the new learning sequence n1, n2, . . . nL, APOAC is used with a
cutoff maxK on the number of calls to the procedure varPOAC. APOAC stores
the sequence of volumes (V1, . . . , Vlast), where Vp is the volume resulting from
the pth call to varPOAC and last is the smallest among maxK and the number
of calls needed to prove fixpoint. Once the fixpoint is proved or the maxKth
call to varPOAC performed, APOAC computes ki(j), the number of varPOAC
calls that are enough to sufficiently reduce the volume while avoiding the extra
cost of the last calls that remove few or no value. (The criteria to decide what
’sufficiently’ means are described in Sect. 6.2.) Then, to make the learning phase
more adaptive, maxK is updated before starting node nj+1. If ki(j) is close to

248 A. Balafrej et al.

maxK, that is, greater than 3
4 ·maxK, we increase maxK by 20%. If ki(j) is less

than 1
2 ·maxK, we reduce maxK by 20%. Otherwise, maxK is unchanged. Once

the learning phase ends, APOAC computes the cutoff ki that will be applied to
the next exploitation phase. ki is an aggregation of the ki(j) values, j = 1, . . . , L,
computed using one of the aggregation techniques presented in Sect. 6.3.

6.2 Computing ki(j)

We implemented APOAC using two different techniques to compute ki(j) at a
node nj of the learning phase:

• LR (Last Reduction) ki(j) is the rank of the last call to varPOAC that reduced
the volume of the constraint network.

• LD (Last Drop) ki(j) is the rank of the last call to varPOAC that has produced
a significant drop of the volume. The significance of a drop is captured by a
ratio β ∈ [0, 1]. More formally, ki(j) = max{p | Vp ≤ (1 − β)Vp−1}.

6.3 Aggregation of the ki(j) Values

Once the ith learning phase is complete, APOAC aggregates the ki(j) values
computed during that phase to generate ki, the new cutoff value on the number
of calls to the procedure varPOAC allowed at each node of the ith exploitation
phase. We propose two techniques to aggregate the ki(j) values into ki.

• Med ki is the median of the ki(j), j ∈ 1..L.
• q-PER This technique generalizes the previous one. Instead of taking the

median, we use any percentile. That is, ki is equal to the smallest value among
ki(1), . . . , ki(L) such that q% of the values among ki(1), . . . , ki(L) are less than
or equal to ki.

Several variants of APOAC can be proposed, depending on how we compute
the ki(j) values in the learning phase and how we aggregate the different ki(j)
values. In the next section, we give an experimental comparison of the different
variants we tested.

6.4 Experimental Evaluation of (A)POAC

This section presents experiments that compare the performance of maintaining
AC, POAC, or adaptive variants of POAC during search. For the adaptive vari-
ants we use two techniques to determine ki(j): the last reduction (LR) and the
last drop (LD) with β = 5% (see Sect. 6.2). We also use two techniques to aggre-
gate these ki(j) values: the median (Med) and the qth percentile (q-PER) with
q = 70% (see Sect. 6.3). In experiments not presented in this paper we tested the
performance of APOAC using the 10th to 90th percentiles. The 70th percentile
showed the best behavior. We have performed experiments for the four variants
obtained by combining two by two the parameters LR vs LD and Med vs 70-
PER. For each variant we compared three initial values for the maxK used by

Adapting Consistency in Constraint Solving 249

the first learning phase: maxK ∈ {2, n,∞}, where n is the number of variable
in the instance to be solved. These three versions are denoted by APOAC-2,
APOAC-n and APOAC-fp respectively.

We compare these search algorithms on instances available from Lecoul-
tre’s webpage.2 We selected four binary classes containing at least one diffi-
cult instance for MAC (>10 s): mug, K-insertions, myciel and Qwh-20. We also
selected all the n-ary classes in extension: the traveling-salesman problem (TSP-
20, TSP-25), the Renault Megane configuration problem (Renault) and the Cril
instances (Cril). These eight problem classes contain instances with 11 to 1406
variables, domains of size 3 to 1600 and 20 to 9695 constraints.

For the search algorithm maintaining AC, the algorithm AC2001 (resp.
GAC2001) [BRYZ05] is used for the binary (resp. non-binary) problems. The

Table 5. Total number of instances solved by AC, several variants of APOAC, and
POAC.

ki(j) ki AC APOAC-2 APOAC-n APOAC-fp POAC

LR 70-PER #solved 115 116 119 118 115

Med #solved 115 114 118 118 115

LD 70-PER #solved 115 117 121 120 115

Med #solved 115 116 119 119 115

Table 6. CPU time for AC, APOAC-2, APOAC-n, APOAC-fp and POAC on the eight
problem classes.

class (#instances) AC APOAC-2 APOAC-n APOAC-fp POAC

Tsp-20 (15) #solved 15 15 15 15 15

sum CPU 1,596.38 3,215.07 4,830.10 7,768.33 18,878.81

Tsp-25 (15) #solved 15 14 15 15 11

sum CPU 20,260.08 >37,160.63 16,408.35 33,546.10 >100,947.01

renault (50) #solved 50 50 50 50 50

sum CPU 837.72 2,885.66 11,488.61 15,673.81 18,660.01

cril (8) #solved 4 5 7 7 7

sum CPU >45,332.55 >42,436.17 747.05 876.57 1,882.88

mug (8) #solved 5 6 6 6 6

sum CPU >29,931.45 12,267.39 12,491.38 12,475.66 2,758.10

K-insertions (10) #solved 4 5 6 5 5

sum CPU >30,614.45 >29,229.71 27,775.40 >29,839.39 >20,790.69

myciel (15) #solved 12 12 12 12 11

sum CPU 1,737.12 2,490.15 2,688.80 2,695.32 >20,399.70

Qwh-20 (10) #solved 10 10 10 10 10

sum CPU 16,489.63 12,588.54 11,791.27 12,333.89 27,033.73

Sum of CPU times >146,799 >142,273 88,221 >115,209 >211,351

Sum of average CPU times per class >18,484 >14,717 8,773 >9,467 >10,229

2 www.cril.univ-artois.fr/∼lecoutre/benchmarks.html.

http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html

250 A. Balafrej et al.

Fig. 5. Number of instances solved when the time allowed increases.

same AC algorithms are used as refutation procedure for POAC and APOAC
algorithms. The dom/wdeg heuristic [BHLS04] is used both to order variables
in the Ordering(X) function (see line 3 of Algorithm4) and to order variables
during search for all the search algorithms. The results presented involve all the
instances solved before the cutoff of 15,000 s by at least one algorithm.

Table 5 compares all the competitors and shows the number of instances
(#solved) solved before the cutoff. We observe that, on the set of instances
tested, adaptive versions of POAC are better than AC and POAC. All of them,
except APOAC-2+LR+Med, solve more instances than AC and POAC. All the
versions using the last drop (LD) technique to determine the ki(j) values in
the learning phase are better than those using last reduction (LR). We also see
that the versions that use the 70th percentile (70-PER) to aggregate the ki(j)
values are better than those using the median (Med). This suggests that the
best combination is LD+70-PER. This is the only combination we will consider
in the following.

Table 6 focuses on the performance of the three variants of APOAC (APOAC-
2, APOAC-n and APOAC-fp), all with the combination (LD+70-PER). When a
competitor cannot solve an instance before the cutoff, we count 15,000 s for that
instance and we write ‘>’ in front of the corresponding sum of CPU times. The
last two rows of the table give the sum of CPU times and the sum of average CPU
times per class. For each class taken separately, the three versions of APOAC
are never worse than AC and POAC at the same time. APOAC-n solves all the
instances solved by AC and POAC, and for four of the eight problem classes it
outperforms both AC and POAC. However, there remain a few classes, such as
Tsp-20 and renault, where even the first learning phase of APOAC is too costly

Adapting Consistency in Constraint Solving 251

Table 7. Performance of APOAC-n compared to AC and POAC on n-ary problems.

AC APOAC-n POAC

#solved 84/87 87/87 83/87

sum CPU >68,027 33,474 >140,369

gain w.r.t. AC – >51% –

gain w.r.t. POAC – >76% –

to compete with AC despite our agile auto-adaptation policy that limits the
number of calls to varPOAC during learning (see Sect. 6.1). Table 6 also shows
that maintaining a high level of consistency, such as POAC, throughout the
entire network generally produces a significant overhead.

Table 7 and Fig. 5 sum up the performance results obtained on all the
instances with n-ary constraints. The binary classes are not included in the
table and figure, because they have not been exhaustively tested. Figure 5 gives
the performance profile for each algorithm presented in Table 6: AC, APOAC-2,
APOAC-n, APOAC-fp and POAC. Each point (t, i) on a curve indicates the
number i of instances that an algorithm can solve in less than t seconds. The
performance profile underlines that AC and APOAC are better than POAC:
whatever the time given, they solve more instances than POAC. The compar-
ison between AC and APOAC highlights two phases: A first phase (for easy
instances), during which AC is better than APOAC, and a second phase, where
APOAC becomes better than AC. Among the adaptive versions, APOAC-n is
the variant with the shortest first phase (it adapts quite well to easy instances),
and it remains the best even when time increases.

Finally, Table 7 compares the best APOAC version (APOAC-n) to AC and
POAC on n-ary problems. The first row of the table gives the number of solved
instances by each algorithm before the cutoff. We observe that APOAC-n solves
more instances than AC and POAC. The second row of the table gives the sum
of CPU time required to solve all the instances. Again, when an instance cannot
be solved before the cutoff of 15,000 s, we count 15,000 s for that instance. We
observe that APOAC-n significantly outperforms both AC and POAC. The last
two rows of the table give the gain of APOAC-n w.r.t. AC and w.r.t. POAC. We
see that APOAC-n has a positive total gain greater than 51% compared to AC
and greater than 76% compared to POAC.

7 Conclusion

We have proposed two approaches to adjust the level of consistency automati-
cally during search. For the parameterized local consistency approach, we intro-
duced the notion of stability of values for arc consistency, a notion based on the
depth of their supports in their respective domain. This approach us allows us to
define levels of local consistency of increasing strength between arc consistency
and a given strong local consistency. We have introduced two techniques which

252 A. Balafrej et al.

allow us to make the parameter adaptable dynamically and locally during search.
As a second approach, we proposed POAC1, an algorithm that enforces partition-
one-AC efficiently in practice. We have also proposed an adaptive version of
POAC that monitors the number of variables on which to perform singleton
tests. Our experiments show that in both approaches, adapting the level of local
consistency during search can outperform both MAC and maintaining a chosen
local consistency stronger than AC.

Our approaches concentrate on adapting the level of consistency between the
standard arc consistency and a chosen higher level. There are many constraints
(especially global constraints) on which arc consistency is already a (too) high
level of consistency and on which the standard consistency is bound consistency
or some simple propagation rules. In these cases, an approach to that chosen in
this paper could allow us to adapt automatically between arc consistency and
the given lower level.

References

[BA01] Bennaceur, H., Affane, M.-S.: Partition-k-AC: an efficient filtering tech-
nique combining domain partition and arc consistency. In: Walsh, T. (ed.)
CP 2001. LNCS, vol. 2239, pp. 560–564. Springer, Heidelberg (2001).
doi:10.1007/3-540-45578-7 39

[BBBT14] Balafrej, A., Bessiere, C., Bouyakhf, E.H., Trombettoni, G.: Adaptive
singleton-based consistencies. In: Proceedings of the Twenty-Eighth AAAI
Conference on Artificial Intelligence (AAAI 2014), Quebec City, Canada,
pp. 2601–2607 (2014)

[BBCB13] Balafrej, A., Bessiere, C., Coletta, R., Bouyakhf, E.H.: Adaptive parame-
terized consistency. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp.
143–158. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40627-0 14

[BCDL11] Bessiere, C., Cardon, S., Debruyne, R., Lecoutre, C.: Efficient algorithms
for singleton arc consistency. Constraints 16(1), 25–53 (2011)

[BD08] Bessiere, C., Debruyne, R.: Theoretical analysis of singleton arc consis-
tency and its extensions. Artif. Intell. 172(1), 29–41 (2008)

[Bes06] Bessiere, C.: Constraint propagation. In: Rossi, F., van Beek, P., Walsh, T.
(eds.) Handbook of Constraint Programming, chap. 3. Elsevier, Amster-
dam (2006)

[BHLS04] Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic
search by weighting constraints. In: Proceedings of the 16th Eureopean
Conference on Artificial Intelligence (ECAI 2004), Valencia, Spain, pp.
146–150. IOS Press (2004)

[BPSW11] Balafoutis, T., Paparrizou, A., Stergiou, K., Walsh, T.: New algorithms
for max restricted path consistency. Constraints 16(4), 372–406 (2011)

[BRYZ05] Bessiere, C., Régin, J.-C., Yap, R.H.C., Zhang, Y.: An optimal coarse-
grained arc consistency algorithm. Artif. Intell. 165(2), 165–185 (2005)

[BSW08] Bessiere, C., Stergiou, K., Walsh, T.: Domain filtering consistencies for
non-binary constraints. Artif. Intell. 172(6–7), 800–822 (2008)

[DB97] Debruyne, R., Bessiere, C.: Some practicable filtering techniques for the
constraint satisfaction problem. In: Proceedings of the Fifteenth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 1997), Nagoya,
Japan, pp. 412–417 (1997)

http://dx.doi.org/10.1007/3-540-45578-7_39
http://dx.doi.org/10.1007/978-3-642-40627-0_14

Adapting Consistency in Constraint Solving 253

[DB01] Debruyne, R., Bessiere, C.: Domain filtering consistencies. J. Artif. Intell.
Res. 14, 205–230 (2001)

[KVH06] Katriel, I., Van Hentenryck, P.: Randomized filtering algorithms. Techni-
cal report CS-06-09, Brown University, June 2006

[NT13] Neveu, B., Trombettoni, G.: Adaptive constructive interval disjunction.
In: Proceedings of the 25th IEEE International Conference on Tools for
Artificial Intelligence (IEEE-ICTAI 2013), Washington D.C., USA, pp.
900–906 (2013)

[PS12] Paparrizou, A., Stergiou, K.: Evaluating simple fully automated heuristics
for adaptive constraint propagation. In: Proceedings of the 24th IEEE
International Conference on Tools for Artificial Intelligence (IEEE-ICTAI
2012), Athens, Greece, pp. 880–885 (2012)

[Sel03] Sellmann, M.: Approximated consistency for Knapsack constraints. In:
Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 679–693. Springer,
Heidelberg (2003). doi:10.1007/978-3-540-45193-8 46

[SS09] Stamatatos, E., Stergiou, K.: Learning how to propagate using ran-
dom probing. In: Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009.
LNCS, vol. 5547, pp. 263–278. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-01929-6 20

[Ste08] Stergiou, K.: Heuristics for dynamically adapting propagation. In: Pro-
ceedings of the Eighteenth European Conference on Artificial Intelligence
(ECAI 2008), Patras, Greece, pp. 485–489 (2008)

[Ste09] Stergiou, K.: Heuristics for dynamically adapting propagation in con-
straint satisfaction problems. AI Commun. 22, 125–141 (2009)

[TC07] Trombettoni, G., Chabert, G.: Constructive interval disjunction. In:
Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 635–650. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-74970-7 45

[VSD98] Van Hentenryck, P., Saraswat, V.A., Deville, Y.: Design, implementation,
and evaluation of the constraint language cc(FD). J. Log. Program. 37
(1–3), 139–164 (1998)

http://dx.doi.org/10.1007/978-3-540-45193-8_46
http://dx.doi.org/10.1007/978-3-642-01929-6_20
http://dx.doi.org/10.1007/978-3-642-01929-6_20
http://dx.doi.org/10.1007/978-3-540-74970-7_45

Constraint Programming for Data
Mining

Modeling in MiningZinc

Anton Dries1, Tias Guns1, Siegfried Nijssen1,2, Behrouz Babaki1,
Thanh Le Van1, Benjamin Negrevergne1, Sergey Paramonov1,

and Luc De Raedt1(B)

1 DTAI, KU Leuven, Leuven, Belgium
luc.deraedt@cs.kuleuven.be

2 LIACS, Universiteit Leiden, Leiden, The Netherlands

Abstract. MiningZinc offers a framework for modeling and solving
constraint-based mining problems. The language used is MiniZinc, a
high-level declarative language for modeling combinatorial (optimisa-
tion) problems. This language is augmented with a library of functions
and predicates that help modeling data mining problems and facilities
for interfacing with databases. We show how MiningZinc can be used
to model constraint-based itemset mining problems, for which it was
originally designed, as well as sequence mining, Bayesian pattern min-
ing, linear regression, clustering data factorization and ranked tiling.
The underlying framework can use any existing MiniZinc solver. We also
showcase how the framework and modeling capabilities can be integrated
into an imperative language, for example as part of a greedy algorithm.

1 Introduction

The traditional approach to data mining is to develop specialized algorithms
for specific tasks. This has led to specialized algorithms for many tasks, among
which classification, clustering and association rule discovery [19,30,35]. In many
cases these algorithms support certain kinds of constraints as well; in particular
constraint-based clustering and constraint-based pattern mining are established
research areas [2,5,6]. Even though successful for specific applications, the down-
side of specialized algorithms is that it is hard to adapt them to novel tasks.

In recent years, researchers have explored the idea of using generic solvers to
tackle datamining problems such as itemsetmining [16,22], sequencemining [7,31]
and clustering [11,13]. These approaches start from the insight that many data
mining problems can be formalized as either a constraint satisfaction problem, or
a constrained optimization problem. The advantage is that, just as in constraint
programming, new tasks canbe addressed by changing the constraint specification.

Siegfried Nijssen can currently be reached at the Institute of Information and
Communication Technologies, Electronics and Applied Mathematics, UC Louvain,
Belgium.
Tias Guns can currently be reached at the Vrije Universiteit Brussel.

c© Springer International Publishing AG 2016
C. Bessiere et al. (Eds.): Data Mining and Constraint Programming, LNAI 10101, pp. 257–281, 2016.
DOI: 10.1007/978-3-319-50137-6 10

258 A. Dries et al.

Although these techniques allow flexibility in modeling new tasks, they are
often tied to one particular solver. To address this shortcoming we introduced
MiningZinc [15], a solver-independent language and framework for modeling
constraint-based data mining tasks. That work focussed on constraint-based
itemset mining problems and the solving capabilities of the framework. In this
work, we focus on the modeling aspects of the MiningZinc language and we show
for a wide range of data mining tasks how they can be modeled in MiningZinc,
namely sequence mining, Bayesian pattern mining, linear regression, clustering
data factorization and ranked tiling. We end with a discussion of related work
and conclusion.

2 Language

Ideally, a language for mining allows one to express the problems in a natural way,
while at the same time being generic enough to express additional constraints
or different optimization criteria. We choose to build on the MiniZinc constraint
programming language for this purpose [32]. It is a subset of Zinc [25] restricted
to the built-in types bool, int, set and float, and user-defined predicates and
functions [34].

MiningZinc uses the MiniZinc language, that is, all models written for Min-
ingZinc are compatible with the standard MiniZinc compiler and toolchain. How-
ever, MiningZinc offers additional functionality aimed towards modeling data
mining problems:

– a library of predicates and functions that are commonly used in data mining
– extensions for reading data from different sources (e.g. a database)
– integration with Python for easy implementation of greedy algorithms

2.1 MiniZinc

MiniZinc is a language designed for specifying constraint problems. Listing 1
shows an example of a MiniZinc model for the well-known “Send+More=Money”
problem. In this problem the goal is to assign distinct digits to the letters such
that the formula holds.

This model starts with declaring the decision variables with their domains
(Lines 1 and 2). The problem specification states that the variables S and M
should not be zero which we encode in their domains. Next, we specify the con-
straints on these decision variables. On Line 4 we specify that all variables should
take a different value. For this we use the all different global constraint which is
defined in MiniZinc’s standard library. In order to use this constraint we include
that library (Line 3). On Line 5 we specify that the numbers formed by the
digits “SEND” and “MORE” should sum up to the number formed by the digits
“MONEY”. For the translation between the list of digits and the number they
represent, we define a helper function on Line 6; it first creates a local parame-
ter max i that represents the largest index, and then sums over each variable

Modeling in MiningZinc 259

Listing 1. An example MiniZinc model

1 var 1 . . 9 : S ; var 0 . . 9 : E ; var 0 . . 9 : N; var 0 . . 9 : D;

2 var 1 . . 9 : M; var 0 . . 9 : O; var 0 . . 9 : R; var 0 . . 9 : Y;

3 include ” g l oba l s .mzn” ;

4 constraint a l l d i f f e r e n t ([S ,E,N,D,M,O,R,Y]) ;

5 constraint number ([S ,E,N,D]) + number ([M,O,R,E]) =

number ([M,O,N,E,Y]) ;

6 function var int : number (array [int] of var int : d i g i t s) =

l et { int : max i = max(i nd ex s e t (d i g i t s)) } in

sum(i in i nd ex s e t (d i g i t s))

(pow(10 , max i−i) ∗ d i g i t s [i]) ;

7 solve sat i s fy ;

8 output [show ([S ,E,N,D]) , ”+”, show ([M,O,R,E]) ,

”=”, show ([M,O,N,E,Y])] ;

MiniZinc
model

Data

FlatZinc Solver Output

Fig. 1. Overview of the MiniZinc toolchain

multiplied by 1, 10, 100, ... depending on its position in the array (for exam-
ple, number([S,E,N,D]) = 1000∗S+100∗E+10∗N+1∗D). Line 7 states that this
is a constraint satisfaction problem. MiniZinc also supports optimization prob-
lems in which case this statement would be replaced by solve minimize <variable
expression>, or likewise with maximize. Finally, Line 8 defines the output of the
model.

Apart from the functionality demonstrated in the example, MiniZinc mod-
els can be parameterized, for example, to include external data. The values of
these parameters can be loaded from an external file, or passed in through the
command line.

MiniZinc is solver-independent, that is, MiniZinc models can be translated
to the lower level language FlatZinc which is understood by a wide range of
solvers. The MiniZinc toolchain does however support solver-specific optimiza-
tions through the use of solver-specific versions of the standard library and anno-
tations. A schematic overview of the MiniZinc toolchain is shown in Fig. 1.

In the following we describe how we extended MiniZinc.

260 A. Dries et al.

2.2 Library

MiniZinc offers the ability to add additional libraries of commonly used pred-
icates and functions. As part of MiningZinc, we created a minimal library for
help with specifying mining and learning problems. It has two purposes: (1) to
simplify modeling for the user and (2) to simplify the model analysis by the
MiningZinc solver.

There are four categories of functions:

– generic helper functions
– itemset mining functions
– norms and distance functions
– extra solver annotations

There are two generic helper functions that we feel are missing in MiniZinc,
namely a direct bool2float conversion function var float: b2f(var bool: B) and an
explicit weighted sum:
function var int: weighted sum(array[int] of var int W, array[int] of var int X).

Itemset mining is the best studied problem category in MiningZinc, and the
key abstraction is the cover function: cover(Items, TDB)). Other helper functions
are coverInv(Trans, TDB)) and frequent items(TDB, MinFreq).

Many data mining and machine learning problems involve computing dis-
tances. For this reason, we added to the library functions that compute the l1,
l2 and l∞ norms, the Manhattan, Euclidean and Chebyshev distance as well as
the sum of squared errors and mean squared error:

Listing 2. ”norms”

1 function var f loat : norm1(array [int] of var f loat : W) =

2 sum(j in i nd ex s e t (W)) (abs (W[j])) ;

3 function var f loat : norm2sq (array [int] of var f loat : W) =

4 sum(j in i nd ex s e t (W)) (W[j]∗W[j]) ;

5 function var f loat : norm2(array [int] of var f loat : W) =

6 sq r t (norm2sq (W)) ;

7 function var f loat : normInf (array [int] of var f loat : W) =

8 max(j in i nd ex s e t (W)) (W[j]) ;

Listing 3. ”distances”

1 function var f loat : manhDist (array [int] of var f loat : A,

2 array [int] of var f loat : B) =

3 norm1 ([A[d] − B[d] | d in i nd ex s e t (A)]) ;

4 function var f loat : e u c lD i s t (array [int] of var f loat : A,

5 array [int] of var f loat : B) =

6 norm2 ([A[d] − B[d] | d in i nd ex s e t (A)]) ;

7 function var f loat : chebDist (array [int] of var f loat : A,

8 array [int] of var f loat : B) =

9 normInf ([A[d] − B[d] | d in i nd ex s e t (A)]) ;

10 function var f loat : sumSqErr (array [int] of var f loat : A,

11 array [int] of var f loat : B) =

12 norm2sq ([A[d] − B[d] | d in i nd ex s e t (A)]) ;

13 function var f loat : meanSqErr (array [int] of var f loat : A,

14 array [int] of var f loat : B) =

15 sumSqErr (A,B)/ length (A) ;

Modeling in MiningZinc 261

Finally, the library also declares a few annotations that provide additional
information to the solver such as load data and vartype, which are discussed in
the next section.

The MiningZinc library can be used by adding the following statement.

1 i n c l ude ”m in i n g z i n c . mzn ” ;

The library is written in MiniZinc and is fully compatible with the standard
MiniZinc toolchain.

2.3 Facilities for Loading Data

The MiningZinc library also declares a few annotations that allow us to extend
the functionality of MiniZinc with respect to loading data from external sources.
This consists of two components: (1) accessing data from an external data source
and (2) translating it to a data structure supported by MiniZinc.

When using standard MiniZinc, if one wants to use external data, the work-
flow would be as follows:

1. Determine the relevant information from the database
2. Use SQL to extract this information
3. Translate the data to numeric identifiers using a script
4. Write out the data into MiniZinc format (dzn) using a script
5. Execute MiniZinc
6. Translate the results’ identifiers back to the original data using a script
7 Analyze the results and, if necessary, repeat the process

Using the data loading facilities available in MiningZinc, the workflow
becomes:

1. Determine the relevant information from the database
2. Update the MiningZinc model with data sources pointing to the relevant

information
3. Execute MiningZinc
4. Analyze the results and, if necessary, repeat the process

Reading Data. MiningZinc facilitates loading data from external sources through
the load data(specification) annotation. The specification is a string describing
the data source. By default, MiningZinc supports the following specifications:

sqlite;<filename>;<SQL query> Retrieve data from an SQLite database
based on an SQL query.

arff;<filename> Retrieve data from a file in Weka’s ARFF format [18].
csv;<filename>;<field separator> Retrieve data from a CSV file.

The use of these annotations is illustrated in Listing 4.

262 A. Dries et al.

Listing 4. Examples of external data loading

1 array [int] of set of int : TDB

: : l oad data (” s q l i t e ; data/ uc i . db ;SELECT ∗ FROM zoo ; ”) ;

2 array [int] of set of int : TDB

: : l oad data (” a r f f ; data/zoo . a r f f ; ”) ;

3 string : datasource ;

4 array [int] of set of int : TDB : : l oad data (datasource) ;

The translation process is determined based on the structure of the input
data and the target type in MiniZinc. For example, given an input table with
two columns and the output type array[int] of set of int, the first column is
interpreted as the index of the array and the second column as an element of
the set. This is illustrated in Fig. 2.

person eats

john apple
john pear
mary apple
mary banana
mary mango
tom banana

person keyP

john 1
mary 2
tom 3

fruit keyF

apple 1
pear 2

banana 3
mango 4

TDB = [{1,2},{1,3,4},{3}];

Fig. 2. Default translation to an array[int] of set of int from a table with two columns.

Automatic Translations. The previous example shows that during the loading of
the data, we need to translate some of the data to an integer range. MiningZinc
performs these translations automatically. The user can guide this translation
process by adding type annotations to variable definitions. This can be done
using the vartype annotation as illustrated in Listing 5. The additional informa-
tion allows MiningZinc to translate the solutions back to the original values.

Listing 5. Examples of type annotations

1 array [int] of set of int : TDB

: : l oad data (” s q l i t e ; data/ uc i . db ;SELECT ∗ FROM zoo ; ”)

: : vartype (”Animals ” ,” Features ”)

2 var set of Items : Items : : vartype (” Features ”) ;

3 var set of int : Trans : : vartype (”Animals ”) = cover (Items ,TDB) ;

4 constraint card (cover (Items , TDB)) >= MinFreq ;

5 solve sat i s fy ;

6 output [show(Items) , show(Trans)] ;

Modeling in MiningZinc 263

2.4 Python Integration

MiniZinc is a language that is specifically designed for expressing constrained
optimization problems. It is therefore not very suitable to write complete sys-
tems, but should be seen as a domain specific language instead. To facilitate the
use of MiningZinc we provide an interface with Python through the mngzn mod-
ule. This interface allows the user to parse a MiningZinc model from a Python
string, provide parameters using Python’s dictionaries and query its results as a
Python data structure. The main interface is demonstrated in Listing 6.

Listing 6. ”Python interface”

1 import mngzn

2 modelstr = ”””

in t : sum; in t : max ;

var 0 . .max : a ; var 0 . .max : b ;

cons tra in t a+b == sum;

so l ve s a t i s f y ;

output [show(a) , show(b)] ;

”””

3 params = { ’ sum ’ : 3 , ’max ’ : 2}
4 model = mngzn . parseModel (modelstr , params)

5 s o l u t i o n s = model . s o l v e ()

6 for s o l in s o l u t i o n s :

7 print model . f o rmat s o l u t i on (s o l)

First, we load the MiningZinc package (Line 1) and we define a model as
a string of MiniZinc code (Line 2). The model takes two parameters sum and
max and finds all pairs of integers up to max that sum to sum. On Line 3 we
set the values of these parameters in a Python dictionary. Next, we parse the
model string together with the parameters to obtain a solvable model (Line 4).
On Line 5 we solve the model and obtain the solutions. This returns a sequence
of Python dictionaries containing the output variables of the model, in this case
[{’a’: 1, ’b’: 2}, {’a’: 2, ’b’: 1}]. Finally, we format and print out each solution
(Line 7).

In Sect. 3.7 (Listing 17) we show an example of how this interface can be used
to implement a greedy algorithm.

3 Modeling Data Mining Problems

We show how to model a variety of data mining problems, including constraint-
based itemset mining, sequence mining, clustering, linear regression, ranked
tiling and more.

In each case, the problem is modelled as a standard constraint satisfaction
or optimisation problem, and it is modelled using the primitives available in
MiniZinc, as well some common functions and predicates that we have added to
the MiningZinc library.

264 A. Dries et al.

3.1 Itemset Mining

The MiningZinc work originates from our work on using constraint programming
(solvers) for constraint-based itemset mining [16].

Problem Statement. Itemset mining was introduced by Agrawal et al. [1] and can
be defined as follows. The input consists of a set of transactions, each of which
contains a set of items. Transactions are identified by identifiers S = {1, . . . , n};
the set of all items is I = {1, . . . , m}. An itemset database D maps transaction
identifiers to sets of items: D(t) ⊆ I. The frequent itemset mining problem is
then defined mathematically as follows.

Definition 1 (Frequent Itemset Mining). Given an itemset database D and
a threshold α, the frequent itemset mining problem consists of finding all itemsets
I ⊆ I such that |φD(I)| > α, where φD(I) = {t | I ⊆ D(t)}.

The set φD(I) is called the cover of the itemset, and the threshold α the
minimum frequency threshold. An itemset I which has |φD(I)| > α is called a
frequent itemset.

Listing 7. ”Frequent Itemset mining”

1 % Data

2 int : NrI ; int : NrT ; int : Freq ; array [1 . . NrT] of

3 set of 1 . . NrI : TDB;

4 % Pattern

5 var set of 1 . . NrI : Items ;

6 % Min. frequency cons tra in t

7 constraint card (cover (Items ,TDB)) >= Freq ;

8 solve sat i s fy ;

Listing 8. ”Cover function for itemsets”

1 function var set of int : cover (var set of int : Items ,

2 array [int] of set of int : D) =

3 l et {
4 var set of i nd ex s e t (D) : CoverSet ;

5 constraint fo ra l l (t in i nd ex s e t (D))

6 (t in CoverSet <−> Items subset D[t]) ;

7 } in CoverSet ;

MiningZinc Model. Listing 7 shows the frequent itemset mining problem in Min-
ingZinc. Lines 2 and 3 are parameters and data, which a user can provide separate
from the actual model or through load data statements. The model represents
the items and transaction identifiers in I and S by natural numbers (from 1 to
NrI and 1 to NrT respectively) and the dataset D by the array TDB, mapping
each transaction identifier to the corresponding set of items. The set of items we
are looking for is represented on line 5 as a set variable with elements between

Modeling in MiningZinc 265

value 1 and NrI. The minimum frequency constraint is posted on line 7; it natu-
rally corresponds to the formal notation |φD(I)| ≥ α. The cover relation used on
line 7 and shown in Listing 8 is part of the MiningZinc library and implements
φD(I) = {t|I ⊆ D(t)}; note that this constraint is not a hard-coded constraint in
the solver, such as in other systems, but is implemented in the MiningZinc lan-
guage itself, and can hence be changed if this is desired. Finally, line 8 states that
it is a satisfaction problem. Enumerating all solutions that satisfy the constraints
corresponds to enumerating all frequent itemsets.

This example demonstrates the appeal of using a modeling language like
MiniZinc for pattern mining: The formulation is high-level, declarative and close
to the mathematical notation of the problem. Furthermore, the use of user-
defined functions allows us to abstract away concepts that are common when
expressing constraint-based mining problems.

Constraint-Based Mining. In constraint-based mining the idea is to incorpo-
rate additional user-constraints into the mining process. Such constraints can be
motivated by an overwhelming number of (redundant) results otherwise found,
or by application-specific constraints such as searching for patterns with high
profit margins in sales data.

Listing 9 shows an example constraint-based mining setting. Compared to
Listing 7, two constraints have been added: a closure constraint on line 6, which
avoids non-closed patterns in the output, and a minimum cost constraint 10,
requiring that the sum of the costs of the individual items is above a threshold.
Other constraints could be added and combined in a similar way. See [16] for the
range of constraints that has been studied in a constraint programming setting.

Listing 9. ”Constraint-based itemset mining”

1 int : NrI ; int : NrT ; int : Freq ; array [1 . . NrT] of

2 set of 1 . . NrI : TDB;

3 var set of 1 . . NrI : Items ;

4 constraint card (cover (Items ,TDB)) >= Freq ;

5 % Closure

6 constraint Items = cove r inv (cover (Items ,TDB) ,TDB) ;

7

8 % Minimum cost

9 array [1 . . NrI] of int : i t em c ; int : Cost ;

10 constraint sum(i in Items) (i tem c [i]) >= Cost ;

11 solve sat i s fy : : enumerate ;

3.2 Sequence Mining

Sequence mining [1] can be seen as a variation of the itemset mining problem
discussed above. Whereas in itemset mining each transaction is a set of items,
in sequence mining both transactions and patterns are ordered, (i.e. they are

266 A. Dries et al.

sequences instead of sets) and symbols can be repeated. For example, 〈b, a, c,b〉
and 〈a, c, c,b,b〉 are two sequences, and the sequence 〈a,b〉 is one possible pattern
included in both.

Problem Statement. Two key concepts in any pattern mining setting are the
structure of the pattern, and the cover relation that defines when a pattern
covers a transaction.

In sequence mining, a transaction is covered by a pattern if there exists an
embedding of the sequence pattern in the transaction; where an embedding is a
mapping of every symbol in the pattern to the same symbol in the transaction
such that the order is respected.

Definition 2 (Embedding in a sequence). Let S = 〈s1, . . . , sm〉 and S′ =
〈s′

1, . . . , s
′
n〉 be two sequences of size m and n respectively with m ≤ n. The tuple

of integers e = (e1, . . . , em) is an embedding of S in S′ (denoted S �e S′) if
and only if:

S �e S′ ↔ e1 < . . . < em and ∀i ∈ 1, . . . , m : si = s′
ei

(1)

For example, let S = 〈a,b〉 be a pattern, then (2, 4) is an embedding of S in
〈b, a, c,b〉 and (1, 4), (1, 5) are both embeddings of S in 〈a, c, c,b,b〉.

Given an alphabet Σ of symbols, a sequential database D is a set of trans-
actions where each transaction is a sequences defined over symbols in Σ. As in
itemset mining, let D be a mapping from transaction identifiers to transactions.
The frequent sequence mining problem is then defined as follows:

Definition 3 (Frequent Sequence Mining). Given a sequential database D
with alphabet Σ and a threshold α, the frequent sequence mining problem consists
of finding all sequences S over alphabet Σ such that |ψD(S)| > α, where ψD(S) =
{t | ∃e s.t. S �e D(t)}.

The set ψD(S) is the cover of the sequence, similar to the cover of an itemset.

MiningZinc Model. Modeling this in MiningZinc is somewhat more complex
than itemset mining, as for itemsets we could reuse the set variable type, while
sequences and the embedding relation need to be encoded. Each symbol is given
an identifier (offset 1), and a transaction is represented as an array of symbol
identifiers. The data is hence represented by a two dimensional array, and all
sequences are padded with the identifier 0 such that they have the same length
(MiniZinc does not support an array of arrays of different length). This data is
given in lines (2)–(7) in Listing 10.

The pattern itself is also an array of integers, representing symbol identifiers.
The 0 identifier can be used as padding at the end of the pattern, so that patterns
of any size can be represented. Line (9) represents the array of integer variables
while line (11)–(13) enforce the padding meaning of the 0 identifier.

To encode the cover relation we can not quantify over all possible embed-
dings e explicitly, as there can be an exponential number of them. Instead, we

Modeling in MiningZinc 267

add one array of variables for every transaction that will represent the embed-
ding of the pattern in that transaction, if one exists (line 15). Furthermore, we
add one Boolean variable for every transaction, which will indicate whether the
embedding is valid, e.g. whether the transaction is covered (line 17). Using these
variables, we can encode the cover relation (line 19), explained below, as well
as that the number of covered transactions must be larger than the minimum
frequency threshold (line 21).

Listing 10. ”Frequent sequence mining”

1 % Data

2 int : NrS ; % number of d i s t i n c t symbols (symbol i d e n t i f i e r s)

3 int : NrPos ; % number of pos i t i ons = maximum transact ion s i z e

4 int : NrT ;

5 int : Freq ;

6 % datase t : 2D array of symbols

7 array [1 . . NrT , 1 . . NrPos] of 1 . . NrS : data ;

8 % Pattern (0 means ’ end of sequence ’)

9 array [1 . . NrPos] of var 0 . . NrS : Seq ;

10 % enforce meaning of ’0 ’

11 constraint Seq [1] != 0 ;

12 constraint fo ra l l (j in 1 . . NrPos−1) (

13 (Seq [j] == 0) −> (Seq [j +1] == 0)) ;

14 % Helper va r i a b l e s for embeddings (0 means ’no match ’)

15 array [1 . . NrT , 1 . . NrPos] of var 0 . . NrPos : Emb;

16 % Helper va r i a b l e s for Boolean representa t ion of cover se t

17 array [1 . . NrT] of var bool : Cov ;

18 % Constrain cover r e l a t i on

19 constraint s equence cover (Seq , Emb, Cov) ;

20 % Min. frequency cons tra in t

21 constraint sum(i in 1 . . NrT) (boo l 2 in t (Cov [i])) >= Freq ;

22 solve sat i s fy ;

The actual formulation of the cover relation is shown in Listing 11; it could
be made available as a function returning a set variable too. The formulation
consists of three parts. In the first part (line 6) we constrain that for each trans-
action, the jth embedding variable must point to a position in the transaction
that matches the symbol of the jth symbol in the pattern. Note that if no match
is possible then the embedding variable will only have symbol 0 in its domain.
The second part (line 9) requires that embedding variables must be increasing
(except when 0). Finally, on line 12 we state that a transaction is covered if
for every non-0 valued position in the pattern there is a matching embedding
variable.

268 A. Dries et al.

Listing 11. ”Cover relation for sequences”

1 predicate s equence cover (array [int] of var int : Seq ,

2 array [int , int] of var int : Emb,

3 array [int] of var bool : Cov) =

4 % Ind iv idua l pos i t i ons should match (e l s e : 0)

5 f o ra l l (i in 1 . . NrT , j , x in 1 . . NrPos) (

6 (Emb[i , j] == x) −> (Seq [j] == data [i , x])) /\

7 % Posi t ions increase (except when 0)

8 f o ra l l (i in 1 . . NrT , j in 1 . . NrPos−1, x in 1 . . NrPos) (

9 (Emb[i , j +1] == x) −> (Emb[i , j] < x)) /\

10 % Covered i f a l l i t s po s i t i ons match

11 f o ra l l (i in 1 . . NrT) (

12 Cov [i] <−> f o ra l l (j in 1 . . NrT) ((Seq [j] != 0) −>

13 (Emb[i , j] != 0))) ;

As in sequence mining, extra constraints can be added to extract fewer, but
more relevant or interesting patterns. An overview of sequence mining constraints
that have been studied in a sequence mining setting is available in [31].

3.3 Constraint-Based Pattern Mining in Bayesian Networks

Just as one can mine patterns in data, it is also possible to mine patterns in
Bayesian Networks (BNs). These patterns can help in understanding the knowl-
edge that resides in the network. Extracting such knowledge can be useful when
trying to better understand a network, for example when presented with a new
network, in case of large and complex networks or when it is updated frequently.

Problem Statement. A Bayesian Network G defines a probability distribution
over a set of random variables X . Each variable has a set of values it can take,
called its domain. We define a Bayesian network pattern as an assignment to a
subset of the variables:

Definition 4 (BN pattern). A pattern A over a Bayesian network G is a
partial assignment, that is, an assignment to a subset of the variables in G:
A = {(X1 = x1), . . . , (Xm = xm)}, where each Xi is a different variables and xi

is a possible value in its domain.

A BN pattern can be seen as an itemset, where each item is an assignment
of a variable to a value. One can compute the (relative) frequency of an itemset
in a database; related, for a BN pattern one can compute the probability of the
pattern in the Bayesian network. The probability of a pattern A, denoted by
PG(A), is P ((X1 = x1), . . . , (Xm = xm)), that is, the probability of the partial
assignment marginalized over the unassigned variables.

Given this problem setting, one can define a range of constraint-based pattern
mining tasks over Bayesian Networks, similar to constraint-based mining tasks
over itemsets or sequences. In line with frequent itemset mining, the following
defines the probable BN pattern mining problem:

Modeling in MiningZinc 269

Definition 5 (Probable BN pattern Mining). Given a Bayesian network
G over variables X and a threshold α, the probable BN pattern mining problem
consists of finding all BN patterns A over X such that PG(A) > α.

MiningZinc Model. We encode a BN pattern with an array of integer CP vari-
ables, as many as there are random variables in the BN. Each CP variable has
m+1 possible values, where m is the number of values in the domain of the
corresponding random variable: value 0 represents that the variable is not part
of the partial assignment, e.g. it should be marginalized over when computing
the probability. The other values each correspond to a value the domain of the
random variable.

The main issue is then to encode the probability computation. As this com-
putation will be performed many times during search, we choose to first compile
the BN into an arithmetic circuit. Computing the probability over the circuit is
polynomial in its size (which may be worst-case exponential to the size of the
origin network) [8]. Nevertheless, using ACs is generally recognized as one of the
most effective techniques for exact computation of probabilities, especially when
doing so repeatedly.

Fig. 3. Left: The Bayesian network and CPTs for a distribution with 3 variables. The
domain for all variables is {1, 2}. Right: The compiled arithmetic circuit for this BN.
A λij leaf of in the AC corresponds to assignment Xi = j in the BN.

Figure 3 shows an example AC. It consists of product nodes, sum nodes, con-
stants and indicator variables λ. The Boolean indicator variables λi,j indicate
whether (Xi = j). An assignment sets the corresponding indicator variable to 1
and the other indicator variables of the random variable to 0. To marginalize a
random variable away, all indicator variables of that variable must be set to 1.
The value obtained in the root node after evaluating the arithmetic circuit cor-
responds to the probability of the pattern given the assignment to the indicator
variable nodes.

To encode this in CP, we will create a float variable for every node in the
AC. Listing 12 shows how to encode an AC in CP. We assume given the set of

270 A. Dries et al.

product and sum node identifiers (root node has identifier 1), an array of sets
representing the ’children’ relation, an array with the constants, and a 2D array
that maps the indicator variables to nodes of the tree. The last two constraints
in the listing provide a mapping from the Q variables to indicator variables, such
that they must all be set to 1 (=marginalize) or exclusively have one indicator
set to 1 (=assignment).

Listing 12. Probable BN pattern mining

1 int : num vars ;

2 array [v a r i a b l e s] of int : num values ;

3 f loat : min prob ;

4 array [1 . . num vars] of int : Q;

5 var 0 . 0 . . 1 . 0 : P ;

6 constraint P > min prob ;

7 constraint fo ra l l (i in 1 . . num vars) (

8 0 <= Q[i] /\ Q[i] <= num values [i]+1) ;

9 % encode AC

10 int : num ACnodes ;

11 array [1 . . num ACnodes] of var 0 . 0 . . 1 . 0 : F ;

12 constraint P = F [1] ; % root node

13 % sum and product nodes

14 array [1 . . num ACnodes] of set of int : c h i l d r en ;

15 set of int : sum nodes ;

16 constraint fo ra l l (i in sum nodes) (

17 F [i] = sum(j in ch i l d r en [i]) (F [j])) ;

18 set of int : prod nodes ;

19 constraint fo ra l l (i in prod nodes) (

20 F [i] = product (j in ch i l d r en [i]) (F [j])) ;

21 % constant nodes , −1 means non−constant

22 array [1 . . num ACnodes] of int : cons tants ;

23 constraint fo ra l l (i in 1 . . num ACnodes where constants [i]!=−1) (

24 F [i] = constants [i]) ;

25 % Q to ind ica tor nodes (which must take e i t h e r 0 or 1)

26 array [1 . . num vars , int] of int : mapQ;

27 constraint fo ra l l (i in 1 . . num vars) (

28 Q[i]=0 −> f o ra l l (j in 1 . . num vals [i]) (F [mapQ[i , j]] == 1)) ;

29 constraint fo ra l l (i in 1 . . num vars , k in 1 . . num vals [i]) (

30 Q[i]=k −> (F [mapQ[i , k]] == 1) /\
31 f o ra l l (j in 1 . . num vals [i] where j !=k)

32 (F [mapQ[i , j]] == 0)) ;

33 solve sat i s fy ;

Many constraints from the itemset mining literature have a counterpart over
BN patterns and can be formulated as well, such as size constraints, closed/max-
imal/free constraints and constraints to discriminate results from two networks
from each other, or to discriminate a probability in a network to relative fre-
quency in a dataset. This is currently work in progress.

Modeling in MiningZinc 271

3.4 Linear Regression

A common problem studied in data mining is regression, where the goal is to
estimate the value of a variable based on the values of dependent variables.

Problem Statement. In simple regression, the goal is to predict the value of a
target attribute given the value of an M -dimensional vector of input variables
x = (x1, ..., xM).

We are given a set of N observations X and their corresponding target values
y. The goal is to find a function ŷ(x) that approximates the target values y for
the given observations. In linear regression [3] we assume ŷ(x) to be a linear
function. Mathematically, such a function can be formulated as

ŷ(x) = w1x1 + ... + wMxM + wM+1

where w = (w1, ..., wM+1) is a vector of weights that minimizes a given error
function. This error function is typically defined as the sum of squared errors

sumSqErr(ŷ, y) = ‖Xw − y‖22,
where X is an N × (M +1) matrix where each row corresponds to a given obser-
vation (extended with the constant 1), and y is a vector of length N containing
the corresponding target values. The vector Xw contains the result of comput-
ing ŷ for each observation. The goal is then to find the vector of weights w that
minimizes this error, that is,

arg min
w

‖Xw − y‖22.

MiningZinc Model. We can formulate this problem as an optimization problem
as shown in Listing 13. The model starts with defining the input data (Lines 2
and 3) and its dimensions (Lines 5–6). The input data can be specified in an
external file. Line 9 specifies the weight vector that needs to be found. Based
on this weight vector and the input variable x, we specify the estimate (ŷ(x))
of the linear model in Line 11. Finally, on Line 13 we specify the optimization
criterion, i.e. to minimize the sum of squared errors. The function sumSqErr is
defined in the MiningZinc library (Listing 3).

Listing 13. Model for min-squared-error linear regression

1 % Observations

2 array [int , int] of f loat : X;

3 array [int] of f loat : y ;

4 % Data dimensions

5 set of int : Points = index s e t 1 o f 2 (X) ;

6 set of int : Dimensions = index s e t 2 o f 2 (X) ;

7 int : NumWeights = max(Dimensions)+1;

8 % Weights to f ind

9 array [1 . . NumWeights] of var f loat : w;

10 % Estimate for each data point

11 array [Points] of var f loat : yh =

272 A. Dries et al.

[sum(j in Dimensions) (w[j]∗X[i , j]) + w[NumWeights]

| i in Points] ;

12 % Optimization cri ter ium

13 solve minimize sumSqErr (y , yh) ;

By replacing the error function we can easily model other linear regression
tasks, for example linear regression with elastic net regularization [38] where the
optimization criterium is defined as

arg min
w

1
2nsamples

‖Xw − y||22 + αρ‖w‖1 +
α(1 − ρ)

2
‖w‖22

with α and ρ parameters that determine the trade-off between L1 and L2 regular-
ization. Listing 14 shows the implementation of this scoring function in MiniZinc.

Listing 14. Elastic net error function for linear regression

1 function var f loat : e l a s t i c n e t (

array [int] of f loat : Y,

array [int] of var f loat : E,

array [int] of var f loat : W,

f loat : Alpha , f loat : Rho) =

(0 . 5 / i n t 2 f l o a t (l ength (Y))) ∗
norm2 ([Est [i] − Y[i] | i in i ndexs e t (Y)])

+ (Alpha∗Rho) ∗ norm2(W)

+ (0 . 5∗ Alpha∗(1.0−Rho)) ∗ norm1(W) ;

3.5 Clustering

The task of clustering is discussed in the next chapter. We would like to point
out however that the clustering problems explained there can be modeled in
MiningZinc too.

Problem Statement. Let us consider the minimum sum of squared error clustering
problem (which k-means provides an approximation of), where the goal is to
group all examples into k non-overlapping groups [21]. The objective to minimize
is the ’error’ of each cluster, that is, the distance of each point in the cluster to
the mean (centroid) of that cluster.

The centroid of a cluster can be computed by computing the mean of the
data points that belong to it:

zC = mean(C) =

∑
p∈C p

|C| (2)

The error is then measured as the sum of squared errors of the clusters:
∑

C∈C

∑

p∈C

d2(p, zC) (3)

Modeling in MiningZinc 273

MiningZinc Model. The model below shows a MiningZinc specification of this
problem. As variables, it uses an array of integers, one integer variable for
every example. This variable will indicate which cluster the example belongs
too. The optimisation criterion is specified over all clusters and examples; the
b2f(Belongs[j])==i) part converts the Boolean valuation of whether point j
belongs to cluster i into a float variable, such that this indicator variable can be
multiplied by the sum of squared errors of point j to cluster i.

The functions b2f() (bool 2 float) and sumSqErr() (sum of squared errors) are
part of the MiningZinc library, see Sect. 2.2. The definition of mean() is shown
below and follows the mathematical definition above.

1 % Data

2 int : NrDim ; % number of dimensions

3 int : NrE ; % number of examples

4 int : K; % number of c l u s t e r s

5 array [1 . . NrE , 1 . . NrDim] of f loat : Data ;

6 % Cluster ing (each point be longs to one c l u s t e r)

7 array [1 . . NrE] of var 1 . .K: Belongs ;

8 solve minimize sum(i in 1 . .K, j in 1 . . NrE) (

9 b2f (Belongs [j] == i)∗
10 sumSqErr (Data [j] , mean(Data , Belongs , i))

11) ;

12 function array [int] of var f loat : mean(

13 array [int , int] of var f loat : Data ,

14 array [int] of var int : Belongs ,

15 int : c) =

16 l et {
17 set of int : Exs = i nd ex s e t 1 o f 2 (Data) ,

18 set of int : Dims = ind ex s e t 2 o f 2 (Data) ,

19 array [Dims] of var f loat : Mean ,

20 constraint fo ra l l (d in Dims) (

21 Mean [d] =

22 sum(i in Exs) (b2f (Belongs [i] == c) ∗ Data [i , d]) /

23 sum(i in Exs) (b2f (Belongs [i] == c))

24)

25 } in Mean ;

More clustering problems and how to model them for use with constraint
solvers can be found in the next chapter.

3.6 Relational Data Factorization

Motivated by an analogy with Boolean matrix factorization [29] (cf. Fig. 4),
[9] introduces the problem of factorizing a relation in a database. In matrix
factorization, one is given a matrix and has to factorize it as a product of other
matrices.

Problem Statement. In relational data factorization (RDF), the task is to fac-
torize a given relation as a conjunctive query over other relations, i.e., as a
combination of natural join operations. The problem is then to compute the

274 A. Dries et al.

A B C
1 1 0
1 1 1
1 0 1

=
1 0
1 1
0 1

× 1 1 0
0 1 1

Fig. 4. Boolean matrix factorization.

extensions of these relations starting from the input relation and a conjunctive
query. Thus relational data factorization is a form of both inverse querying and
abduction, as one has to compute the relations in the query from the result of
the query. The result of relational data factorization is not necessarily unique,
constraints on the desired factorization can be imposed and a scoring function
is used to determine the quality of a factorization. Relational data factorization
is thus a constraint satisfaction and optimization problem.

More specifically, relational data factorization is a generalization of abductive
reasoning [10]:

1. instead of working with a single observation f , we now assume a set of facts
D for a unique target predicate db is given;

2. instead of assuming any definition for the target predicate, we assume a single
definite rule defines db in terms of a set of abducibles A, the conjunctive query;

3. instead of assuming that a minimal set of facts be abduced, we score the
different solutions based on the observed error.

Formally we can specify the relational factorization problem as follows:
Given:

– a dataset D (of ground facts for a target predicate db);
– a factorization shape Q: db(T̄) ← q1(T̄1), . . . , qk(T̄k), where some of the qi are

abducibles;
– a set of rules and constraints P ;
– a scoring function opt.

Find: the set of ground facts F , the extensions of relation Q, that scores best
w.r.t. opt(D, approx(P,Q, F)) and for which Q ∪ P ∪ F is consistent.

MiningZinc Model. Listing 15 shows the model for a relational factorization
problem with a ternary conjunctive query, using the sum of absolute errors as
scoring function and without additional constraints.

Listing 15. Relational decomposition

1 % Input data

2 array [int , int , int] of int : paper ;

3 % index se t of authors

4 set of int : Authors = i nd ex s e t 1 o f 3 (paper) ;

5 % index se t of un i v e r s i t i e s

6 set of int : Un i v e r s i t i e s = i nd ex s e t 2 o f 3 (paper) ;

7 % index se t of venues

8 set of int : Venues = i nd ex s e t 3 o f 3 (paper) ;

Modeling in MiningZinc 275

9 % Search for

10 array [Authors , Un i v e r s i t i e s] of var bool : worksAt ;

11 array [Authors , Venues] of var bool : publ i shesAt ;

12 array [Un i v e r s i t i e s , Venues] of var bool : knownAt ;

13 solve minimize

sum(a in Authors , u in Un iv e r s i t i e s , v in Venues) (

abs (paper [a , u , v] − boo l 2 in t (

worksAt [a , u] /\ publ i shesAt [a , v] /\ knownAt [u , v]))) ;

14 output [show(worksAt) , show(publ i shesAt) , show(knownAt)] ;

3.7 Ranked Tiling

Ranked tiling was introduced in [23] to find interesting areas in ranked data. In
this data, each transaction defines a complete ranking of the columns. Ranked
data occurs naturally in applications like sports or other competitions. It is
also a useful abstraction when dealing with numeric data in which the rows are
incomparable.

Problem Statement. Ranked tiling discovers regions that have high average rank
scores in rank matrices. These regions are called ranked tiles. Formally, a rank
tile is defined by the following optimization problem:

Problem 1 (Maximal ranked tile mining). Given a rank matrix M ∈
σm×n, σ ∈ {1, . . . n} and a threshold θ, find the ranked tile B = (R∗, C∗), with
R∗ ⊆ {1 . . . m} and C∗ ⊆ {1 . . . n}, such that:

B = (R∗, C∗) = argmax
R,C

∑

r∈R,c∈C

(Mr,c − θ). (4)

where θ is an absolute-valued threshold.

Example 1. Figure 5 depicts a rank matrix containing five rows and ten columns.
When θ = 5, the maximal ranked tile is defined by R = {1, 2, 3, 5} and C =
{1, 2, 3}. The score obtained by this tile is 37, and no more columns or rows can
be added without decreasing the score.

The maximal ranked tiling problem aims to find a single tile, but we are also
interested in finding a set of such tiles. This maximizes the amount of information
we can get from the data. In other words, we would like to discover a ranked
tiling.

Problem 2 (Ranked tiling). Given a rank matrix M, a number k, a thresh-
old θ, and a penalty term P , the ranked tiling problem is to find a set of ranked
tiles Bi = (Ri, Ci), i = 1 . . . k, such that they together maximize the following
objective function:

argmax
Ri,Ci

∑

r∈R,c∈C
1(tr,c≥1)((Mr,c − θ) − (tr,c − 1)P) (5)

276 A. Dries et al.

Fig. 5. Example rank matrix, with maximal ranked tile B = ({R1, R2, R3, R5}, {C1,
C2, C3}).

where tr,c = |{i ∈ {1, . . . , k} | r ∈ Ri, c ∈ Ci}| indicates the number of tiles that
cover a cell, and 1ϕ is an indicator function that returns 1 if the test ϕ is true,
and 0 otherwise. P indicates a penalty that is assigned when tiles overlap.

To solve Problem 1 efficiently, we introduce two Boolean decision vectors:
T = (T1, T2, ..., Tm), with Ti ∈ {0, 1}, for rows and I = (I1, I2, ..., In), with Ii ∈
{0, 1}, for columns. An assignment to the Boolean vectors T and I corresponds
to an indication of rows and columns belonging to a tile. Then, the maximal
ranked tile can be found by solving the following equivalent problem:

argmax
T,I

∑

t∈R
Tt ∗ (

∑

i∈C
(Mt,i − θ) ∗ Ii) (6)

subject to

∀t ∈ R : Tt = 1 ↔
∑

i∈C
(Mt,i − θ) ∗ Ii ≥ 0 (7)

∀i ∈ C : Ii = 1 ↔
∑

t∈R
(Mt,i − θ) ∗ Tt ≥ 0 (8)

where redundant constraints (7), (8) are introduced to boost the search.

MiningZinc Model for Finding a Single Tile. This problem specification trans-
lates directly into the MiningZinc model shown in Listing 16 where Eqs. 7 and 8
correspond to lines 7 and 8, respectively, and the optimization criterion of Eq. 6
corresponds to line 9.

Modeling in MiningZinc 277

Listing 16. MiniZinc model for finding a single best tile

1 array [int , int] of int : TDB;

2 int : th ; % Theta

3 set of int : Rows = ind ex s e t 1 o f 2 (TDB) ;

4 set of int : Cols = i nd ex s e t 2 o f 2 (TDB) ;

5 array [Cols] of var bool : I ;

6 array [Rows] of var bool : T;

7 constraint fo ra l l (r in Rows) (

T[r] == (sum(c in Cols) ((TDB[r , c]− th)∗ boo l 2 in t (I [c])) >= 0)

) ;

8 constraint fo ra l l (c in Cols) (

I [c] == (sum(r in Rows) ((TDB[r , c]− th)∗ boo l 2 in t (T[r]))>=0)

) ;

9 solve maximize

sum(r in Rows) (

boo l 2 in t (I [r]) ∗ sum(c in Cols) ((TDB[r , c]− th)∗ boo l 2 in t (T[c])

)

) ;

10 output [show(T) , ”\n” , show(I) , ”\n ”] ;

To solve Problem 2, Le Van et al. [23] propose to approximate the optimal
solution by using a greedy approach, as is common for this type of pattern set
mining problem. The first tile is found by solving the optimization problem in
Listing 16. Next, we remove that tile by setting all cells in the matrix that are
covered to the lowest rank (or another value, depending on parameter P). Then,
we search in the resulting matrix for the second tile. This process is repeated
until the number of desired tiles is found. The sum of the scores of all discovered
tiles will correspond to the score of Eq. 5 for this solution. However, as the search
is greedy, the solution is not necessarily optimal.

Python Wrapper for Greedy tile Mining. The greedy approach cannot be mod-
elled directly in the MiningZinc language. However, the MiningZinc framework
allows direct access to the solving infrastructure from Python. The complete
algorithm is shown in Listing 17. The interaction with the MiningZinc module
(mngzn) occurs on line 7 where the model is initialized, and on line 9 where one
solution of the model is retrieved. In lines 13 through 19 the obtained tile is
removed from the original matrix (by setting its entries to 0). The process is
repeated until the tile no longer covers a new entry of the matrix.

Listing 17. Wrapper for finding all tiles (in Python)

1 TDB = . . . # Load matrix mznmodel = . . . # See Li s t ing
reflst:rankedtilingspsmzn params = { ’TDB ’ : TDB, ’ th ’ : 5}

2 t i l e s = [] stop = False while not stop :

3 model = mngzn . parseModel (mznmodel , params)

4 # Solve the model to f ind one t i l e

5 s o l u t i o n = next (model . s o l v e ())

6 t i l e s . append (s o l u t i o n)

7 stop = True

8 # Update the ranking matrix => zero out va lues

278 A. Dries et al.

9 for i , r in enumerate (s o l u t i o n [’T ’]) :

10 for j , c in enumerate (s o l u t i o n [’ I ’]) :

11 i f r and c :

12 # Stop unless the new t i l e covers a new item

13 i f TDB[i] [j] > 0 :

14 TDB[i] [j] = 0

15 stop = False

16 return t i l e s

4 Related Work

We have shown how MiningZinc can be used to model a wide variation of data
mining and machine learning tasks in a high-level and declarative way. Our mod-
eling language is based on MiniZinc [32] because it is a well-developed existing
language with wide support in the CP community, it supports user-defined con-
straint, and is solver-independent. Other modeling languages such as Essence
[12], Comet [37] and OPL [36] have no, or only limited, support for building
libraries of user-defined constraints, and/or are tied to a specific solver.

Integrating declarative modeling and data mining has been studied before
in the case of itemset mining [16,22], clustering [11,27] and sequence min-
ing [31]. However, these approaches were low-level and solver dependent. The
use of higher-level modeling languages and primitives has been studied before
[17,28], though again tied to one particular solving technology.

The idea of combining multiple types of data mining and machine learning
techniques also lies at the basis of machine learning packages such as WEKA [18]
and scikit-learn [33]. However, these packages do not offer a unified declarative
language and they do not support going beyond the capabilities of the algorithms
offered.

In data mining, our work is related to that on inductive databases [24]; these
are databases in which both data and patterns can be queried. Most inductive
query languages, e.g., [20,26], extend SQL with primitives for pattern mining.
They have only a restricted language for expressing mining problems, and are
usually tied to one mining algorithm. A more advanced development is that
of mining views [4], which provides lazy access to patterns through a virtual
table. Standard SQL can be used for querying, and the implementation will only
materialize those patterns in the table that are relevant for the query. This is
realized using a traditional mining algorithm. In MiningZinc we support the
integration of data from an external database through the use of SQL queries
directly.

5 Solving

This chapter does not expand on solving, but the MiningZinc framework [14]
supports three types of solving: (1) to use an existing MiniZinc solver; (2) to
detect that the specified tasks is a standard known task and to use a specialised
algorithm to solve it; and (3) a hybrid solving approach that uses both specialised

Modeling in MiningZinc 279

algorithms and generic constraint solvers, for example by solving a master prob-
lem and subproblem with different technology, or to incorporate specialised algo-
rithms inside global constraint propagators. The first approach is typically least
efficient but most flexible towards adding extra constraints. The second app-
roach is least flexible but typically most scalable. The third, hybrid, approach
offers a trade-off between generality and efficiency, but requires modifications to
the solving process, which is hence beyond what can be expressed in a modeling
language like Mini(ng)Zinc.

6 Conclusion

In this chapter we showed how a wide range of data mining problems can be
modeled in MiningZinc. Only a minimal library of extra predicates and functions
was needed to express these problems, meaning that standard MiniZinc is often
sufficient to model such problem. Two additions are the ability to load data
from a database, and a library of distance functions, which are often used in
data mining.

The key feature of MiningZinc as a language for expressing data mining prob-
lems is the ability to add and modify constraints and objective functions. Hence
constraint-based mining problems are those where the language and framework
has most to offer, such as in constraint-based pattern mining and constrained
clustering. Another valuable use is for prototyping new data mining problems, as
was done for relational data factorization and ranked tiling. Many other problem
settings are yet unexplored.

References

1. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of
items in large databases. In: Proceedings of the 1993 ACM SIGMOD International
Conference on Management of Data, pp. 207–216. ACM Press (1993)

2. Basu, S., Davidson, I., Wagstaff, K.: Constrained Clustering: Advances in Algo-
rithms, Theory, and Applications. Chapman & Hall/CRC Data Mining and Knowl-
edge Discovery Series. CRC Press, Boca Raton (2008)

3. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg
(2006)

4. Blockeel, H., Calders, T., Fromont, É., Goethals, B., Prado, A., Robardet, C.:
An inductive database system based on virtual mining views. Data Min. Knowl.
Discov. 24(1), 247–287 (2012)

5. Boulicaut, J.F., Dzeroski, S. (eds.): Proceedings of the Second International Work-
shop on Inductive Databases, 22 September, Cavtat-Dubrovnik, Croatia. Rudjer
Boskovic Institute, Zagreb (2003)

6. Boulicaut, J.-F., Raedt, L., Mannila, H. (eds.): Constraint-Based Mining and
Inductive Databases. LNCS (LNAI), vol. 3848. Springer, Heidelberg (2006). doi:10.
1007/11615576

7. Coquery, E., Jabbour, S., Sais, L., Salhi, Y., et al.: A SAT-based approach for
discovering frequent, closed and maximal patterns in a sequence. In: European
Conference on Artificial Intelligence (ECAI), vol. 242, pp. 258–263 (2012)

http://dx.doi.org/10.1007/11615576
http://dx.doi.org/10.1007/11615576

280 A. Dries et al.

8. Darwiche, A.: A differential approach to inference in bayesian networks. J. ACM
50(3), 280–305 (2003). http://doi.acm.org/10.1145/765568.765570

9. De Raedt, L., Paramonov, S., van Leeuwen, M.: Relational decomposition using
answer set programming. In: Online Preprints 23rd International Conference
on Inductive Logic Programming, International Conference on Inductive Logic
Programming, Rio de Janeiro, 28–30 August 2013, August 2013. https://lirias.
kuleuven.be/handle/123456789/439287

10. Denecker, M., Kakas, A.: Abduction in logic programming. In: Kakas, A.C., Sadri,
F. (eds.) Computational Logic: Logic Programming and Beyond. LNCS (LNAI),
vol. 2407, pp. 402–436. Springer, Heidelberg (2002). doi:10.1007/3-540-45628-7 16

11. Dao, T.-B.-H., Duong, K.-C., Vrain, C.: A declarative framework for constrained
clustering. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML
PKDD 2013. LNCS (LNAI), vol. 8190, pp. 419–434. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-40994-3 27

12. Frisch, A., Harvey, W., Jefferson, C., Hernández, B.M., Miguel, I.: Essence: a con-
straint language for specifying combinatorial problems. Constraints 13(3), 268–306
(2008)

13. Gilpin, S., Davidson, I.N.: Incorporating SAT solvers into hierarchical clustering
algorithms: an efficient and flexible approach. In: Proceedings of the 17th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, San
Diego, CA, USA, 21–24 August 2011, pp. 1136–1144 (2011)

14. Guns, T., Dries, A., Tack, G., Nijssen, S., De Raedt, L.: MiningZinc: a modeling
language for constraint-based mining. In: Proceedings of the Twenty-Third Inter-
national Joint Conference on Artificial Intelligence, pp. 1365–1372. AAAI Press,
August 2013

15. Guns, T., Dries, A., Tack, G., Nijssen, S., Raedt, L.D.: Miningzinc: a language
for constraint-based mining. In: International Joint Conference on Artificial Intel-
ligence (2013)

16. Guns, T., Nijssen, S., De Raedt, L.: Itemset mining: a constraint programming
perspective. Artif. Intell. 175(12–13), 1951–1983 (2011)

17. Guns, T., Nijssen, S., De Raedt, L.: k-Pattern set mining under constraints. IEEE
Trans. Knowl. Data Eng. 25(2), 402–418 (2013)

18. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
weka data mining software: an update. SIGKDD Explor. 11(1), 10–18 (2009)

19. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann,
Burlington (2000)

20. Imielinski, T., Virmani, A.: MSQL: a query language for database mining. Data
Min. Knowl. Disc. 3, 373–408 (1999)

21. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput.
Surv. 31(3), 264–323 (1999). http://doi.acm.org/10.1145/331499.331504

22. Järvisalo, M.: Itemset mining as a challenge application for answer set enumeration.
In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS (LNAI), vol. 6645, pp.
304–310. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20895-9 35

23. Van, T., Leeuwen, M., Nijssen, S., Fierro, A.C., Marchal, K., Raedt, L.: Ranked
tiling. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD
2014. LNCS (LNAI), vol. 8725, pp. 98–113. Springer, Heidelberg (2014). doi:10.
1007/978-3-662-44851-9 7. https://lirias.kuleuven.be/handle/123456789/457022

24. Mannila, H.: Inductive databases and condensed representations for data mining.
In: ILPS, pp. 21–30 (1997)

25. Marriott, K., Nethercote, N., Rafeh, R., Stuckey, P.J., De La Banda, M.G., Wallace,
M.: The design of the Zinc modelling language. Constraints 13(3), 229–267 (2008)

http://doi.acm.org/10.1145/765568.765570
https://lirias.kuleuven.be/handle/123456789/439287
https://lirias.kuleuven.be/handle/123456789/439287
http://dx.doi.org/10.1007/3-540-45628-7_16
http://dx.doi.org/10.1007/978-3-642-40994-3_27
http://doi.acm.org/10.1145/331499.331504
http://dx.doi.org/10.1007/978-3-642-20895-9_35
http://dx.doi.org/10.1007/978-3-662-44851-9_7
http://dx.doi.org/10.1007/978-3-662-44851-9_7
https://lirias.kuleuven.be/handle/123456789/457022

Modeling in MiningZinc 281

26. Meo, R., Psaila, G., Ceri, S.: A new SQL-like operator for mining association rules.
In: VLDB, pp. 122–133 (1996)

27. Métivier, J.-P., Boizumault, P., Crémilleux, B., Khiari, M., Loudni, S.: Con-
strained clustering using SAT. In: Hollmén, J., Klawonn, F., Tucker, A. (eds.)
IDA 2012. LNCS, vol. 7619, pp. 207–218. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-34156-4 20

28. Métivier, J.P., Boizumault, P., Crémilleux, B., Khiari, M., Loudni, S.: A constraint
language for declarative pattern discovery. In: SAC 2012, pp. 119–125. ACM (2012).
http://doi.acm.org/10.1145/2245276.2245302

29. Miettinen, P., Mielikäinen, T., Gionis, A., Das, G., Mannila, H.: The discrete basis
problem. IEEE Trans. Knowl. Data Eng. 20(10), 1348–1362 (2008)

30. Mitchell, T.: Machine Learning, 1st edn. McGraw-Hill, New York (1997)
31. Negrevergne, B., Guns, T.: Constraint-based sequence mining using constraint

programming. In: Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 288–305.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-18008-3 20

32. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.:
MiniZinc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP
2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-74970-7 38

33. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine
learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

34. Stuckey, P.J., Tack, G.: MiniZinc with functions. In: Gomes, C., Sellmann, M.
(eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 268–283. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-38171-3 18

35. Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-
Wesley, Boston (2005)

36. Van Hentenryck, P.: The OPL Optimization Programming Language. MIT Press,
Cambridge (1999)

37. Van Hentenryck, P., Michel, L.: Constraint-Based Local Search. MIT Press, Cam-
bridge (2005)

38. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J.
Roy. Stat. Soc. Series B 67, 301–320 (2005)

http://dx.doi.org/10.1007/978-3-642-34156-4_20
http://dx.doi.org/10.1007/978-3-642-34156-4_20
http://doi.acm.org/10.1145/2245276.2245302
http://dx.doi.org/10.1007/978-3-319-18008-3_20
http://dx.doi.org/10.1007/978-3-540-74970-7_38
http://dx.doi.org/10.1007/978-3-540-74970-7_38
http://dx.doi.org/10.1007/978-3-642-38171-3_18

Partition-Based Clustering Using Constraint
Optimization

Valerio Grossi1, Tias Guns3, Anna Monreale1, Mirco Nanni2,
and Siegfried Nijssen3,4(B)

1 University of Pisa, Pisa, Italy
2 ISTI - CNR, Pisa, Italy

3 DTAI, KU Leuven, Leuven, Belgium
4 LIACS, Universiteit Leiden, Leiden, The Netherlands

siegfried.nijssen@uclouvain.be

Abstract. Partition-based clustering is the task of partitioning a
dataset in a number of groups of examples, such that examples in each
group are similar to each other. Many criteria for what constitutes a good
clustering have been identified in the literature; furthermore, the use of
additional constraints to find more useful clusterings has been proposed.
In this chapter, it will be shown that most of these clustering tasks can be
formalized using optimization criteria and constraints. We demonstrate
how a range of clustering tasks can be modelled in generic constraint
programming languages with these constraints and optimization crite-
ria. Using the constraint-based modeling approach we also relate the
DBSCAN method for density-based clustering to the label propagation
technique for community discovery.

1 Introduction

Clustering [15] is the data analysis task of grouping sets of object. It is an unsu-
pervised task, meaning that no information is known about the true grouping
of the objects. In general, the goal is to find clusters whose objects are similar
to each other while different from the objects in the other clusters. Clustering
can lead to better insights into data and to discoveries of previously unknown
groupings.

Many different clustering settings have been studied in the literature. The
focus of this chapter is on partition-based clustering. In partition-based cluster-
ing, the clustering must form a partition, that is, each object can only belong
to one cluster. This is in contrast to for instance hierarchical clustering, where
clusters form a tree in which one cluster can be a subset of another cluster.

An important aspect in partition-based clustering is the scoring function that
is used to determine the quality of a clustering. In the literature many different

Siegfried Nijssen can currently be reached at the Institute of Information and
Communication Technologies, Electronics and Applied Mathematics, UC Louvain,
Belgium.
Tias Guns can currently be reached at the Vrije Universiteit Brussel.

c© Springer International Publishing AG 2016
C. Bessiere et al. (Eds.): Data Mining and Constraint Programming, LNAI 10101, pp. 282–299, 2016.
DOI: 10.1007/978-3-319-50137-6 11

Partition-Based Clustering Using Constraint Optimization 283

methods for calculating the quality of a clustering have been proposed. A range of
popular partition-based methods are based on the concept of a cluster prototype.
Prototype-based techniques evaluate clusters based on the distance of points in
the cluster to the prototype. These approaches provide clusters having spherical
shapes. Other approaches consider the diameter of the clusters, or their distance
to other clusters. Density-based techniques (e.g. DBSCAN) discover clusters of
any shape, and are designed for discovering dense areas surrounded by areas
with low density, typically formed by noise or outliers.

Another aspect of clustering methods is which constraints they support. Con-
straints can be used to specify additional requirements on the clusters that need
to be found. The most well-known of such requirements are the must-link and
cannot-link constraints, which specify that certain data points should or may
not be clustered together [3,18].

In this chapter, we will show that many of these clustering problems can be
formalized as generic constraint optimization problems. Consequently, generic
constraint optimization solvers can be used to address a wide range of clustering
problems. One motivation for the use of generic constraint optimization tech-
niques in this context is the large number of choices that need to be made in
defining a clustering setting. Central questions are here:

• how do we define the coherence of a cluster?
• how do we define the number of clusters that we wish to find?
• what other properties must the clusters satisfy?

While such constraints and optimization criteria may sometimes be added in
specialized techniques, generic techniques that allow for the specification of such
constraints and optimization criteria would be applicable more widely.

Within this chapter, we will distinguish two types of partitioning-based clus-
tering settings: direct and indirect methods. These settings differ in how the
number of clusters is determined. The direct methods require that a user spec-
ifies the number of clusters explicitly by setting a parameter k, which can be
interpreted as a constraint on the number of clusters. For indirect methods, the
number of clusters is indirectly specified through constraints on the coherence
of a cluster; more clusters are created if a smaller number of clusters would not
be sufficiently coherent [1].

We first discuss the direct approaches based on a parameter k (Sect. 2), fol-
lowed by the indirect approaches (Sect. 3). Here, Sect. 2 first introduces several
optimization criteria and then outlines common user-specified constraints in clus-
tering. Different modeling choices are presented and demonstrated on a range of
clustering problems.

The section on indirect approaches (Sect. 2) shows how clusters can also
be modeled as separated regions of high data density. This corresponds to the
principle behind the DBSCAN algorithm. Furthermore, we draw a link between
this data clustering task and the mechanism of Label Propagation as used in
community detection in graphs.

284 V. Grossi et al.

2 Direct Methods

Characteristic for direct methods is that users need to specify the number of
clusters in advance by means of a parameter k. These methods will subsequently
focus on finding a good clustering with this number of clusters.

Of crucial importance is then how to evaluate the quality of one cluster. Here,
several approaches are possible.

The most studied and applied approaches are those in which a cluster proto-
type is identified. Every cluster is represented by a prototype called the centroid
of the cluster. Two popular algorithms employing this approach are K-means
and K-medoids. In K-means each centroid represents the average of all points
in the cluster, while in K-medoids the centroid is the most representative actual
point in the cluster.

Other approaches do not identify an explicit prototype, but evaluate all pair-
wise distances between points in the cluster, or evaluate the pairwise distances
between points inside and outside the cluster.

From an algorithmic perspective, most algorithms for finding clusters are
heuristic. K-means and K-medoids are good examples. Given a user-specified
value k, these algorithms select k initial centroids. Successively each point is
assigned to the closest centroid based on a distance measure. Finally, the cen-
troids are updated iteratively based on the points assigned to the clusters. This
process stops when centroids do not change.

In this chapter, we take a step back from this algorithmic view and look at the
underlying optimisation problems that clustering methods are trying to solve.
We first describe the different optimization criteria that can be used, followed
by constraints that can be put on clusters or the entire clusterings.

In the following, we assume given a set of data points D of size n. Each
point p is represented by an m-dimensional vector. A cluster C is a set of points:
C ⊆ D, and a clustering C is a partitioning of the data into clusters: ∀C ∈
C : C ⊆ D,

⋃
C∈C C = D,∀C1, C2 ∈ C : C1 ∩ C2 = ∅. Note that we consider

non-overlapping clusters here.

2.1 Optimization Criteria

Intuitively, a clustering consists of clusters that are coherent and whose data
points are similar to each other; on the other hand we also expect the clusters
(and data points therein) to not be similar to the other clusters [15].

There are many different ways to characterize how good a clustering is, by
measuring the (dis)similarity of its clusters and data points. We identify a num-
ber of these measures below. Each measure can be used as an optimisation
criterium to find a ‘good’ clustering according to this measure.

Sum of Squared Inter-cluster Distances. Given some distance function
d(·, ·) over points, for example, the Euclidean distance, we can measure the sum

Partition-Based Clustering Using Constraint Optimization 285

of squared distances within each cluster as follows:
∑

C∈C

∑

p,q∈C,p<q

d2(p, q) (1)

Here we assume that p < q iff data point p is before point q in the database; this
ensures that every pair of points is considered only once.

Sum of Squared Error to Centroid. A more common approach is to measure
the “error” of each cluster, that is, the distance of each point in the cluster to
the mean (centroid) of that cluster.

We compute the centroid of a cluster by computing the mean of the data
points that belong to it:

zC = mean(C) =

∑
p∈C p

|C| (2)

Here, we assume that the points p are represented as vectors and traditional
vector algebra is used. The sum of squared error is then measured as:

∑

C∈C

∑

p∈C

d2(p, zC) (3)

Note that this is identical to the sum of all pairwise distances between the points
of a cluster, divided by the size of that cluster:

∑
C∈C

∑
p,q∈C,p<q d2(p, q)/|C|.

Sum of Squared Error to Medoids. Instead of using the mean (centroid) of
the cluster, one can also use the medoid of the cluster, that is, the point that is
most representative of the cluster. Let the medoid of a cluster be the point with
smallest average distance to the other points:

yC = medoid(C) = arg min
y∈C

∑

p∈C

d2(p, y). (4)

The sum of squared error to the medoids is then measured as follows:
∑

C∈C

∑

p∈C

d2(p, yC) (5)

Cluster Diameter. Another measure of coherence is to measure the diameter of
the largest cluster, where the diameter is defined as the largest distance between
any two points of a cluster. This leads to the following measure of maximum
cluster diameter:

max
C∈C

max
p,q∈C,p<q

d(p, q) (6)

One can imagine other variants such as the sum of diameters.

Inter-cluster Margin. The margin between two clusters is the minimal dis-
tance between any two points that belong to the different clusters. The margin

286 V. Grossi et al.

gives an indication of how different the clusters are from each other (e.g. how far
apart they are). This can be optimized using the following measure of minimum
inter-cluster margin:

min
C,D∈C

min
p∈C,q∈D

d(p, q) (7)

2.2 Constraints

Using constraints for defining data mining tasks guarantees a high level of expres-
sivity, since adding new constraints on the required output is quite easy and
natural. Constraints typically specify background knowledge that the user has
about the clustering. A famous example [18] is that clusters should group cars
in lanes, and hence one can derive that some objects can certainly not be in the
same cluster (e.g. when known to be driving side-by-side) while others certainly
are (when driving in tandem).

The above example is an illustration of instance-level constraints, that is,
constraints between specific points. Must-link constraints require that two points
belong to the same cluster, while Cannot-link constraints require that two points
belong to different clusters [18]. A Must-link constraint on two points p and q
is expressed by: ∀C ∈ C : p ∈ C ↔ q ∈ C; while a Cannot-link constraint is
expressed by: ∀C ∈ C : p ∈ C → q /∈ C.

Another type of constraints is cluster-level constraints [9]. The ε-constraint
or maximal diameter constraint requires that the diameter of a cluster is at
most ε, that is, each two points in a cluster are at most ε apart. This can also
be formulated as requiring that each pair of points p and q that is further apart
cannot be together in the same cluster: ∀p, q : d(p, q) > ε → (∀C ∈ C : p ∈
C → q /∈ C). The δ-constraint or minimal margin constraint requires that two
points belonging to different clusters have to be at least δ apart. Alternatively
formulated: any two points that are closer than δ must belong to the same
cluster: ∀p, q : d(p, q) < δ → (∀C ∈ C : p ∈ C ↔ q ∈ C).

Other user-defined constraints can be expressed [7]. One can impose con-
straint on the clusters size, e.g. requiring clusters with a minimum or maximum
number of points. Constraining the number of points to be minimum or maxi-
mum α is expressed as: ∀C ∈ C : |C| ≥ α and ∀C ∈ C : |C| ≤ α.

Furthermore, any of the measures introduced in the previous section on opti-
mization criteria can also be constrained to take a value within a certain interval.
Other variants and combinations of these constraints can be employed as well,
such as disjunctions of constraints or conditional must-link and cannot-link con-
straints. One can add constraints that certain individual clusters must be similar
or different from predefined sets of points, or add soft constraints such as a bound
on the number of points that can have a cannot-link constraint [2].

The complexity of adding constraints to (k-means) clustering has been stud-
ied in [10]. A general overview of constraint-based methods in clustering is avail-
able in the book “Constrained Clustering: Advances in Algorithms, Theory, and
Applications” [3]. Furthermore, the chapter “Data Mining & Constraints: an

Partition-Based Clustering Using Constraint Optimization 287

Overview” of this book provides several references to using constraints in data
mining tasks also for clustering.

2.3 Modeling Clustering as Constraint Optimization

A constraint optimization problem P = (V,D,X, f) consists of variables V , a
domain D that lists the possible values the variables can take, a set of constraints
X over V and an optimization function f over V that must be minimized or
maximized.

Building on the primitives introduced earlier, many well-known clustering
problems can now be modelled as follows, for a given optimization criterion
quality(C):

maximizeC quality(C), (8)
s.t.

C1 ∩ C2 = ∅ ∀C1, C2 ∈ C (9)

|
⋃

C∈C

C| = n (10)

|C | = k (11)

Here n is the total number of points. In this setting, the number of clusters to
be found is fixed and has to be k.

Note that the model above uses a set notation for the clusters. Not all con-
straint solvers support sets; set variables may not always be the most efficient
representation either. For these reasons, an encoding of the sets in variables of
other types is sometimes necessary. There are various ways to model these sets,
as well as different solving techniques that can be used on these models. We
differentiate between three kinds of approaches:

• Constraint formulations that can directly be solved by most state-of-the-art
constraint programming systems;

• Formulations that require an extension of a Constraint Programming system;
• Hybrid approaches with a specialized system that can deal with a range of

clustering problems, but no other problems.

We will discuss these possibilities in more detail below.

2.3.1 Constraint Solving Formulations

To use constraint programming systems off-the-shelf, an important question that
needs to be answered is how to encode a clustering in such systems. Next to a
set-based notation, several representations have been proposed. We will use these
representations to construct clustering models in the next section:

288 V. Grossi et al.

• a Boolean representation, in which a variable ait with domain {0, 1} takes
value 1 iff point i (with 1 ≤ i ≤ n) is in cluster t (with 1 ≤ t ≤ k), and takes
value 0 otherwise. Constraints

k∑

t=1

ait = 1

for all points i ensure that a point is in only one cluster [14];
• a Boolean representation, in which a variable at with domain {0, 1} takes value

1 iff possible cluster t (with 1 ≤ t ≤ 2n, i.e. each possible cluster is given an
index) is in the clustering; constraint

∑2n

t=1 at = k ensures exactly k possible
clusters are selected and constraints

2n∑

t=1

[i ∈ Ct]at = 1

ensure that every point i is in exactly one chosen cluster; here [i ∈ Ct] is an
indicator that takes value 1 iff point i is in possible cluster t [11,16];

• an integer representation, in which a variable ai with domain {1, . . . , k} indi-
cates that point i (with 1 ≤ i ≤ n) is in cluster ai [8];

• an integer representation, in which a variable gi with domain {1, . . . , n} iden-
tifies the point with the smallest index that is in the same cluster as point i;
note that gi = i iff there is no point j < i in the same cluster as point i [7].

An important benefit of the first Boolean representation is that it is easy to
formalize additional constraints in this representation. A Must-link constraint
on two points pi and pj is expressed by a set of ait = ajt constraints, where
1 ≤ t ≤ k; a cannot-link constraint is expressed by: ∀t ∈ {1, . . . , k} : ait+ajt ≤ 1.
A size constraint can be expressed by:

∀t ∈ {1, . . . , k} :
n∑

i=1

ait ≥ α

∀t ∈ {1, . . . , k} :
n∑

i=1

ait ≤ α.

A drawback of this representation is that additional constraints are required
to ensure that a point is not in two clusters; this is not necessary in the integer
representations.

The second Boolean representation has as most important drawback that its
number of variables is very large. One way to address this is to limit the number
of possible clusters apriori; ideas for this were presented in [16].

The main difference between the integer representations is that in the second
representation the indexes of representative points are used to identify clusters,
while in the first cluster indexes are used. In the second representation the num-
ber of clusters is not fixed; to achieve a fixed number of clusters, additional
variables cj with domain {1, . . . , n}, where 1 ≤ j ≤ k, can be used, with the
constraints:

Partition-Based Clustering Using Constraint Optimization 289

• gcj = cj for all clusters j, i.e., variable cj points to the identifying point for
each cluster;

• ∑k
j=1[gi = cj] = 1 for each point i; this ensures that each point i also belongs

to one of the k clusters identified by c.

A remaining challenge is how to represent the optimization criterion. In many
cases, additional variables are needed. This is illustrated for a number of cases
below.

K-medoid Clustering. In k−medoid clustering, an important aspect is that we
need to identify the cluster medoids. One approach is to represent these medoids
using Boolean variables mij , where 1 ≤ i ≤ n and 1 ≤ j ≤ k; these variables
indicate whether a point is the medoid of a cluster or not. Constraints enforce
that each cluster has only one medoid.

The optimization criterion then becomes:

n∑

i=1

n∑

j=k

aij

n∑

h=1

mhj d(pi, ph)2

This leads to the overall optimization problem below:

minimize
a,m

n∑

i=1

n∑

j=k

aij

n∑

h=1

mhj d(pi, ph)2 (12)

s.t.

k∑

j=1

aij = 1 ∀i ∈ {1, . . . , n} (13)

N∑

i=1

mij = 1 ∀j ∈ {1, . . . , k} (14)

Hence, this model assumes that both the assignment of points to clusters
and the actual medoids are discovered by the constraint programming system.
Note that this model does not explicitly constrain the medoid to its cluster, as
in an optimal solution, the chosen centers need to be medoids for their cluster
in order to minimize the optimization criterion.

Furthermore, this model does not impose additional constraints. Constraints
such as those discussed in Sect. 2.2 can be added to the model without
modification.

Sum of Squared Inter-cluster Distances. This clustering setting has been modeled
in constraint programming using the integer representation where each variable
gi points to the ‘identifying’ point of the cluster, e.g. its point with smallest
index [7]. The sum of squared inter-cluster distances is then expressed as:

∑

i,j∈{1,...,n},i<j

[gi = gj]d2(pi, pj)

290 V. Grossi et al.

Using variable cj to represent the identifying point of cluster j, where the
identifying point is the point with smallest index, this leads to the following
constraint specification:

minimize
g,c

∑

i,j∈{1,...,n},i<j

[gi = gj]d
2(pi, pj), (15)

s.t.

gi ≤ i ∀i ∈ {1, . . . , n} (16)
gcj = cj ∀c ∈ {1, . . . , k} (17)

k∑

j=1

[gi = cj] = 1 ∀i ∈ {1, . . . , n} (18)

cj < cj′ ∀j, j′ ∈ {1, . . . , k}, j < j′ (19)
c1 = 1 (20)

Equation 16 ensures that either it is the smallest (identifying) point of its cluster,
or gi points to another (smaller) identifying point. Equation 17 materializes the
concept of identifying point in a variable cj . The identifying point’s index is the
cluster identifier, so gcj = cj . This constraint is known in the constraint solv-
ing literature as an element constraints. The last two constraints are symmetry
breaking constraints.

Maximal Diameter and Minimal Margin. The same integer representation with
identifying points has been used to model the problem of minimizing the maximal
diameter and maximizing the minimal margin [7].

The main difference is the optimization criterion. Instead of computing the
maximal diameter or minimal margin explicitly and optimising this, it is possible
to constrain each pair of points individually. Let D be a new variable representing
the maximum diameter, then each pair of points pi, pj that is further than d apart
may not be in the same cluster: d(pi, pj) > D → (gi �= gj). The model is shown
below and shares a number of constraints with the previous model [11]:

minimize
D,g,c

D, (21)

s.t.

d(pi, pj) > D → (gi �= gj) ∀i, j ∈ {1, . . . , n} (22)
Equations 16 . . . 20 in the previous model

Maximizing the minimal margin is specified in a similar way [11]:

maximize
M,c,g

M, (23)

s.t.

d(pi, pj) < M → (gi = gj) ∀i, j ∈ {1, . . . , n} (24)
Equations 16 . . . 20 in the above model

Squared Error to the Centroids (K-means). K-means aims to find non-
overlapping clusters that minimize the sum of squared errors to the centroid of
the cluster. As pointed out earlier, one formulation of the optimization criterion

Partition-Based Clustering Using Constraint Optimization 291

is
∑

C∈C

∑

i,j∈|C|,i<j

d2(pi, pj)
|C| . While we could model this with the Boolean or inte-

ger representations used so far, the division in this optimization criterion creates
a non-linearity that makes the problem a lot harder to solve.

Instead, we can use the approach in which we have 2n Boolean variables at,
i.e., a variable for each possible cluster. Let m be an n by 2n matrix of Boolean
values, where each column is a cluster with mit = 1 if data point pi is in cluster
t and mit = 0 otherwise. For each cluster t, the squared error to the centroid
can then be precomputed as

ct =

∑n
i=1 mit

∑n
j=i+1 mjtd

2(pi, pj)∑n
i=1 mit

Using these costs, the problem can be formulated as follows [11]:

minimize
a

∑

t∈T

atct, (25)

s.t.
∑

t∈T

atmit = 1 ∀i ∈ {1, . . . , n} (26)

∑

t∈T

at = k (27)

where T = {1, . . . , 2n} denotes all possible clusters. Equation 25 is the sum of
the squared errors to the centroid of all clusters that are selected (e.g. at = 1).
Equation 26 states that each data point must be covered exactly once. Hence
it enforces both that the clusters are not overlapping and that all points are
covered. Equation 27 finally ensures that exactly k clusters are found.

2.3.2 Extending Constraint Solvers

The previous subsection introduced how to model many clustering problems
using generic constraint programming formulations. These formulations can be
decomposed into low-level constraints such as sum, (in)equality and implication.
Such constraints are supported by most CP systems.

While correct, however, these decompositions and the corresponding propaga-
tion of the low-level constraints is often not efficient. To improve the performance
one of the possible approaches is to add global constraints to these CP systems,
which implement specialized propagation methods for specific constraints.

For example, Thi-Bich-Hanh et al. [6] introduced a global constraint for the
sum of squared inter-cluster distances:

∑

i,j∈{1,...,n},i<j

[gi = gj]d2(pi, pj) (28)

In a standard constraint solver, this constraint is decomposed by introducing
auxiliary variables bij ↔ [gi = gj] and having a linear sum constraint over these
bij : s =

∑
i,j∈{1,...,n},i<j bijvij , where vij = d2(pi, pj) are precomputed constants.

292 V. Grossi et al.

Instead, the authors introduce a global constraint for the entire Eq. 28, which
can reason over the fact that each point can only belong to one cluster. In this
way, a tighter lower bound on the sum can be computed than when using the
standard decomposition.

Computing this tighter lower bound is achieved by splitting the sum into
three distinct cases: (a) cases for which gi and gj are already assigned, (b) cases
for which gi or gj is assigned, but not the other one, and (c) cases for which both
gi and gj are not assigned. Case (a) can be deterministically computed. For case
(b), for each point, the minimum value is chosen among all existing clusters
to which this point could be added. For case (c) a clever heuristic is used to
compute a lower bound based on the minimum number of possible connections
that must still be added to obtain k clusters.

Apart from adding global constraints, efficiency improvements can typically
also be obtained by adding redundant constraints or by breaking symmetries in
the constraint formulation. Another important aspect is the order in which to
search over the variables and their possible values. For example, one could use
a furthest-point-first heuristic [7,13].

2.3.3 Hybrid Approach: Column Generation

Further problems of efficiency are posed by models that introduce an exponen-
tial number of variables, having one variable for each potential cluster. Global
constraints can not solve this problem.

One approach to solve this challenge is to lazily add candidate clusters until
the optimal subset of clusters is found. This is the idea behind column generation
in Integer Linear Programming. This was first investigated for minimum sum of
squared error clustering by DuMerle et al. [11] and later extended to support
additional constraints by Babaki et al. [2].

The core idea is to only consider a subset of the clusters in the set T of the
above model, and to relax the at variables such that they can take on real values
instead of being Boolean. This problem is called the restricted master problem.
Solving the restricted master problem can be done with standard (integer) linear
programming solvers, and one obtains a real-valued solution to at. Then, using
the dual values of this solution, one can search for the best cluster (column)
to add, that is, the cluster that can best improve the objective function. This
is called the subproblem and is typically done with a specialized method. If no
such column can be found, the solution of the restricted master problem is also
a solution of the original master problem [11].

A key observation in [2] is that most constraints considered in constraint-
based clustering are constraints on individual clusters. Consequently, these
constraints do not change the (restricted) master problem; they only affect
the set T and hence the definition of the subproblem. Babaki et al. [2] have
devised a method to solve the subproblem directly while taking must-link and
cannot-link constraints into account, as well as other anti-monotone constraints
such as cluster size and overlap constraints.

Partition-Based Clustering Using Constraint Optimization 293

3 Indirect Methods

The approaches presented in Sect. 2 require to know in advance the number of
clusters to be found. Moreover, they tend to provide clusters that are sphere-
shaped. Unfortunately, in a number of real applications, the data points are
grouped into non-spherical regions or regions that are quite dense surrounded
by areas with low density, typically formed by noise. From this perspective, clus-
ters can also be defined implicitly as regions of higher data density, separated
from each other by regions of lower density. The price for this flexibility is a
difficult interpretation of the obtained clusters. One of the most famous clus-
tering algorithms based on the notion of density of regions is DBSCAN [12].
This algorithm does not rely on an optimization algorithm however, and in this
chapter we present a constraint programming formulation (Sect. 3.1). Using this
formulation, we show how re-defining this task as a community discovery prob-
lem in a network, this approach becomes very similar to the label propagation
approach that finds clusters of nodes in networks [17].

3.1 Density-Based Clustering

Density-based clustering is based on measuring the data density at a certain
region of the data space and then defining clusters as regions that exceed a certain
density threshold. The final clusters are obtained by connecting neighboring
dense regions. Figure 1 shows an illustrative example in a two-dimensional space.
Four groups are recognized as clusters and they are separated by an area where
the data density is low.

Fig. 1. Example of density-based clusters [4].

294 V. Grossi et al.

DBSCAN. DBSCAN [12] locates regions of high density that are separated
from one another by regions of low density. The approach identifies three different
classes of points:

Core points. These points are in the interior of a density-based cluster. A
point is a core point if the number of points within a given neighborhood
around the point as determined by the distance function and a user- specified
distance parameter, ε, exceeds a certain threshold, MinPts, which is also a
user-specified parameter.
Border points. These points are not core points, but fall within the neigh-
borhood of a core point. A border point can fall within the neighborhoods of
several core points.
Noise points. A noise point is any point that is neither a core point nor a
border point.

The DBSCAN algorithm works as follows:

1. Label all points as core, border, or noise points.
2. Eliminate noise points.
3. Put an edge between all core points that are within ε of each other.
4. Make each group of connected core points into a separate cluster.
5. Assign each border point to one of the clusters of its associated core points.

Below we introduce the constraint programming model for this clustering
problem.

Constraint Programming Model for Density Based Clustering. We
reformulate the problem in the context of networks by considering the set of
points D as nodes and setting an edge between two nodes i and j if the dis-
tance between the two points is less than a given ε. Clearly, in this way we have
that the neighbors of a node (point) i are the set of points within a distance
ε. Our intended objective is to capture the basic idea that “each node has the
same label as all of its neighbors”. Therefore, the problem can be modelled
as follows:

maximize(
∑

j∈L

min(1,
∑

i∈D

ki,j)), (29)

s.t.

ai,j =

{
1 if d(i, j) ≤ ε
0 otherwise

∀i, j ∈ D (30)

ki,j ∈ {0, 1} ∀i ∈ D, ∀j ∈ L (31)

ri =

{
1 if
∑

j∈D ai,j ≥ minp

0 otherwise
∀i ∈ D (32)

∑

j∈L

ki,j = 1 ∀i ∈ D (33)

Partition-Based Clustering Using Constraint Optimization 295

rh = 1 ∧ rp = 1 ∧ ah,p = 1 ∧ kh,j = 1 ⇒ kp,j = 1 ∀h ∈ D, ∀r ∈ D, ∀j ∈ L
(34)

ri = 0 ⇒ ki,j = 1 ∀i ∈ D (35)
where

j = min({j ∈ L \ {n + 1}|
∃h : ah,i = 1 ∧ rh = 1 ∧ kh,j = 1} ∪ {n + 1})

In more detail this model can be described as follows. Boolean variables ki,j
denote the color of a point (node i), by setting ki,j = 1 if the point i has the
color j. Variables ai,j indicate the presence or absence of an edge between two
nodes. Variables ri denote whether node i is a core point or not.

Assumed given are: (a) the set of points D, and (b) the ordered set of colors
L = {1, . . . , n}. Note that in the set of colors we have the color n + 1 that is
an additional color used for coloring the noise points. The model imposes that
a point has one and only one color, and that all the connected core points must
have the same color (Eq. 34). Another requirement is that each point that is not
a core point takes the same color of the core points that are connected to it. If
it does not have any core point around it then this point takes the additional
color n + 1 because it is a noise (Eq. 35). Such a constraint also captures the
special case in which the point i can be connected to more than one core with
different colors. In this case, the model assigns to i the color of the core that in
the ordered set C \ {n + 1} has a lower rank. Finally, the model is intended to
maximize the number of different colors. Notice that a solution where all points
have distinct colors does not satisfy Eq. 34 because connected points do not have
the same color.

This constraint programming formulation makes it easy to extend the stan-
dard method with other constraints. In principle, any constraint that requires
to merge clusters as identified by DBSCAN can be added to the model above.
As an example, we could specify constraints on the minimum cluster size: in this
case, clusters will need to be merged in order to obtain a required cluster size; by
enforcing a diameter constraint on the resulting clusters, it can be ensured that
the resulting clusters are not arbitrary combinations of clusters as identified by
traditional DBSCAN.

Moreover, we can also extend the above problem by changing one of the
constraints of the standard formulation. In the following, we will show that by
changing a constraint of the DBSCAN formulation we obtain a problem that
corresponds to one of the most famous algorithms for discovering communities
in network data.

3.2 Label Propagation

When considering graph or network data, a task very similar to clustering is
community discovery, which can be seen as a network variant of standard data
clustering. The concept of a “community” in a (web, social, or informational)
network is intuitively understood as a set of individuals that are very similar, or

296 V. Grossi et al.

close, to each other, more than to anybody else outside the community [5]. This
has often been translated in network terms into finding sets of nodes densely
connected to each other and sparsely connected with the rest of the network. An
interesting community discovery algorithm is the Label Propagation algorithm
[17] that detects communities by spreading labels through the edges of the graph
and then labeling nodes according to the majority of the labels attached to their
neighbors, iterating until a general consensus is reached.

Before introducing a constraint programming model for this algorithm we
recall the details of the iterative label propagation algorithm presented in [17].

Iterative Label Propagation (LP). Suppose that a node v has neighbors
v1, v2, . . . , vk and that each neighbor carries a label denoting the community
that it belongs to. Then, v determines its community based on the labels of
its neighbors. [17] assumes that each node in the network chooses to join the
community to which the maximum number of its neighbors belong to. As the
labels propagate, densely connected groups of nodes quickly reach a consensus
on a unique label. At the end of the propagation process, nodes with the same
labels are grouped together as one community. Clearly, a node with an equal
maximum number of neighbors in two or more communities will take one of
the two labels by a random choice. For clarity, we report here the procedure of
the LP algorithm. Note that, in the following Cv(t) denotes the label assigned
to the node v at time (or iteration) t.

1. Initialize the labels at all nodes in the network. For any given node v,
Cv(0) = v.

2. Set t = 1.
3. Arrange the nodes in the network in a random order and set it to V .
4. For each vi ∈ V , in the specific order, let Cvi

(t) = f(Cvi1(t−1), . . . , Cvik
(t−1).

Function f here returns the label occurring with the highest frequency among
neighbors and ties are broken uniformly randomly.

5. If every node has a label that the maximum number of its neighbors has, or
t hits a maximum number of iterations tmax then stop the algorithm. Else,
set t = t + 1 and go to (3).

The drawback of this algorithm is the fact that ties are broken uniformly
randomly. This random behavior can lead to different results for different execu-
tions and some of these results cannot be optimal. In Fig. 2 we show how given
the same network as input of the LP algorithm we obtain four different results.

In the next section we propose a constraint programming model that solves
this problem by providing the optimal solution.

3.2.1 Constraint Programming Model for Label Propagation

Let us now propose a constraint programming model for the community discov-
ering problem based on label propagation. Our aim is to capture the basic idea
that “each node takes the label of the majority of its neighborhood”. Therefore,
the model is the following:

Partition-Based Clustering Using Constraint Optimization 297

Fig. 2. The result of four executions of LP algorithm (Color figure online)

maximize(
∑

j∈L

min(1,
∑

i∈N

ki,j)), (36)

s.t.

ai,j =

{
1 if (i, j) ∈ E
0 otherwise

(37)

ki,j ∈ {0, 1} (38)
∑

j∈L

ki,j = 1 ∀i ∈ N (39)

ni,h =
∑

∀j:ai,j=1

kj,h ∀i ∈ N, ∀h ∈ L (40)

ki,l = 1 ⇒ ni,l = max
h∈L

ni,h ∀i ∈ N, ∀l ∈ L (41)

Here, variables ai,j indicate the presence or absence of an edge between two
nodes. Variables ki,j denote the color (label) of a node in the network. Assumed
given is (a) the set of nodes N , (b) the set of edges E, and (c) an ordered set of
colors L. A node can be assigned one and only one color. Variables ni,h denote
the number of neighbors of node i with assigned color h. The model assigns to
the node i the color h if it is the most popular among its neighbors, as shown
in Eq. 41. Such a constraint also captures the case of ties. In such a case, node
i is assigned the color that has the lowest rank in the ordered set L. Finally,
the model maximizes the number of different colors in the network, as shown
in Eq. 36.

298 V. Grossi et al.

Fig. 3. The result of the execution of CP-LP model

This model highlights the similarity between Label Propagation and the
Density-based clustering problem, and thanks to the constraint programming
formulation we can note that the model for density-based clustering is a variant
of the standard label propagation. Indeed, the only difference is due to the fact
that the Density-based model requires that “each node has the same label of
all its neighbors”, and not the most frequent label. Equations 34 and 35 in the
DBSCAN model and Eq. 41 in the LP model express this difference. By exe-
cuting our model we obtain the optimal solution depicted in Fig. 3, where we
consider as input the same network in Fig. 2.

4 Conclusions

In this chapter, we have presented how different well-established approaches to
partition-based clustering can be modeled and optimized via constraints. In par-
ticular, we investigated two main families of partition-based methods, i.e. direct
and indirect. In this perspective, the chapter has presented several examples
where the clustering methods are explicitly modeled by constraints. In this way,
it has parted from the more traditional algorithmic view on clustering. We dis-
cussed different optimization criteria and constraints, showed different modeling
choices for direct methods and related the indirect methods of DBSCAN and
label propagation through a constraint formulation.

References

1. Aggarwal, C.C., Reddy, C.K.: Data Clustering: Algorithms and Applications,
1st edn. Chapman & Hall/CRC, Boca Raton (2013)

2. Babaki, B., Guns, T., Nijssen, S.: Constrained clustering using column genera-
tion. In: Simonis, H. (ed.) CPAIOR 2014. LNCS, vol. 8451, pp. 438–454. Springer,
Heidelberg (2014). doi:10.1007/978-3-319-07046-9 31

3. Basu, S., Davidson, I., Wagstaff, K., Clustering, C.: Advances in Algorithms,
Theory, and Applications, 1st edn. Chapman & Hall/CRC, Boca Raton (2008)

http://dx.doi.org/10.1007/978-3-319-07046-9_31

Partition-Based Clustering Using Constraint Optimization 299

4. Berthold, M.R., Borgelt, C., Hppner, F., Klawonn, F.: Guide to Intelligent Data
Analysis: How to Intelligently Make Sense of Real Data, 1st edn. Springer,
Heidelberg (2010)

5. Coscia, M., Giannotti, F., Pedreschi, D.: A classification for community discovery
methods in complex networks. Stat. Anal. Data Min. 4(5), 512–546 (2011)

6. Dao, T., Duong, K., Vrain, C.: A filtering algorithm for constrained clustering with
within-cluster sum of dissimilarities criterion. In: 2013 IEEE 25th International
Conference on Tools with Artificial Intelligence, Herndon, VA, USA, 4–6 November
2013, pp. 1060–1067 (2013)

7. Dao, T.-B.-H., Duong, K.-C., Vrain, C.: A declarative framework for constrained
clustering. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML
PKDD 2013. LNCS (LNAI), vol. 8190, pp. 419–434. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-40994-3 27

8. Dao, T.-B.-H., Duong, K.-C., Vrain, C.: Constrained clustering by constraint pro-
gramming. Artif. Intell. (2015)

9. Davidson, I., Ravi, S.: The complexity of non-hierarchical clustering with instance
and cluster level constraints. Data Min. Knowl. Disc. 14(1), 25–61 (2007)

10. Davidson, I., Ravi, S.S.: Clustering with constraints: feasibility issues and the k-
means algorithm. In: Proceedings of the 2005 SIAM International Conference on
Data Mining, SDM 2005, Newport Beach, CA, USA, 21–23 April 2005, pp. 138–149
(2005)

11. du Merle, O., Hansen, P., Jaumard, B., Mladenovic, N.: An interior point algorithm
for minimum sum-of-squares clustering. SIAM J. Sci. Comput. 21(4), 1485–1505
(1999)

12. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for dis-
covering clusters in large spatial databases with noise. In: Simoudis, E., Han, J.,
Fayyad, U.M. (eds.) KDD, pp. 226–231. AAAI Press, Menlo Park (1996)

13. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theor.
Comput. Sci. 38, 293–306 (1985)

14. Hansen,P., Aloise, D.: A survey on exact methods for minimum sum-of-
squares clustering, pp. 1–2, January 2009. http://www.math.iit.edu/Buck65files/
msscStLouis.pdf

15. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput.
Surv. 31(3), 264–323 (1999)

16. Mueller, M., Kramer, S.: Integer linear programming models for constrained
clustering. In: Pfahringer, B., Holmes, G., Hoffmann, A. (eds.) DS 2010.
LNCS (LNAI), vol. 6332, pp. 159–173. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-16184-1 12

17. Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect
community structures in large-scale networks. Phys. Rev. E 76(2), 036106+ (2007)

18. Wagstaff, K., Cardie,C.: Clustering with instance-level constraints. In: Proceed-
ings of the Seventeenth International Conference on Machine Learning (ICML
2000), Stanford University, Stanford, CA, USA, June 29–July 2 2000, pp. 1103–
1110 (2000)

http://dx.doi.org/10.1007/978-3-642-40994-3_27
http://www.math.iit.edu/Buck65files/msscStLouis.pdf
http://www.math.iit.edu/Buck65files/msscStLouis.pdf
http://dx.doi.org/10.1007/978-3-642-16184-1_12
http://dx.doi.org/10.1007/978-3-642-16184-1_12

Showcases

The Inductive Constraint Programming Loop

Christian Bessiere1(B), Luc De Raedt2, Tias Guns2, Lars Kotthoff3,
Mirco Nanni4, Siegfried Nijssen2,5, Barry O’Sullivan3, Anastasia Paparrizou1,

Dino Pedreschi4, and Helmut Simonis3

1 CNRS, University of Montpellier, Montpellier, France
bessiere@lirmm.fr

2 DTAI, KU Leuven, Leuven, Belgium
3 Insight, University College Cork, Cork, Ireland

4 University of Pisa, Pisa, Italy
5 LIACS, Universiteit Leiden, Leiden, The Netherlands

Abstract. Constraint programming is used for a variety of real-world
optimization problems, such as planning, scheduling and resource alloca-
tion problems. At the same time, one continuously gathers vast amounts
of data about these problems. Current constraint programming software
does not exploit such data to update schedules, resources and plans. We
propose a new framework, that we call the Inductive Constraint Pro-
gramming (ICON) loop. In this approach data is gathered and analyzed
systematically in order to dynamically revise and adapt constraints and
optimization criteria. Inductive Constraint Programming aims at bridg-
ing the gap between the areas of data mining and machine learning on
the one hand, and constraint programming on the other hand.

This chapter is an extended abstract of

Christian Bessiere, Luc De Raedt, Tias Guns, Lars Kotthoff, Mirco Nanni,
Siegfried Nijssen, Barry O’Sullivan, Anastasia Paparrizou, Dino Pedreschi,
Helmut Simonis. The Inductive Constraint Programming Loop. CoRR,
abs/1510.03317, 2015. http://arxiv.org/abs/1510.03317

1 Introduction

Machine Learning/Data Mining (ML/DM) and Constraint Programming (CP)
are central to many application problems. ML is concerned with learning func-
tions/patterns characterizing some training data whereas CP is concerned with
finding solutions to problems subject to constraints and possibly an optimization
function.

Siegfried Nijssen can currently be reached at the Institute of Information and
Communication Technologies, Electronics and Applied Mathematics, UC Louvain,
Belgium.
Tias Guns can currently be reached at the Vrije Universiteit Brussel.

c© Springer International Publishing AG 2016
C. Bessiere et al. (Eds.): Data Mining and Constraint Programming, LNAI 10101, pp. 303–309, 2016.
DOI: 10.1007/978-3-319-50137-6 12

http://arxiv.org/abs/1510.03317

304 C. Bessiere et al.

The problem with current technology is that the problems of data analy-
sis and constraint satisfaction/optimization have almost always been studied
independently and in isolation. Indeed, there exist a wide variety of successful
approaches to analysing data in the field of ML, DM and statistics, and at
the same time, advanced techniques for addressing constraint satisfaction and
optimization problems have been developed in the CP community. Over the
past decade a limited number of isolated studies on specific cases has indi-
cated that significant benefits can be obtained by connecting these two fields
[EF01,XHHL08,DGN08,BHO09,KBC10,CJSS12], but so far a truly general,
integrated and cross-disciplinary approach is missing.

CP technology is used to solve many types of constraint satisfaction and
optimization problems, such as in power companies generating and distribut-
ing electricity, in hospitals planning their surgeries, and in public transportation
companies scheduling buses. Despite the availability of effective and scalable
solvers, current approaches are still unsatisfactory. The reason is that when using
CP technology to solve these applications, the constraints and criteria, that is,
the model, must be specified statically. However, in reality often this model
needs to be revised over time. The revision can be needed to reflect changes
in the environment due to external events that impact the problem. The revi-
sion can also be needed because the execution of the solution generated by the
model has modified the characteristics of the problem. Finally the revision can be
needed simply because the original model did not capture correctly the problem.
Observing the impact of the solution allows us to correct or improve the model.
Therefore, there is an urgent need for improving and revising a model over time
based on data that is continuously gathered about the performance of the solu-
tions and the environment they are used in. The CP community has extended the
basic constraint satisfaction and optimization problems to better tackle changing
environments. The dynamic constraint satisfaction approach [DD88] allows the
addition/retraction of constraints from the initial model. This approach does not
predict the changes from data, but rather the addition/retraction of constraints is
performed by the user. The online/stochastic constraint programming approach
[BH04,Wal02] offers a framework to deal with unknown future events, such as
customer requests. It builds a finite set of future scenarios, e.g. using sampling
from a known distribution, and the optimization problem is then defined over
each of the scenarios. The framework does not capture ways of using data, other
than for the prediction of possible scenarios of events.

In general, exploiting gathered data to modify and adjust any aspect of a
model is difficult and labor intensive with state-of-the-art solvers. As a conse-
quence, the data that is being gathered today in order to monitor the quality of
the produced solutions and to help evaluating the effect of possible adjustments
to the constraints or optimization criteria, is not fully exploited when changes in
a schedule or plan are needed. Hence, schedules and plans that are produced are
often suboptimal. This, in turn, leads to a waste of resources. Instead of using
data passively, data should be actively analysed in order to discover and update
the underlying regularities, constraints and criteria that govern the data.

The Inductive Constraint Programming Loop 305

In this chapter, we propose and formalize the new framework of inductive
constraint programming. This framework is based on what we call the Induc-
tive Constraint Programming (ICON) loop, which is an interaction between a
machine learning component (ML) and a constraint programming component
(CP). The ML component observes the world and extracts patterns. The CP
component solves a constraint satisfaction or optimization problem using these
patterns; its solution is applied to the world. We assume the world changes
over time, possibly due to the impact of applying our solution. This process is
repeated in a loop. Inductive constraint programming will serve the long-term
vision of easier-to-use and more effective tools for resource optimization and
task scheduling.

An introduction to Constraint Programming and Data Mining was already
given earlier in this book; the focus of this chapter is on introducing the formalism
behind the loop. Extensive examples of the loop can subsequently be found in
the last chapters.

2 Inductive Constraint Programming Loop

The inductive constraint programming loop will cope with changes in the world
by iteratively solving a learning problem and a constraint problem. The loop
is composed of several components that interact with each other through writ-
ing and reading operations. A visualization of the loop is given in Fig. 1. We
introduce each of the elements in the loop in turn.

CP Component. An important element of the CP component is the constraint
network. A constraint network N = (X,D,C, f) is composed of: a set X of
variables taking values in domain D. These variables are subject to constraints
in the set C. The optional evaluation function f takes as input an assignment
on X and returns a cost for it. A solution (optionally best solution) of N is an
assignment in DX satisfying all the constraints in C (optionally minimizing f).

A solver Xsolve takes as input a constraint network and returns a solu-
tion/best solution or failure in case no solution satisfying all the constraints
exists.

The CP component is composed of the constraint network N = (X,D,C, f),
the constraint solver Xsolve, and a Solutions repository. Xsolve generates solutions
of N , or good/best solutions of N according to f , that it writes in the Solutions
repository. In case Xsolve is not able to produce any solution to be applied to
the world, the CP component notifies the ML component by sending information
about the failure.

More details about CP can be found in the first chapter of this book.

ML Component. A learning problem L = (E,H, t, loss) is composed of a set E
of examples, a hypothesis space H, the target function t that one wants to learn,
and a loss function loss(E, h, t) that measures the quality of a hypothesis h ∈ H
w.r.t. dataset E and the target hypothesis t. The goal is to find a hypothesis
that minimizes the loss.

306 C. Bessiere et al.

Fig. 1. The inductive constraint programming loop

For example, given real-valued data E ⊂ Rd and real-valued labels identified
by target function t, where ∀e ∈ E : t(e) ∈ R, the goal of linear regression
is to learn a linear function hc : E → R with coefficients c that minimizes
the sum of squared errors between the predicted value and the observed value:
loss(E, hc, t) =

∑
e∈E |hc(e) − t(e)|2 =

∑
e∈E |e · c − t(e)|2. Many other loss

functions and hypothesis spaces have been defined in the literature.
The ML component is composed of the learning problem L = (E,H, t, loss),

the learner XLearn, and a Patterns repository. XLearn learns hypotheses t (typi-
cally one) and writes them in the Patterns repository.

More information about data mining and machine learning can be found in
the second chapter of this book.

World. The World component is composed of a world W , an evaluation func-
tion eval world, and a Observations repository. The world W can have its own
independent behavior, dynamically changing under the effect of time and the
effect of applying solutions of the Solutions repository. The solutions are evalu-
ated by the eval world function and this feedback is stored in the Observations
repository.

Now that we have defined the basis of the inductive constraint programming
loop, we need to define the way the CP component, the ML component and the

The Inductive Constraint Programming Loop 307

world interact with each other. They interact through a set of reading/writing
functions.

An inductive constraint programming loop is composed of a world (W,
eval world), a CP component (N,Xsolve), and an ML component (L,XLearn).
The loop uses the following channels of communication:

• function World-to-ML reads data and evaluations from the Observations
repository and updates the learning problem L, that will be used by XLearn
to learn a hypothesis h;

• function CP-to-ML is used to send feedback from the previous iteration of
the CP component to the ML component, e.g. when Xsolve cannot find any
satisfactory solution to be applied to the world;

• function World-to-CP reads data from the Observations repository that can be
used to directly update the constraint network N used by Xsolve;

• function ML-to-CP reads patterns from the Patterns repository and updates
the constraint network N used by Xsolve to produce solutions;

• function Apply-to-World takes solutions in the Solutions repository and applies
them to the world, if possible.

The following pseudo code demonstrates how these communication channels
are used in the inductive constraint programming loop:

Algorithm 1. Pseudo code of a loop cycle using the components.
function cycle(Observations, optional Solutions)

repeat
Lo ← World-to-ML(Observations)
Lp ← CP-to-ML(Solutions)
L ← constructL(Lo, Lp)
Patterns ← applyXlearn(L)

No ← World-to-CP(Observations)
Np ← ML-to-CP(Patterns)
N ← constructN(No, Np)
Solutions ← applyXsolve(N)

until Apply-to-World(Solutions)
end function

Initially, World-to-ML is used to gather training data to the ML component.
These data can be feedback from previous executions of solutions of the CP
component on the world. The solution of the previous cycle can also directly be
used as well, through CP-to-ML. This is especially useful if the previous solution
could not be applied to the world, for example because the learned patterns
lead to an inconsistency. Using the output of World-to-ML and CP-to-ML, the
learning problem L can then be constructed, specific to the learner at hand.
Next, the learner is applied to L and patterns are obtained. These patterns can

308 C. Bessiere et al.

be weights of an objective function, constraints, or any other type of structural
information that is part of the CP problem.

A similar process then happens for the CP component, the network is con-
structed using the output of World-to-CP and ML-to-CP, after which the solving
method is used and solutions are obtained.

These solutions are then applied to the world using Apply-to-World. As
mentioned before, it may be that the found solution (or non-solution) is not
applicable to the world. In that case, a new iteration of the loop is started
immediately which bypasses the world. Otherwise the solutions are applied to
the world, after which a new cycle with new observations can be started.

We can observe that there is no direct link between the ML component and
the world. Our framework is indeed devoted to solving combinatorial problems
such as scheduling and routing, revising them based on feedback from the world;
it does not aim to only classify or predict events in the world.

3 Conclusions

The key idea in the inductive constraint programming (ICON) loop is that the
CP and ML components interact with each other and with the world in order to
adapt the solutions to changes in the world. This is an essential need in problems
that change under the effect of time, or problems that are influenced by the
application of a previous solution. It is also very effective for problems that are
only partially specified and where the ML component learns from observation of
applying a partial solution, e.g. in the case of constraint acquisition.

The subsequent chapters will provide a number of examples of the use of the
ICON loop.

References

[BH04] Bent, R., Hentenryck, P.: Online stochastic and robust optimization. In:
Maher, M.J. (ed.) ASIAN 2004. LNCS, vol. 3321, pp. 286–300. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-30502-6 21

[BHO09] Bessiere, C., Hebrard, E., O’Sullivan, B.: Minimising decision tree
size as combinatorial optimisation. In: Gent, I.P. (ed.) CP 2009.
LNCS, vol. 5732, pp. 173–187. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-04244-7 16

[CJSS12] Coquery, E., Jabbour, S., Säıs, L., Salhi, Y.: A SAT-based approach for
discovering frequent, closed and maximal patterns in a sequence. In: Pro-
ceedings of the 20th European Conference on Artificial Intelligence (ECAI
2012), Montpellier, France, pp. 258–263. IOS Press (2012)

[DD88] Dechter, R., Dechter, A.: Belief maintenance in dynamic constraint net-
works. In: Proceedings of the 7th National Conference on Artificial Intelli-
gence (AAAI 1888), St. Paul, MN, pp. 37–42. AAAI Press/The MIT Press
(1988)

http://dx.doi.org/10.1007/978-3-540-30502-6_21
http://dx.doi.org/10.1007/978-3-642-04244-7_16
http://dx.doi.org/10.1007/978-3-642-04244-7_16

The Inductive Constraint Programming Loop 309

[DGN08] De Raedt, L., Guns, T., Nijssen, S.: Constraint programming for itemset
mining. In: Proceedings of the 14th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining (KDD), Las Vegas, Nevada,
pp. 204–212. ACM (2008)

[EF01] Epstein, S.L., Freuder, E.C.: Collaborative learning for constraint solv-
ing. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 46–60. Springer,
Heidelberg (2001). doi:10.1007/3-540-45578-7 4

[KBC10] Khiari, M., Boizumault, P., Crémilleux, B.: Constraint programming for
mining n-ary patterns. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp.
552–567. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15396-9 44

[Wal02] Walsh, T.: Stochastic constraint programming. In: Proceedings of the 15th
Eureopean Conference on Artificial Intelligence (ECAI 2002), Lyon, France,
pp. 111–115. IOS Press (2002)

[XHHL08] Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Satzilla: portfolio-based
algorithm selection for SAT. J. Artif. Intell. Res. (JAIR) 32, 565–606 (2008)

http://dx.doi.org/10.1007/3-540-45578-7_4
http://dx.doi.org/10.1007/978-3-642-15396-9_44

ICON Loop Carpooling Show Case

Mirco Nanni1(B), Lars Kotthoff3, Riccardo Guidotti2, Barry O’Sullivan4,
and Dino Pedreschi2

1 KDD Lab, ISTI-CNR, Pisa, Italy
mirco.nanni@isti.cnr.it

2 KDD Lab, CS Department, University of Pisa, Pisa, Italy
{riccardo.guidotti,pedre}@di.unipi.it

3 University of British Columbia, Vancouver, Canada
larsko@cs.ubc.ca

4 University College Cork, Cork, Ireland
b.osullivan@cs.ucc.ie

Abstract. In this chapter we describe a proactive carpooling service
that combines induction and optimization mechanisms to maximize the
impact of carpooling within a community. The approach autonomously
infers the mobility demand of the users through the analysis of their
mobility traces (i.e. Data Mining of GPS trajectories) and builds the net-
work of all possible ride sharing opportunities among the users. Then, the
maximal set of carpooling matches that satisfy some standard require-
ments (maximal capacity of vehicles, etc.) is computed through Con-
straint Programming models, and the resulting matches are proactively
proposed to the users. Finally, in order to maximize the expected impact
of the service, the probability that each carpooling match is accepted by
the users involved is inferred through Machine Learning mechanisms and
put in the CP model. The whole process is reiterated at regular intervals,
thus forming an instance of the general ICON loop.

1 Introduction

Carpooling, i.e., the act where two or more travellers share the same car for a
common trip, is an old idea brought forward, among many others, to reduce
traffic and its externalities. If a large proportion of travellers, especially daily
commuters, would adopt carpooling, a substantial traffic reduction could indeed
take place. However, experiences from many projects internationally have shown
that it is extremely difficult to boost the adoption of carpooling to levels that
significantly diminish traffic as a whole. There are many reasons why this hap-
pens: psychological, organizational, technological. As a matter of fact, we do not
know much yet about the real carpooling potential that emerges from people’s
mobility—a very preliminary step towards designing the right mechanisms and
incentives for a successful carpooling system. Nevertheless, we now have access to
the data to observe individual mobility at microscopic level and for large popula-
tions of travellers, such as the digitised trajectories of vehicular travels recorded
by GPS-enabled on-board devices. These forms of big data have been used in
c© Springer International Publishing AG 2016
C. Bessiere et al. (Eds.): Data Mining and Constraint Programming, LNAI 10101, pp. 310–324, 2016.
DOI: 10.1007/978-3-319-50137-6 13

ICON Loop Carpooling Show Case 311

[12] to discover the mobility profiles of individual travellers, and to understand
when two individuals have compatible matching needs, so that they can share
part of their travels.

In the present work we pursue this approach further by exploiting the com-
bination of mobility data mining, machine learning methods and constraint pro-
gramming in an iterative process that follows the general “ICON loop” schema.
Through the analysis of mobility data from a community of travellers in a given
territory, we construct the network of potential carpooling for that community,
where nodes correspond to the users and each link between user u and user v
corresponds to the fact that u can take a lift from v, because there is a trip in
v’s profile that can serve u (u can be a passenger of driver v). Then, a globally
optimal matching between potential drivers and potential passengers is per-
formed, aimed to minimize the number of vehicles needed to perform all trips.
Such assignments become potential suggestions for the users involved, which can
agree or reject them. In order to better target suggestions with higher chances
of being accepted, a user acceptance model is built and continuously updated
through the analysis of previous iterations of the loop – i.e. previous assign-
ments, labelled with the outcome of the suggestion (accept vs. reject) – and
its predictions are used to evaluate the probability of success of each potential
carpooling match. Such probabilities are then used in the optimization step, in
order to achieve a maximum expected number of accepted suggestions.

The proposed approach has two main application levels. The first one consists
in the actual implementation of a collective carpooling service, with real users
involved in the whole process. The second one provides what-if analyses where
the potential outcome of such a service – in terms of overall success of the service
in itself, or its impact on the traffic – is measured through simulations. In this
chapter, after describing the overall methodology, we will provide some examples
of the latter kind of application, by simulating a carpooling service over a real
dataset of mobility data and over various types of users – each representing a
different attitude towards carpooling.

The following descriptions will start from a simplified view of the problem,
where we basically assume that all users will accept any carpooling suggestion.
Then, a refinement of the process will be illustrated, which takes into consider-
ation the users’ behaviours in terms of acceptance and rejection of carpooling
suggestions.

2 Related Work

Carpooling is the second most popular way of commuting, and maybe one of the
least understood. This probably explains such a large corpus of studies in the
literature.

Many works have been devoted to study the carpooling phenomena. In [11],
the authors describe the characteristics of carpoolers, distinguishing among dif-
ferent types of carpooler, and identifying the key differences between carpoolers.
In [12], the methodology for extracting the mobility profiles used also in this

312 M. Nanni et al.

work is introduced, and the criteria to match common routes. Something similar
is illustrated in [5]. The authors extract home and work locations, and the social
ties among the users for matching the users according to similar mobility pat-
terns. [6] studies how to overtake the psycological barriers associated with riding
with strangers and exploit it to find compatible matches for traditional groups
of users and to find rides in alternative groups.

An approach widely followed for analyzing carpooling is the agent based
model (ABM). In [2] an ABM is designed to optimize transports by the ride
sharing of people who usually cover the same route. The information obtained
from this simulator is used to study the functioning of the clearing services and
business models. In [3] the authors use a multi-ABM to investigate opportunities
among simulated commuters and by providing an online matching for those living
and working in close areas. [4] present a conceptual design of an ABM for the
carpooling application to simulate the interactions of autonomous agents and to
analyze the effects of changes in factors related to the infrastructure, behavior
and cost.

In other studies the authors try to find simulated or theoretical matches
among users asking for a ride in a carpooling scenario and evaluate it in terms of
simulated users’ feedbacks. [9] develops the concept of real carpooling by allowing
a large base of member passengers and drivers that declared their route to be
matched against each other automatically using mobile phone calls. [8] considers
simulated straight-line trajectories observing only origin and destination of trips
and classifies users as eligible or ineligible for carpooling by minimizing the time
of the trip. In [7] the authors build the users’ network with edges labeled with the
probability of negotiation success for carpooling to represent planned periodic
trips. The probability values are calculated by a learning mechanism using the
registered person features, the trip characteristics, and the negotiation feedback.
The algorithm provides advice by maximizing the expected value for negotiation
success.

3 Simple Carpooling Loop

A first formulation of a proactive carpooling service is summarized in Fig. 1.
First, the system acquires the recent mobility history of the users that joined
the service, in the form of trips (or trajectories) performed by car in that period.
Then, such data is analyzed to extract, for each user, her mobility profile,
described as the set of typical trips. At this point a network is built, which
describes the possible pairs of trips (from different users) that could carpool,
i.e. one of the users can become a passenger for the other. Allocating passen-
gers to drivers is a non-trivial optimization problem, which is solved through a
constraint model. The resulting allocation is then the input for the users of the
service, who can choose to accept to adopt the suggested pairings or to reject
them. The process is iterated from the beginning after a predefined observation
period, at the end of which a new mobility history is collected for each user.

ICON Loop Carpooling Show Case 313

Fig. 1. Basic instantiation of the ICON loop for the carpooling scenario.

3.1 Inferring Mobility Profiles

Given a set of users, their mobility can be described by the set of trips performed
in the period of analysis. Each trip, then, is defined by a trajectory, i.e. a sequence
of spatio-temporal points:

Definition 1 (Trajectory). A trajectory T is a sequence of spatio-temporal
points T = 〈(x1, y1, t1), . . . , (xn, yn, tn)〉, where xi and yi (1 ≤ i ≤ n) are the
coordinates of the i-th point and ti is its corresponding timestamp, with: ∀1 ≤
i < n : ti < ti+1.

The set of all the trajectories travelled by a user u makes her individual
history.

Using the above definitions and following the profiling procedure proposed in
[12], we can retrieve the systematic movements of a certain user u. The method
consists in clustering the trajectories of the user by means of an ad hoc distance
function that defines the concept of trajectory similarity to be adopted. In par-
ticular, a density-based clustering method is adopted, basically a variant of the
generic OPTICS method [1] that breaks down large (i.e. too extensive) clusters
into smaller compact ones. Two trajectories closer than a given threshold will
be considered similar and contribute to the same mobility behaviour.

The result of the process is a partitioning of the original dataset of user’s
trajectories, from which we filter out the clusters with few trajectories (statisti-
cally non significant behaviors) and the trajectories that are noise (specifically
detected by the clustering algorithm). Finally, for each valid cluster remaining,
we extract a representative trajectory, which is called a routine. The set of all
routines of a user is called her mobility profile.

314 M. Nanni et al.

Fig. 2. The user’s individual history (left: black lines), the clusters identified (center:
C1, C2, C3) and the extracted individual routines (right: r1, r2) forming her individual
mobility profile.

Following [12], the distance function adopted will compare trajectories based
on their path and on the time of the day they took place. The mobility profile of
a user describes her generic paths followed, and the representative hours of the
day they take place, not instantiated in a specific date. Moreover, the exceptional
movements are completely ignored due to the fact they will not be part of the
profile. Figure 2 depicts a sample instantiation of the mobility profile extraction
process, from the user’s trajectories (left) to the clustering (center) and finally
to the resulting routines that form her mobility profile.

3.2 Building the Carpooling Network

Starting from the routines which constitutes the user mobility profiles, our first
objective is to test whether a routine is contained in another. If a routine r1
is contained in a routine r2 then the user that systematically follows r1 could
leave her car at home and travel with the user that systematically follows r2.
The relation of routine containment is defined as follows:

Definition 2 (Routine Containment). Given two routines r1 and r2,
two thresholds spattol and temptol, we say that r1 is contained in r2, i.e.
contained(r1, r2, spattol, temptol), if there exists a contiguous subsequence r′

2 of
r2 such that:

dist(start(r1), start(r′
2)) + dist(end(r1), end(r′

2)) ≤ spattol ∧
|start time(r1) − start time(r′

2)| + |end time(r1) − end time(r2)′| ≤ temptol

where dist represents the Euclidean distance, start and end extract resp. the
first and last location of a routine, and start time and end time do the same
for time.

Here, spattol represents the maximum total distance that the user which is
served could walk to reach the pick-up point, and to reach her final destination
from the drop-off point; and temptol is the maximum total amount of time that
the user which is served is allowed to waste, as delay or anticipation w.r.t. her
original trip, considering the departure and the arrival time. Figure 3 provides
a visual depiction of the containment relation over a simple example. Clearly,
routine containment is an asymmetric relation. For instance, when the routines
compared have different lengths, the origin of the user which serves the other

ICON Loop Carpooling Show Case 315

Fig. 3. Sample routines containment: r1 is contained in r2 because the starting and
ending points of r1 (circles) are spatially and temporally close enough to some points
of r2 (squares).

can be very far from the origin of the one who is served, and similarly for the
destination point, in which case the second routine does not contain the first
one.

A carpooling network represents all the links induced by the routine contain-
ment relation:

Definition 3 (Carpooling Network). A carpooling network G = 〈N,E〉 is a
multigraph where N represents the set of all users, and E is the set of all labeled
edges (u, v, rui , r

v
j), where rui is a routine of user u ∈ N , rvj is a routine of user

v ∈ N , and rui is contained in rvj .

Figure 4 shows a simple example of a carpooling network with three users.
The network is a multigraph, since two nodes can be connected by several dif-
ferent edges – in our case, each edge is characterized by the pair of matching
routines it represents.

Fig. 4. Sample carpooling network involving three users and 7 routines.

3.3 Optimal Drivers-Passengers Matching

The carpooling network describes the set of all possible pairings of a passenger
with a driver. Clearly, not all of them can take place in the real world, since that
might violate some physical constraints. For instance, if a user is a passenger

316 M. Nanni et al.

for another one, she cannot be also driver for that same trip, since she left the
car at home. Also, cars usually have a limited number of seats. Finally, a user
cannot freely alternate the role of driver with that of passenger, since she needs
to pick her car – we simplify this requirements by asking that a user keeps the
same status (driver or passenger) throughout the day.

Here we will see a constraint model that captures all the requirements needed
to make a set of driver-passenger assignments correct, and therefore look for the
admissible solution that maximizes utility. The input of the model are the edges
in the carpooling network. Here we assume that each car can hold up to 5
people, including the driver. Everybody in the network must be either a driver
or a passenger and assigned to a driver’s car (maybe her own).

Let G = (V,E) be the carpooling network. Let trips(n) be the function that
returns the trips t user n participates in and lift(n, t) the function that returns
the nodes n′ that can give a lift to n on trip t and lift′(n, t) its dual, i.e. the
function that returns the nodes n′ that can receive a lift from n on trip t.

Variables. We consider five groups of variables:

• A set of Boolean variables D: ∀n ∈ V, t ∈ trips(n) : dnt = 1 iff node n is a
driver on trip t.

• A set of Boolean variables DA: ∀n ∈ V, t ∈ trips(n) : dant = 1 iff node n
drives alone on trip t.

• A set of Boolean variables P : ∀n ∈ V, t ∈ trips(n) : pnt = 1 iff node n is a
passenger in someone else’s car on trip t.

• A set of Boolean variables U : ∀n ∈ V, t ∈ trips(n), n′ ∈ lift(n, t) : untn′ = 1
iff n is a passenger with n′ for trip t.

• An integer variable sum =
∑

D +
∑

DA.

Constraints. Any solution (i.e. variable assignment) should satisfy the follow-
ing set of constraints. First, a set of channelling constraints define the relation
between passengers P and trips U :

∀n ∈ V, t ∈ trips(n) : pnt =
∑

n′∈lift(n,t)

untn′ (1)

Notice that variables pnt are requested to be Boolean, therefore each user can
be passenger of at most one other user for each of her trips.

If somebody is taking passengers, they must be a driver:

∀n ∈ V, t ∈ trips(n) :
∑

n′∈lift′(n,t)

un′tn > 0 ⇐⇒ dnt = 1 (2)

At most 4 passengers (5 people altogether) in a car:

∀n ∈ V, t ∈ trips(n) :
∑

n′∈lift′(n,t)

un′tn ≤ 4 (3)

Everybody has to be either driver or passenger:

∀n ∈ V, t ∈ trips(n) : pnt = 1 ⊕ dnt = 1 (4)

ICON Loop Carpooling Show Case 317

If somebody is a driver and has no passengers, they drive alone:

∀n ∈ V, t ∈ trips(n) :

⎛

⎝dnt = 1 ∧
∑

n′∈lift′(n,t)

un′tn = 0

⎞

⎠ ⇐⇒ dant = 1 (5)

Everybody should be driver for all or none of their trips:

∀n ∈ V :
∑

t∈trips(n)

dnt = 0 ∨
∑

t∈trips(n)

dnt = ‖trips(n)‖ (6)

Objective. Finally, we look for the admissible solution that minimizes the vari-
able sum, defined above, representing the number of drivers plus users driving
alone.

Notice that the objective function sum not only counts the drivers to min-
imize the number of circulating vehicles. It also contains an additional contri-
bution for those that travel alone (DA), meaning that solutions involving more
users are preferred, thus introducing the diffusion of carpooling in the optimiza-
tion criteria, which is one way to make the carpooling community larger and
stronger, and the service more robust and successful in the long term.

4 Users’ Preference Learning in Loop

The process described in the previous section aims to extract a set of carpooling
assignments that turns as many users as possible into passengers, since each
one represents a car saved from circulating. However, in a real world not all
such assignments would be accepted and implemented by the users involved.
Indeed, several factors might induce a user to reject a suggested match, such as
incompatibilities with the assigned mate, specific need of using her own vehicle
(therefore preventing her from being a passenger), or excessive delays/effort to
reach and get on board of the driver’s vehicle. As a result, a tentative assignment
that simply maximizes the number of suggested pairings (as in the model shown
in Sect. 3.3) might actually suggest the wrong ones, resulting in massive rejection
on the side of the users.

As solution to this problem, here we propose to learn from previous iterations
of the loop, i.e. to extract from the feedback provided by the users (basically,
whether they accepted the suggestions they received, or not) a model to estimate
the success probability of future matches. Such probabilities are then used in the
matching phase.

This leads to a modification of the loop, as shown in Fig. 5, which is enriched
with some components (highlighted in yellow in the figure). During each iter-
ation, the answers of the users are stored to form a training dataset (top-left
of the figure), from which to learn a success model for matches (lower-right)
that is deployed to add weights to the carpooling network (bottom). Then, the
constraint matching model will be modified accordingly (left).

318 M. Nanni et al.

Fig. 5. Instantiation of the ICON loop for the carpooling scenario, including users
preference learning. The changes over the basic instance of Fig. 1 are highlighted.

4.1 Preference Learning

In this work we aim to associate to each candidate match – i.e. pair of rou-
tines, each associated to its respective user – a probability of success. To this
purpose, we employ a very simple model, called Probability Estimation Tree,
that basically extends traditional decision trees by returning on each leaf a class
distribution instead of a crisp class selection. In our case, each leaf will return
the probability of a success and its complementary probability of failure. While
several improvements exist to build more reliable estimates – e.g. by adapting
the tree construction procedure or by smoothing the probabilities on the leaves –
we will adopt the simple solution of extracting a decision tree through standard
C4.5 and then compute the associated probabilities on the leaves, without any
post-processing.

Predictive Features. The features available to predict the success of a match,
include three categories:

Quality of the match. In this group we have measures that describe the ease
of sharing the vehicle for a trip. In particular, we include: the distance to
walk for the pick-up and drop-off, the delay caused to the passenger, time
spent traveling together, whether the two routines start or end together. In
addition, also the distance between the residence locations and the working
places of the users are included.

Personal features. For both the users involved, we consider age, gender, marital
status, occupation, whether they smoke, have children or animals.

ICON Loop Carpooling Show Case 319

Past usage of carpooling. Here we collect the statistics about the feedbacks of the
single user (how often he accepted to carpool as a passenger or as a driver)
and the pair of users involved in the match (how frequently they accepted to
travel together, if they already happened to be matched).

Training Set. At each iteration the system suggests a set of matches to (part
of) the users. For each of them, we store an input instance of the training set,
containing all the features associated to the match (predictive features) and the
feedback received from the users involved (target variable, having values “suc-
cess” or “failure”). This way, the training set grows at each iteration. An impor-
tant fact to observe is that only the matches selected by the drivers-passengers
matching phase will generate an instance for the training set, since they are the
only ones which were submitted to the users. Therefore, only the routines and
their associated users that have been involved in such matches contribute to the
preference learning task.

Learning and Deploying the Model. At each iteration the preference model
is learned using the most recent training set available. Then, as soon as the
carpooling network has been built, the model is used to compute a weight for
each edge in the network. In particular, in order to apply the preference model
we need to compute all the predictive features associated to each edge on the
network, based on the information we have about the users involved and the
routines that are matched. The result is an estimate for the success probability
of each match in the network, to be used in the drivers-passengers assignment
phase, which is presented (in revised form) in the next section.

4.2 Preference-Aware Matching Model

The model presented in Sect. 3.3 is revised in order to change the optimization
criterion. In particular, instead of maximizing the number of matches (which
correspond to the number of passengers, as well as to the cars saved from cir-
culating) now we aim to maximize the expected number of successful matches.
That can be obtained by simply maximizing the value

∑
e∈S p(e), where S is the

set of matches returned as solution, and p(e) is the success probability of match
e (recall that in the previous step of the loop we obtained an estimate of such
value through machine learning).

Then, the new model is basically the same we had in Sect. 3.3, except that
(i) now we do not need the variables in DA (tracking users that drive alone,
whose count was part of the objective function) as the corresponding channeling
constraints; (ii) we assume to have a function probest(t) for each trip/match t,
that provides its success probability; and (iii) the objective function is modified
into the following:

max

⎛

⎝
∑

n∈V,t∈trips(n)

probest(t) · pnt
⎞

⎠ (7)

320 M. Nanni et al.

5 Simulation of a Carpooling Service

The carpooling loop illustrated so far is designed having in mind two kinds of
interactions with users: (i) all users provide data about their mobility at regular
intervals; (ii) the users involved in a carpooling match answer by accepting or
rejecting the suggestion. As we mentioned at the beginning of this chapter, beside
running a real carpooling service, the system developed so far can be used to
perform simulations aimed to study various facts about carpooling. For instance,
that can be used to simply evaluate the potential impact of carpooling on areas
with different features (large urban areas vs. rural ones, areas with one single
attractor vs. areas with several ones, etc.), or to understand what would be the
impact of specific attitudes of users, such as discrimination based on gender
and age or preference towards local travel mates. In the following we describe a
possible way of implementing such kind of simulations, also providing a concrete
example based on real mobility data and simulated information about the users–
including their attitude towards carpooling.

5.1 Simulating Mobility

As a proxy of the mobility for potential users of the carpooling service, we use real
GPS traces collected for insurance purposes by Octo Telematics S.p.A [10]. The
complete dataset contains 9.8 million car travels performed by about 159, 000
vehicles active in a geographical area focused on Tuscany, Italy in a period of
one month in 2011.

Fig. 6. (Left) The trajectories used for the simulation and (Right) corresponding mobil-
ity profiles.

For the purposes of this chapter, we selected a subset of 100 users that move
around the city of Pisa. Figure 6 depicts the trajectories of such users, together
with the mobility profiles extracted from them (See Sect. 3.1).

In the simulation, the carpooling loop is re-iterated every week, each time
recomputing the mobility profiles based on the trips performed in the last
14 days. That basically creates a sliding window on the mobility history of the
users, having width of 14 days, which moves one week forward at each step. In
these experiments we keep also the trips performed by users during the time they

ICON Loop Carpooling Show Case 321

acted as passengers. More sophisticated simulations might omit them, possibly
keeping as profile the trips that made her carpool.

The mobility data is used to build the carpooling network, and also to extract
all the mobility-based predictive features needed for the preference learning task.
That also includes the inference of home and work locations (defined here simply
as the two most frequent start locations), used to compute some of the features.

5.2 Simulating Users’ Preferences

In order to coherently simulate the behaviour of our users, we need (i) to associate
them with a set of individual data (gender, age, etc.), and then (ii) provide a
model that evaluates any carpooling proposal based on the three categories of
variables described in Sect. 4.1.

The first task was achieved by randomly generating a personal profile for
each user, based on the features distribution provided by the national bureau of
statistics and other external sources. For the second task, instead, a set of rules
have been defined, which compute a score that combines:

• the similarity of the personal profiles of the users (same age, gender, etc.);
• the ease of carpooling together, computed as linear combination of spatial

and temporal distance between the matching routines, plus a bonus if they
start or end close to each other (basically, the two users can start or end the
trip together);

• whether the two users shared a trip in the past, and therefore already know
each other.

The weights of the different components can be easily modified, allowing to
simulate a rather wide range of behaviours, such as those interested in social
compatibility (high weight to the first group of features) or those only focused
on efficient and comfortable transportation (second group of features). Also,
such rules can be replaced with alternative ones, in order to evaluate the effect
of more complex attitudes of the users.

5.3 Results

Here we summarize some sample results that show the typical behaviour of the
system. In particular, we adopt a schema of users’ preferences that emphasizes
the social compatibility. The simulation was run for 5 iterations. Figure 7(left)
shows the impact of carpooling at each step, comparing the number of matches
suggested to the users and those that were actually accepted.

The results show that, after an initial phase of instability, the system
improved the number of successful matches at each iteration. Also the number of
suggestions to the users remains smaller than what we had in the first iteration
– where the model was equivalent to the simpler version described in Sect. 3.3
– basically showing that the success probabilities are better estimated in later
iterations, due to the larger size of the training set. These results also provide a

322 M. Nanni et al.

Fig. 7. Results of a sample simulation: number of suggested vs. accepted matches (left);
sample users’ preference model learned at the second iteration of the loop (right).

comparison between the two models, simple vs. success probability-aware, show-
ing that the latter improves performances significantly. Figure 7(right) shows a
sample preference model learned at the second iteration – thus computed over
the training data collected at the end of the first iteration. The model is char-
acterized by a mixture of personal features (is smoker and number of car seats)
and trip features (distance to walk for pick-up and for drop-off), as well as by
a relatively low purity of the leaves. The models learned during the successive
iterations (not shown here for space reasons, since they are significantly larger
than the one just described) get more and more sophisticated and accurate. Also,
the setup of the learning task ensured that the model never results in extreme
overfitting. Below we can have a view of the evolution of such models looking
at a ranking of most relevant features, ranked by the cumulative entropy gain
yielded by each attribute:

We see, in particular, that later models (i) make large use of the right features,
i.e. those that determine social compatibility of individuals, which most influence
the acceptance probability; and (ii) they also start exploiting the outcomes of
previous iterations (e.g. the two top ones, describing when the pair successfully
carpooled and their percentage of success), basically recognizing the successful
pairs of the past, which constitute very good candidate for a successful pair in
the present iteration.

ICON Loop Carpooling Show Case 323

6 Conclusions

In this work we developed a tool to implement or simulate a proactive carpool-
ing service that combines induction and optimization mechanisms to maximize
the impact of carpooling within a community. The system opens a variety of
ways to explore, both at the social and technical level. Among them, we men-
tion the following questions that could be studied: what is the impact, in terms
of improved traffic, of specific attitudes towards carpooling, especially focusing
on those that can be emphasized through appropriate incentives? Does the geo-
graphical location and scale of the service influence the performances – in other
terms: should carpooling be organized locally, or at a regional/national level?
What are the best models and algorithms for preference learning? Also, should
the system select only users most likely to succeed (as it happens in the present
version) or should it also include other ones, with the purpose of getting bet-
ter training sets and therefore improve the preference learning component (that
looks to have relations with active learning schemata)?

While the experiments described here were conducted over a specific set of
users’ preferences, the approach can be easily applied over several different sce-
narios, in order to evaluate which kind of behaviors can affect the success of
carpooling the most. Also, some parameters of the model, such as the number
of available seats in a car or the distance that users are willing to walk for car-
pooling, can be explored in order to understand which are critical (and therefore
actions might be taken at the public level to influence them in the real world),
and which are not.

Finally, while our simulations were based on vehicle data, other data sources,
such as smartphone GPS traces, might well replace them, and possibly overcome
some of their limitations – e.g. the lack of data when a user is not using the car,
for instance because she is carpooling.

References

1. Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: OPTICS: ordering points
to identify the clustering structure. In: ACM Press, pp. 49–60. ACM Press (1999)

2. Armendáriz, M., Burguillo, J., Peleteiro, A., Arnould, G., Khadraoui, D.: Carpool-
ing: a multi-agent simulation in Netlogo. In: Proceedings of ECMS (2010)

3. Bellemans, T., Bothe, S., Cho, S., Giannotti, F., Janssens, D., Knapen, L., Körner,
C., May, M., Nanni, M., Pedreschi, D., et al.: An agent-based model to evaluate
carpooling at large manufacturing plants. Procedia Comput. Sci. 10, 1221–1227
(2012)

4. Cho, S., Yasar, A.-U.-H., Knapen, L., Bellemans, T., Janssens, D., Wets, G.: A con-
ceptual design of an agent-based interaction model for the carpooling application.
Procedia Comput. Sci. 10, 801–807 (2012)

5. Cici, B., Markopoulou, A., Frias-Martinez, E., Laoutaris, N.: Assessing the poten-
tial of ride-sharing using mobile and social data: a tale of four cities. In: Proceed-
ings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous
Computing, pp. 201–211. ACM (2014)

324 M. Nanni et al.

6. Correia, G., Viegas, J.M.: Carpooling and carpool clubs: clarifying concepts and
assessing value enhancement possibilities through a stated preference web survey
in Lisbon, Portugal. Transp. Res. Part A: Policy Pract. 45(2), 81–90 (2011)

7. Knapen, L., Keren, D., Yasar, A.-U.-H., Cho, S., Bellemans, T., Janssens, D.,
Wets, G.: Estimating scalability issues while finding an optimal assignment for
carpooling. Procedia Comput. Sci. 19, 372–379 (2013)

8. Lerenc, V.: Increasing throughput for carpool assignment matching. US Patent
App. 13/329,899, 19 December 2011

9. Massaro, D.W., Chaney, B., Bigler, S., Lancaster, J., Iyer, S., Gawade, M., Eccle-
ston, M., Gurrola, E., Lopez, A.: Carpoolnow-just-in-time carpooling without elab-
orate preplanning. In: WEBIST, pp. 219–224 (2009)

10. 2014. http://www.octotelematics.com/it
11. Teal, R.F.: Carpooling: who, how and why. Transp. Res. Part A: Gen. 21(3), 203–

214 (1987)
12. Trasarti, R., Pinelli, F., Nanni, M., Giannotti, F.: Mining mobility user profiles for

car pooling. In: Proceedings of the 17th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 1190–1198. ACM (2011)

http://www.octotelematics.com/it

ICON Loop Health Show Case

Barry Hurley1, Lars Kotthoff2, Barry O’Sullivan1, and Helmut Simonis1(B)

1 Insight Centre for Data Analytics, University College Cork,
Cork, Ireland

h.simonis@4c.ucc.ie
2 University of British Columbia, Vancouver, Canada

Abstract. In this document we describe the health show case for the
ICON project. This corresponds to Task 6.2 in WP 6 of the Description of
Work for the project. The description provides a high-level abstraction,
detailed description of the interfaces between modules, and a description
of sample data.

1 Overview

A hospital collects data on its patients in a patient management system (PMS).
Based on this data, ideally an operational schedule for the hospital would be
created; for instance, in an ideal hospital no beds would be unoccupied and
patients would not have to be on a waiting list for a long period. Due to the
dynamic nature of the hospital, planning is however difficult. By analysing the
historical data of the hospital, we can discover weaknesses in its planning policies;
this in turn can lead to recommendations for improved planning, which can be
implemented in improved planning systems.

This show case considers a scenario where the machine learning component
learns to predict the duration of various tasks in a some standard workflows.
Predictions are made based on the types of tasks and workflow involved, and
various patient attributes such as mobility, age, diagnosis, etc. Subsequently,
these duration predictions are passed to a constraint programming module which
schedules the execution of the tasks while obeying workflow precedences and
resource consumption constraints such as a nurse, consultants, x-ray, dialysis
machines and so on. The schedule is subsequently simulated with actual task
durations. Inaccuracies in the duration prediction may lead to knock-on effects
where tasks are delayed awaiting a resource to be freed or a preceding task
to finish. Such delays can have a detrimental effect on the ability to release a
patient during the scheduling window. Figure 1 presents a high level overview of
this flow.

Data are exchanged by files, describing the data valid at a given time in the
world. The world maintains its own data for historical information, and for the
evaluation of the results produced.

c© Springer International Publishing AG 2016
C. Bessiere et al. (Eds.): Data Mining and Constraint Programming, LNAI 10101, pp. 325–333, 2016.
DOI: 10.1007/978-3-319-50137-6 14

326 B. Hurley et al.

SchedulerCP
Task

Duration
Learning

DM/ML

World

Task
Duration
Forecast

Schedule
Duration History
Tasks to Forecast

Tasks
Constraints
Resources

Fig. 1. High level overview of health show case

2 World

Figure 2 shows a more detailed structure of the assumed world.

2.1 Workflow

The workflow description provides a job schema for the different types of patient
in each of the wards. The same workflow in different wards may use differ-
ent resources, or have other task durations. Workflows are defined by events
(start, end, milestone), and by task prototypes (activities), linked by precedence
constraints. We implement a subset of XPDL to capture and-split and and-join
operations, where multiple tasks can be executed in parallel and the following
activity can start when all tasks are finished.

Our resource model assumes constant resource availability and resource con-
sumption. A task may require multiple resources, each over its complete duration.
Resources can be disjunctive (resource availability one, each task uses one unit
of resource), or cumulative (resource availability is a positive integer, resource
use of tasks are integer values as well.

Start and end event mark the beginning and end of a workflow. We can also
define milestones with an attached due date. Not meeting the due date of the
milestone contributes to the objective cost value.

3 CP Component

3.1 Simple Model

A first model as a finite domain constraint program can be formulated with the
following notation:

ICON Loop Health Show Case 327

World

Schedule
(from CP)

Tasks
Resources
(to CP)

Duration History

(to ML)

Evaluation

Evaluator

Implementation
of Schedule

Workflows Patient

Problem
Generator

Actuals Recorder
Historical

Data
Forecasts

Data
Extractor

New Tasks

Historical
Task

Durations

Fig. 2. Detailed view of world for health show case

– T , the set of all tasks, indexed by i
– P , the set of all precedences, indexed by p
– Q, the set of all patients, indexed by k
– R, the set of all resources, indexed by r

We also use the following constants:

– duri forecasted duration of task i
– reli release date of task i
– duei due date of task i
– capr capacity of resource r
– resir resource use of task i on resource r
– pati patient to whose workflow the task belongs

We introduce finite domain variables for the start, the end and the cost of
each task:

– ∀i∈T : si ∈ [reli,∞] start of task i

328 B. Hurley et al.

– ∀i∈T : ei ≥ 0 end of task i
– ∀i∈T : ci ≥ 0 cost of task i

We then can express the following sets of constraints. The first set links the
start and the end of each task.

∀i∈T : ei = si + duri (1)

The second set states all precedences between tasks, linking the before and
after elements of the precedence data.

∀p∈P : sap
≥ sbp + durbp (2)

The third constraint type sets up resource constraints for all tasks that utilise
some resource.

∀r∈R : cumulative(< si,duri, resir >, capr) (3)

Depending on the capacity of the resource, the constraint can be cumulative
or disjunctive.

The cost of each task is defined as the lateness of the task, i.e. how many
time units it ends after the due-date.

∀i∈T : ci = max(0, ei − duei) (4)

As the overall cost we define the sum of the cost variables for each task, i.e.
the total lateness of the tasks.

min
∑

i∈T

max(0, ei − duei) (5)

If we are able to schedule all tasks before their due-date, then all patients
can be discharged on the day, if the schedule can be implemented without delay.
As the durations are forecasted, changes in the duration may mean that in the
implemented schedule some tasks will extend beyond the cutoff time.

3.2 Model 2 - Accepting Patients

In our previous model, the tasks for a patient may stretch beyond the cutoff
time, this means that the patient can not be discharged in time, and therefore it
is pointless to perform the earlier tasks of the workflow, as they will have to be
repeated on the next day. These tasks use up resources, which may stop other
jobs from finishing in time. A better model introduces a decision variable for each
job (Patient), which states if the patient will be discharged on the current day.
We can then state that all tasks must finish before their due-date, and use an
optional resource use of 0 to exclude rejected jobs from the resource constraints.

The model then takes the following form:
We introduce finite domain variables for the state, the end and the cost of

each task:

ICON Loop Health Show Case 329

– si ∈ [reli,∞] start of task i
– ei ∈ [0,duei] end of task i
– xk ∈ {0, 1} patient k is accepted for discharge on the current day

The objective is changed to maximise the number of patients that will be
discharged

max
∑

k∈Q

xk (6)

The resource constraints (Eq. 3) are modified to deal with a variable resource
height for each task, depending on the acceptance of the patient.

∀r∈R : cumulative(< si,duri, xpati ∗ resir >, capr) (7)

The precedence (Eq. (2)) and linkage (Eq. 1) constraints are not changed.
There are two potential issues with the objective function. The first is that

it is not clear how good the propagation of the 0/1 variable in the cumulative
can work, and how symmetries are affecting the cost function.

The second concern is that we are no longer interested in the robustness of
the schedule. If a duration forecast is wrong, this has a different effect of the task
is early during the day, or it is the last task in the schedule. In the first case, a
delay may be easily recovered, or a knock-on effect may delay not just one, but
multiple patients. If the task ends just before the cutoff time, a delay will push
the task beyond the deadline. We should therefore consider how we can improve
the robustness of the schedule.

A final comment affects the search routine. By introducing both 0/1 and
finite domain variables, we can no longer rely on an automated strategy based
on domain size, we have to interleave the assignment of the acceptance variables
for a patient with the scheduling of all tasks belonging to the patient.

4 ML Component

The input of the ML component consists of two inputs, one containing historical
data, the other the new data for which the task duration is to be predicted.

The format of the inputs is nearly identical, except that the regression prob-
lem data does not contain the duration field. Each record is one line.

task_id (integer)
date (Integer)
weekday(integer 0-6)
ward (integer)
workflow (integer)
workflow_task (integer)
patient (integer)

patient_age (integer)
patient_sex (0/1)
patient_mobility (0-5)
patient_attribute_1 (number)
...
patient_attribute_n (number)
duration (integer)

The attributes may consist of numerical values (blood pressure, heart rate,
temperature), 0/1 categories (use of specific medications like blood thinner,
which may require extra care), or medical conditions besides the one treated

330 B. Hurley et al.

for (diabetes, high blood pressure, pacemaker), which affect the duration of
certain tasks.

The output of the ML component is a file containing the duration forecasts
for all tasks in the regression problem data.

5 Evaluation

We compare the effectiveness of workflow schedules produced based on two ML
components, one which is trained once initially versus a looping model which
is retrained as each day passes, thus having access to the more recent, repre-
sentative data which should, in theory, be able to adapt to recent trends. This
hypothesis is tested when new procedures come into affect, effectively changing
the distribution of task durations, with some now taking longer to complete and
others shorter. Both ML models will start with the same 60 days of historical
training data, and the looping model maintains a sliding-window of the same
quantity of training data.

The predicted task durations from the two ML components are used by the
CP component to schedule task start times while obeying resource capacity, and
precedence constraints. The two schedules are then passed back to the world
and simulated based on the actual task durations, mismatches in the duration
prediction may lead to tasks being delayed in practice, with a combinatorial
knock-on effect. We contrast the two schedules to one based on actual task
durations provided by an oracle.

Figure 3 shows the cumulative makespan penalty, that is the difference in
makespan between the simulated schedules based on the two ML components

Fig. 3. Scheduling makespan comparison between looping model and a trained once
model.

ICON Loop Health Show Case 331

Fig. 4. Prediction accuracy comparison between looping model and a trained once
model.

versus scheduling based on the actual task durations provided by an oracle. The
vertical line marks the day where new procedures come into affect, changing the
distribution of task durations.

In the initial 30 days, before the new procedures, both ML components pro-
duce very similar predictions resulting in schedules with comparable makespans.
Once the new procedures come into effect, the prediction accuracy of both mod-
els deteriorate and the makespan penalty increases more rapidly. However, the
looping model slowly adapts as a sufficient quantity of the new data becomes
available. With around half of its training data coming from the new distribution,
the performance of looping model diverges from the trained-once model, consis-
tently producing more accurate predictions and subsequently, better schedules.

Further evidence for this divergence is provided when we compare the rolling
average root mean squared error (RMSE) for the two ML models, Fig. 4. The
relative accuracy of the looping model steadily improves as a larger portion of its
training data is drawn from more recent, representative days. The model which
has been trained once, does not adapt well to the new distributions.

6 Conclusions

We have presented the health show case for the ICON project. It represents an
instantiation of the ICON loop, where a machine learning/data mining compo-
nent and a constraint programming component interact with the outside world
and each other.

The show case simulates the workings of part of a simplified hospital; in
particular it is concerned with the scheduling of tasks that need to be performed

332 B. Hurley et al.

to process patients. The duration of these tasks is learned from historical data
to provide estimates for how long tasks that are to be scheduled will take based
on patient attributes.

The ICON “loop” comes into play because the model to predict task dura-
tions is updated continuously during the operation of the system. We showed
that this can provide substantial benefits over a static model that does not learn
as more and more data is processed, in particular in the face of changes that are
to be expected in a real hospital.

The show case demonstrates the effectiveness of the ICON loop model in a
(simplified) real-world application and shows the practical benefits of combining
machine learning/data mining techniques with constraint programming.

References

1. van der Aalst, W.M.P.: Business process management: a comprehensive survey.
ISRN Softw. Eng. 2013, 37 p. (2013). Article ID 507984

2. Beliën, J., Demeulemeester, E.: A branch-and-price approach for integrating
nurse and surgery scheduling. Eur. J. Oper. Res. 189(3), 652–668 (2008).
http://dx.doi.org/10.1016/j.ejor.2006.10.060

3. Cardoen, B., Demeulemeester, E., Beliën, J.: Operating room planning and
scheduling: a literature review. Eur. J. Oper. Res. 201(3), 921–932 (2010).
http://dx.doi.org/10.1016/j.ejor.2009.04.011

4. Decker, K., Li, J.: Coordinated hospital patient scheduling. In: Demazeau, Y. (ed.)
Proceedings of the Third International Conference on Multiagent Systems, ICMAS
1998, 3-7 July 1998, Paris, France, pp. 104–111. IEEE Computer Society (1998)

5. Hannebauer, M., Müller, S.: Distributed constraint optimization for medical
appointment scheduling. In: Proceedings of the Fifth International Conference on
Autonomous Agents, AGENTS 2001, pp. 139–140. ACM, New York (2001). http://
doi.acm.org/10.1145/375735.376026

6. Hansson, J., Tolf, S., Øvretveit, J., Carlsson, J., Brommels, M.: What happened
to the no-wait hospital? A case study of implementation of operational plans for
reduced waits. Qual. Manag. Health Care 1(21), 34–43 (2012)

7. Lenz, R., Elstner, T., Siegele, H., Kuhn, K.A.: Application of information tech-
nology: a practical approach to process support in health information systems.
JAMIA 9(6), 571–585 (2002). http://dx.doi.org/10.1197/jamia.M1016

8. Mans, R.S., Schonenberg, M.H., Song, M., Aalst, W.M.P., Bakker, P.J.M.: Appli-
cation of process mining in healthcare – a case study in a Dutch hospital. In: Fred,
A., Filipe, J., Gamboa, H. (eds.) BIOSTEC 2008. CCIS, vol. 25, pp. 425–438.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-92219-3 32

9. Müller, R., Rogge-Solti, A.: BPMN for healthcare processes. In: Eichhorn, D.,
Koschmider, A., Zhang, H. (eds.) Proceedings of the 3rd Central-European Work-
shop on Services and their Composition, Services und ihre Komposition, ZEUS
2011, Karlsruhe, Germany, 21–22 February 2011, CEUR Workshop Proceedings,
vol. 705, pp. 65–72. CEUR-WS.org (2011). http://ceur-ws.org/Vol-705/paper9.pdf

10. Russell, N., Aalst, W.M.P., Hofstede, A.H.M., Edmond, D.: Workflow resource
patterns: identification, representation and tool support. In: Pastor, O., Falcão e
Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 216–232. Springer, Heidelberg
(2005). doi:10.1007/11431855 16

http://dx.doi.org/10.1016/j.ejor.2006.10.060
http://dx.doi.org/10.1016/j.ejor.2009.04.011
http://doi.acm.org/10.1145/375735.376026
http://doi.acm.org/10.1145/375735.376026
http://dx.doi.org/10.1197/jamia.M1016
http://dx.doi.org/10.1007/978-3-540-92219-3_32
http://ceur-ws.org/Vol-705/paper9.pdf
http://dx.doi.org/10.1007/11431855_16

ICON Loop Health Show Case 333

11. Schaus, P., Hentenryck, P., Régin, J.-C.: Scalable load balancing in nurse to
patient assignment problems. In: Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR
2009. LNCS, vol. 5547, pp. 248–262. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-01929-6 19

12. Svag̊ard, I., Farshchian, B.A.: Using business process modelling to model integrated
care processes: experiences from a European project. In: Omatu, S., Rocha, M.P.,
Bravo, J., Fernández, F., Corchado, E., Bustillo, A., Corchado, J.M. (eds.) IWANN
2009. LNCS, vol. 5518, pp. 922–925. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-02481-8 140

13. Wolf, A.: Constraint-based modeling and scheduling of clinical pathways. In: Lar-
rosa, J., O’Sullivan, B. (eds.) CSCLP 2009. LNCS (LNAI), vol. 6384, pp. 122–138.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-19486-3 8

14. Wolf, A., Geske, U., Finsterbusch, A., Rothe, M.: Constraintbasierte behandlungs-
planung in der dialyse. In: Fähnrich, K., Franczyk, B. (eds.) Informatik 2010:
Service Science - Neue Perspektiven für die Informatik, Beiträge der 40. Jahresta-
gung der Gesellschaft für Informatik e.V. (GI), Band 2, 27.09. - 1.10.2010, Leipzig.
LNI, vol. 176, pp. 711–716. GI (2010). http://subs.emis.de/LNI/Proceedings/
Proceedings176/article6167.html

http://dx.doi.org/10.1007/978-3-642-01929-6_19
http://dx.doi.org/10.1007/978-3-642-01929-6_19
http://dx.doi.org/10.1007/978-3-642-02481-8_140
http://dx.doi.org/10.1007/978-3-642-02481-8_140
http://dx.doi.org/10.1007/978-3-642-19486-3_8
http://subs.emis.de/LNI/Proceedings/Proceedings176/article6167.html
http://subs.emis.de/LNI/Proceedings/Proceedings176/article6167.html

ICON Loop Energy Show Case

Barry Hurley, Barry O’Sullivan, and Helmut Simonis(B)

Insight Centre for Data Analytics, University College Cork, Cork, Ireland
helmut.simonis@insight-centre.org

Abstract. This chapter demonstrates the effectiveness of the ICON
loop when applied to energy cost optimization in a data centre. The
objective is to schedule the execution of customer tasks such that the
overall energy cost is minimised. This is complicated by the fact that the
real-time energy price is not known a-priori, therefore machine learning
techniques are employed to produce a forecast price vector ahead of time.
In practice such a forecast needs to adapt to changes in the world affect-
ing the pricing model over time. Therefore, the model needs to adapt in
an iterative process, realised by employing the ICON loop approach.

1 Overview

The aim of this showcase is to improve the energy efficiency of data centres
through the integration of machine learning (ML) and constraint programming
(CP). Consider a cloud grid computing service, where customers contract to run
computing services (tasks) throughout the day. Tasks are scheduled within their
execution time window and assigned to machines within the data centre. Each
task requires certain amounts of resources of different types (e.g. CPU, memory,
IO) during their execution. The cumulative resource limit for each resource type
of all tasks scheduled on a machine can not exceed the resource capacity of that
machine. The objective is to schedule the tasks in such a way that the overall
cost of energy used is minimised.

However this is complicated by the fact that large electricity consumers, like a
data centre, may use a time-variable electricity tariff, which follows the wholesale
market price. This price is not known in advance; in Ireland for example, the
price is not known until four days after the event. The price is influenced by
variable consumer demand over time, wind energy production, which varies with
weather conditions, and the availability of generating plants. The price therefore
fluctuates significantly throughout the day (on some days by more than a factor
of ten), which provides an opportunity to reduce the energy use during peak
price periods and instead perform the work during cheaper periods, as long as
the time windows for each task are respected. This requires a forecast of the price
ahead of time, so that the tasks can be scheduled accordingly. As the forecast
will not be 100% accurate, it might lead to a schedule were tasks are run at
times when the forecast price is low, but the actual price is much higher. This
increases the eventual cost of the schedule, which is always computed with the
actual price.
c© Springer International Publishing AG 2016
C. Bessiere et al. (Eds.): Data Mining and Constraint Programming, LNAI 10101, pp. 334–347, 2016.
DOI: 10.1007/978-3-319-50137-6 15

ICON Loop Energy Show Case 335

World Observations
produces

(writes)

ML/DM

L = (E,H, t, loss)

Generalisations/Patterns

learns
(writes)

Solutions

CP

N = (X,D,C, f)

determines
(writes)

query input
(read)

query input
(read)

apply

Fig. 1. The inductive constraint programming loop

The model assumes that the duration and resource requirements of all tasks
are given accurately by the customers. In order to avoid run-away processes using
up all available resources, we assume that tasks that exceed resource limits or
their duration significantly are removed by the supervisor process.

ICON
Challenge
Scheduler

CP
ICON

Challenge
Forecaster

ML

World

Price Forecast

Schedule

Price Data
Demand Forecast

Weather Data
Wind Energy Production

CO2 Intensity

Tasks
Resources

Fig. 2. High level overview of energy show case

336 B. Hurley et al.

This application was the focus of the first ICON Challenge [19] http://
challenge.icon-fet.eu and can be modelled in the ICON loop (see Fig. 1) as fol-
lows. The world consists of a number of components: the wide range of factors
which affect the energy market, like weather conditions, producers/consumers
of electricity, etc.; and customers of the data centre who contract the various
workloads. read-for-DM takes input from this world to produce a hypothesis h
modelling the electricity price. read-for-CP incorporates this forecast to produce
a solution to the scheduling problem minimising the forecast energy cost. Apply-
to-World takes this schedule and applies it to the world. As time progresses
and the world changes, read-for-DM will need to evolve the forecast model, and
subsequently the schedule, to take account of factors affecting the energy price.

Figure 2 shows a high-level view of the show case. There are three main
components, a CP component, a ML component, and the assumed world.

2 World

Figure 3 shows a more detailed overview of the assumed world. There are three
connections to the other components; the schedule generated by the CP com-
ponent, the task set which provides input of the CP component, and the price
data, which are input to the ML component.

2.1 Evaluator

The evaluator takes a generated schedule, and evaluates its cost against the
actual price of electricity. This produces the cost of the implemented schedule,
which is the primary quality indicator for each day. We can extend the evaluator
by a comparison against a hypothetical schedule, where we run the scheduler
component on a given set of tasks, but providing the actual electricity price, not
a forecast of the price. If the scheduler produces the optimal solutions in both
cases, we know that the schedule with the actual cost will be a lower bound for
the schedule with the forecast. The difference between the actual cost schedule
and the actual cost of the forecast schedule gives the penalty for using a forecast,
instead of actual costs. Note that this analysis can only be performed afterwards,
as the actual price in the Irish market is only available four days after the event.
Even if the scheduler only provides a heuristic solution, the difference between
the two schedules is indicative of the effect of using the forecast. This value is
the second quality indicator provided for each day.

Problem Generator. The problem generator can generate feasible task sets
for given sets of resources. The generator can be parameterised.

Data Collectors. The data for the price forecast come from multiple sources.
We use the Irish “Whole-Island” electricity market as our data source. The mar-
ket operator (www.sem-o.com) provides information about electricity demand
and prices for Ireland in half-hour resolution. The national grid operator
Eirgrid http://www.eirgrid.com/operations/systemperformancedata/ provides

http://challenge.icon-fet.eu
http://challenge.icon-fet.eu
www.sem-o.com
http://www.eirgrid.com/operations/systemperformancedata/

ICON Loop Energy Show Case 337

World

Schedule
(from CP)

Tasks
Resources
(to CP)

Price Data
Demand Forecast

Weather Data
Wind Energy Production

CO2 Intensity

(to ML)

Evaluation

Evaluator

Problem
Generator

Historical
Data

Forecasts

Data
Collectors

Data
Extractor

SEMO
Eirgrid

Forecast.io

actual

forecast
past actual

Fig. 3. Detailed view of the energy show case world.

data about wind energy production and CO2 intensity of the generation. Dif-
ferent services provide weather forecasts and historical weather data, including
Weather Underground and forecast.io.

Data Extractor. The data extractor parses the data store for the different
collected data, cleans the data, rejecting infeasible data elements, and produces
the required price data.

3 Optimisation Component

In this section we introduce a formal description of the CP component of the
show case. The component takes as input a set of tasks to schedule, and a
price forecast for electricity, and produces a schedule for all tasks. We give a
description of the scheduling problem being solved, and present the format of
the input and output files.

3.1 Notation

The following entities, sorted alphabetically, are defined in the model.

338 B. Hurley et al.

cmr resource capacity of machine m for
resource r

dj duration of tasks j
downm shut-down cost of server m
ej earliest start of task j
ft forecast price of electricity in time

period t
idlem idle cost of server m
j task index
lj latest end of task j
m machine index
pj power use of tasks j

q time resolution
r resource index
rt actual price of electricity in time

period t
t time index
ujr resource use of task j of resource r
upm startup cost of server m
vmt server m is running at time t
xjmt task j starts on machine m at

time t
ymt server m starts up at time t
zmt server m shuts down at time t

3.2 Sets and Indices

We use the following sets of objects in our model: J is the set of tasks to be
scheduled on one day. All tasks given must be scheduled completely within that
day, tasks can not be rejected. T is the set of time-periods in a day. We consider
a time resolution of q minutes, i.e. there are 1440/q time periods in a day. M is
the set of servers considered, and R is the set of resources considered.

We also try to use consistent indices in the description: j index ranging over
tasks, t index ranging over time periods, m index ranging over servers (machines),
and r index ranging over resources.

3.3 Constants

q The time resolution in the scheduling model. The value is an integer expressed
in minutes, i.e. there are |T | = 24 ∗ 60/q + 1 time periods in a day.

dj The duration of task j, the values are positive integers less than or equal to
|T |. The duration gives the length of the task such that the end is the start
plus the duration. The task is not considered active at its end-time.

ej The earliest start of task j, the values are integers between 0 and |T |.
lj The latest end of task j, the values are integers between 0 and |T |. This latest

end corresponds to a latest start of lj − dj .
ujr The resource use for task j for resource r, this is a positive integer value.
pj The power use of task j, which is constant during execution of the task. This

is a non-negative integer value.
cmr The capacity of server m for resource r, this is a positive integer.
idlem The idle power of running server m for one time period, this is a non-

negative integer number.
upm The start-up cost of server m. The cost of starting up machine m once.

This cost is not dependent on the energy cost at this time. The value is a
non-negative floating point number.

downm The shut-down cost of server m. The cost of shutting down a server
once. This cost is not dependent on the energy cost at the shutdown time.
The values is a non-negative floating point number.

ICON Loop Energy Show Case 339

ft This is the forecast price of one unit of energy in time period t. This is a
floating point number, and can be zero or even negative.

rt The actual price of one unit of energy in time period t. This is a floating
point number, and can be zero or even negative. This information cannot be
used to make scheduling decisions, and is only used to evaluate a resulting
schedule.

3.4 Model

We now describe the variables, constraints and objective of the model.

Variables.

xjmt Task j starts at time t on machine m. A 0/1 integer variable indicating
when and where a task is run. As each task must be scheduled, exactly one
of the variables linked to a task must be set to one.

vmt Server m is running at time t. If any task is running on a machine at some
time t, the machine must be active.

ymt Machine m starts up at time t. Initially, all machines are off.
zmt Machine m shuts down after time period t. The machine is active at time

t, but not at time t+ 1. All machines must be switched off at the end of the
scheduling horizon.

Constraints. We first need to enforce that each task is scheduled on one
machine, exactly once:

∀j∈J :
∑

m∈M

∑

t∈t

xjmt = 1 (1)

No task can be scheduled before its earliest start:

∀j∈J∀m∈M∀t<eij : xjmt = 0 (2)

No task can be scheduled to end after its latest end:

∀j∈J∀m∈M∀t+dij>lij : xjmt = 0 (3)

The resource requirements of all tasks scheduled on the same machine at the
same time must fit within the capacity of the machine:

∀m∈M∀r∈R∀t∈T :
∑

j∈J

∑

t−dj<t′≤t

xjmt′ujr ≤ cmr (4)

The following constraints all link the different types of variables related to
machines.

If a machine is starting at time t, then we consider it running at this time.

∀m∈M∀t∈T : ymt ⇒ vmt (5)

340 B. Hurley et al.

If a machine is starting up at time t, then it was not running at time t − 1.

∀m∈M∀t∈T : ymt ⇒ vmt−1 = 0 (6)

If a machine is shutting down at time t, then it is still running at this time.

∀m∈M∀t∈T : zmt ⇒ vmt (7)

If a machine is shutting down at time t, then it is not running at time t+ 1.

∀m∈M∀t∈T : zmt ⇒ vmt+1 = 0 (8)

If a task is starting at time t on some machine m, then that machine must
be active at least while the task is running, i.e. for all time points from t to
t + dj − 1.

∀j∈J∀m∈M∀t∈T∀t≤t′<t+dj
: xjmt ⇒ vmt′ (9)

If a machine is running at time t, then it was either already running at time
t − 1 or it starts up at time t.

∀m∈M∀t∈T : vmt ⇒ vmt−1 ∨ ymt (10)

If a machine is running at time t, then it is either also running at time t+ 1,
or it shuts down at time t.

∀m∈M∀t∈T : vmt ⇒ vmt+1 ∨ zmt (11)

Objective Function. The objective is to minimise the total cost of operation,
consisting of the energy cost running all tasks cJ , the cost of running the servers
when they are active cM , the startup cost of the servers cup and the shutdown
cost of the servers cdown. This means we minimise the following function

cost := min cJ + cM + cup + cdown (12)

The energy cost of running all tasks is given by the sum

cJ :=
∑

j∈J

∑

m∈M

∑

t∈T

xjmt(
∑

t≤t′<t+dj

pjrt′q/60) (13)

Note that we have to convert the power use for the task into an energy value
by multiplying with the duration of the time period (in hours). As we don’t
know the actual cost of electricity rt when creating the schedule, we may decide
to use the forecast price ft in the optimisation instead. This may mean that an
optimal solution for the forecast is not optimal for the actual price. But the final
evaluation of the solution quality will be based on the actual price, which is only
known after the fact.

The energy cost of running the servers (ignoring the cost of the tasks) is
given by

cM :=
∑

m∈M

∑

t∈T

vmtidlemrtq/60 (14)

ICON Loop Energy Show Case 341

The start-up cost is given by the sum

cup :=
∑

m∈M

∑

t∈T

ymtupm (15)

The shut-down cost is given by the sum

cdown :=
∑

m∈M

∑

t∈T

zmtdownm (16)

4 Machine Learning Component

In the forecast problem, we have to predict the actual electricity price for one
day into the future based on historical and forecast data. The historical data is
available from September 2011 onwards. The following fields are defined:

DateTime String, defines date and time of sample
Holiday String, gives name of holiday if day is a bank holiday
HolidayFlag integer, 1 if day is a bank holiday, zero otherwise
DayOfWeek integer (0–6), 0 Monday, day of week
WeekOfYear integer, running week within year of this date
Day integer, day of the date
Month integer, month of the date
Year integer, year of the date
PeriodOfDay integer, denotes half hour period of day (0–47)
WindForecast the forecast wind production for this period
LoadForecast the national load forecast for this period
PriceForecast the price forecast for this period
Temperature the actual temperature measured at Cork airport
Windspeed the actual wind speed measured at Cork airport
CO2Intensity the actual CO2 intensity in (g/kWh) for the electricity produced
ActualWind the actual wind energy production for this period
ActualLoad the actual national system load for this period
ActualPrice the actual price of this time period, the value to be forecast

The last four fields are only available for historical data, i.e. they can not
be used to make the forecast. Also note that a model for price prediction is
described in further detail in [9,12].

5 Evaluation

This section evaluates the core-benefit and reliance of the ICON loop model in
the context of the energy showcase. Specifically, its ability to adapt to a market
price increase of 10%. Such a change is not unrealistic as can be seen by the
increasingly high volatility of the electricity market [12]. We consider real-world
data from the Irish electricity market consisting of system demand forecasts,

342 B. Hurley et al.

wind-generation forecasts, market operator price forecasts, along with weather
forecasts. The prediction feature set is the same as that used in the ICON Energy
Challenge which are a subset of those from [12].

To evaluate the effectiveness of the approach, instances of the scheduling
problem described in the previous sections where generated at two day intervals
over a period of a year, with 50 tasks, 1 machine, and 2 resources. Subsequently,
these were each solved to optimality using the mixed integer programming model,
described in Sect. 3.4, using one of three energy price profiles. First, the baseline
optimal solution is to schedule the energy usage based on the actual price figures.
In reality, this is impractical since it is not known at the time, in the Irish
electricity market it is not known until four days after [12], however it will act
as the ultimate baseline.

Fig. 4. Rolling mean absolute percentage error of two forecasting models, alongside
the market operator’s forecast (SEMO).

Second, a linear regression model which is trained on an initial set of historical
data. Finally, a model which is retrained each day after new price data becomes
available. The latter model, following the ICON loop should have the ability
to adapt to changes in the market. Note that both models are trained on the
same quantity of historical data (2 years), the difference being the looping model
integrates the more recent, representative data. The cost for both forecast model
is then reported based on the actual energy cost of implementing such a schedule.

The two regression models produce statistically significantly different price
predictions (>95% confidence) over the course of the one year period considered.
Figure 4 shows a rolling average of the mean absolute percentage error (MAPE)

ICON Loop Energy Show Case 343

of the two regression models and the market operator’s (SEMO) own forecast.
The spike towards the end is due to a very low actual price (<0.3 cent/kWh)
affecting the calculation. The difference appears small but the looping model
produces more accurate predictions on average, over the course of the year.

Fig. 5. An example gantt chart of two schedules based on two price forecast profiles.

Differences between the two price prediction models can result in significantly
different schedules from the CP model. Figure 5 shows an example schedule pro-
duced by the two different price forecasts. The black lines plot the release window
of the tasks and the solid boxes show when the task was scheduled to start in the
optimal solution based on each forecast, the length of the solid box represents the
duration. Understandably, the different price profiles lead to divergent schedules,
often with tasks being scheduled at opposite ends of their release windows.

Figure 6 plots the cumulative penalty of scheduling based on the prediction
models versus the optimal actual-price schedule, over the period of one year.
Scheduling using the looping model produces statistically significantly lower
penalty over the single trained-once model (>98% confidence).

344 B. Hurley et al.

Fig. 6. Cumulative penalty of scheduling based on two forecasting models.

6 Related Work

The two problem domains considered in this showcase, electricity price predic-
tion, and energy management in data centres, are the focus of intensive research
activities over the last years. Recent survey articles, [20] for electricity price pre-
diction, and [4] for energy management for data centres, show the breadth of
work in these areas.

A large variety of methods have been suggested for electricity price pre-
diction [20]. According to Weron, a competitive evaluation of the different
approaches is hindered by the limited availability of common benchmark data,
missing supporting data like weather forecasts and economic data, and a lack
of agreed evaluation criteria. Different time-spans for the forecasting period,
ranging from a few hours for operational use, to several months or even years
for long-term capacity planning problems, may also require radically different
approaches. An international competition on Global Energy Forecasting was held
in 2012 [11], comprising of a hierarchical load forecasting and a wind production
forecasting branch. A later instance of the competition in 2014 [10] included
a probabilistic hourly price forecast branch [2], as well as a solar production
forecasting branch. As discussed in [9], the absolute error in the forecast may
not be he most important criterion to minimize when using forecasted prices for
making scheduling decisions. Identifying price spikes accurately [8] may be more
important, as their impact on the total energy cost is very high.

Energy cost management for datacentres [4] can focus on two objectives,
reducing energy use and reducing energy cost. We can try to reduce the total
energy use by improving the efficiency of servers and cooling systems, but also
by work load consolidation inside and between datacentres [18]. This can take
the form of moving virtual machines between servers to use a minimal num-
ber of machines at full power, while powering down unused resources [15], or,
conversely, by distributing tasks between servers so that hot spots are avoided,
and the overall cooling effort can be reduced [7]. Exploiting temperature and

ICON Loop Energy Show Case 345

humidity differences between datacentre locations allows us to maximize the
effect of free cooling, avoiding the expensive use of air handling units.

Wholesale electricity prices vary significantly over time and location, often
by more than a factor of ten. We can therefore also try to reduce energy cost
by reducing use in locations and times where prices are high, and increase use
where and when prices are low [6]. Some computational tasks, especially in high
performance computing [1], can be moved in time, while other services, like
web-stores, are linked to fixed, time variable demand curves. Moving demand
geographically has an impact on latency, where services like gaming and video,
need relatively low latency connections, and can therefore only be moved in a
limited area [17].

Scheduling of tasks in a computation-heavy data centre is discussed in [3,5],
using Constraint Programming techniques for the EURORA supercomputer. In
this work, tasks can not only be scheduled in time, but their duration can be
changed as well by allocating different numbers of CPU cores and graphics cards
to their execution.

The paper most closely related to the use case discussed here, modifying the
computational load based on time-variable electricity prices, is [14]. It considers
pre-empting certain tasks when the price is high, and resuming them when the
price decreases again.

7 Conclusions

We have presented the ICON Energy Show Case, tightly integrating machine
learning and constraint programming in a scenario for an energy-efficient data-
centre. The objective is to minimize the data-centre’s energy cost by scheduling
tasks based on the time-variable electricity tariff. Machine learning plays a cru-
cial role in trying to produce a good forecast of the electricity price, however the
accuracy of the price prediction does not necessarily correlate with a good over-
all energy cost. We compare an ICON Loop model where the machine learning
component is retrained each day and its ability to adapt to factors affecting the
electricity price, versus a static model which is not able to adapt to changes. The
looping model demonstrates significant benefits and is able to adapt to market
changes.

An additional application of the work presented in this chapter has been
applied to the optimisation of energy costs in a large mining company. Specif-
ically, Boliden Tara Mines Ltd. consumed 184.7 GWh of electricity in 2014,
equating to over 1% of the national demand of Ireland. Two prediction tasks
are undertaken, both employing machine learning techniques. Firstly, a fore-
cast of the real-time energy price is produced, and secondly a prediction of the
highly-variable pumping demand is made. Based on these forecasts, an optimi-
sation model produces an operational schedule of the pumps to minimise energy
costs. An evaluation using real-world electricity prices and detailed sensor data
demonstrates significant savings of up to 10.72% over the year compared to the
existing control systems [13].

346 B. Hurley et al.

References

1. Aikema, D., Kiddle, C., Simmonds, R.: Energy-cost-aware scheduling of HPC work-
loads. In: 2011 IEEE International Symposium on a World of Wireless, Mobile and
Multimedia Networks (WoWMoM), pp. 1–7, June 2011

2. Barta, G., Nagy, G.B.G., Kazi, S., Henk, T.: GEFCOM 2014—probabilistic elec-
tricity price forecasting. In: Neves-Silva, R., Jain, L.C., Howlett, R.J. (eds.) KES-
IDT 2015. SIST, vol. 39, pp. 67–76. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-19857-6 7

3. Bartolini, A., Borghesi, A., Bridi, T., Lombardi, M., Milano, M.: Proactive work-
load dispatching on the EURORA supercomputer. In: O’Sullivan, B. (ed.) CP
2014. LNCS, vol. 8656, pp. 765–780. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-10428-7 55

4. Beloglazov, A., Buyya, R., Lee, Y.C., Zomaya, A.Y.: A taxonomy and survey of
energy-efficient data centers and cloud computing systems. Adv. Comput. 82, 47–
111 (2011). http://dx.doi.org/10.1016/B978-0-12-385512-1.00003-7

5. Borghesi, A., Collina, F., Lombardi, M., Milano, M., Benini, L.: Power capping in
high performance computing systems. In: Pesant, G. (ed.) CP 2015. LNCS, vol.
9255, pp. 524–540. Springer, Heidelberg (2015). doi:10.1007/978-3-319-23219-5 37

6. Castiñeiras, I., Mehta, D., O’Sullivan, B.: Energy cost minimisation of geograph-
ically distributed data centres. In: 4th IEEE International Conference on Cloud
Networking, CloudNet 2015, Niagara Falls, ON, Canada, 5–7 October 2015, pp.
279–284. IEEE (2015). http://dx.doi.org/10.1109/CloudNet.2015.7335322

7. Chisca, D.S., Castiñeiras, I., Mehta, D., O’Sullivan, B.: On energy- and cooling-
aware data centre workload management. In: 15th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing, CCGrid 2015, Shenzhen, China,
4–7 May 2015, pp. 1111–1114. IEEE (2015). http://dx.doi.org/10.1109/CCGrid.
2015.141

8. Christensen, T., Hurn, A., Lindsay, K.: Forecasting spikes in electricity prices. Int.
J. Forecast. 28(2), 400–411 (2012). http://www.sciencedirect.com/science/article/
pii/S0169207011000550

9. Grimes, D., Ifrim, G., O’Sullivan, B., Simonis, H.: Analyzing the impact of
electricity price forecasting on energy cost-aware scheduling. Sustaina. Comput.:
Inform. Syst. 4(4), 276–291 (2014). http://www.sciencedirect.com/science/article/
pii/S221053791400050X

10. Hong, T.: Energy forecasting: past, present, and future. Foresight Int. J. Appl. Fore-
cast. 32, 43–48 (2014). https://ideas.repec.org/a/for/ijafaa/y2014i32p43-48.html

11. Hong, T., Pinson, P., Fan, S.: Global energy forecasting competition 2012. Int. J.
Forecast. 30, 357–363 (2014)

12. Ifrim, G., O’Sullivan, B., Simonis, H.: Properties of energy-price forecasts for
scheduling. In: Milano, M. (ed.) [16], pp. 957–972. http://dx.doi.org/10.1007/
978-3-642-33558-7 68

13. Kinsella, A., Smeaton, A.F., Hurley, B., O’Sullivan, B., Simonis, H.: Optimizing
energy costs in a zinc and lead mine. In: Proceedings of the Thirtieth AAAI Con-
ference on Artificial Intelligence 2016 (2016)

14. Lucanin, D., Brandic, I.: Take a break: cloud scheduling optimized for real-time
electricity pricing. In: 2013 International Conference on Cloud and Green Com-
puting, Karlsruhe, Germany, September 30 - October 2, 2013, pp. 113–120. IEEE
Computer Society (2013). http://dx.doi.org/10.1109/CGC.2013.25

http://dx.doi.org/10.1007/978-3-319-19857-6_7
http://dx.doi.org/10.1007/978-3-319-19857-6_7
http://dx.doi.org/10.1007/978-3-319-10428-7_55
http://dx.doi.org/10.1007/978-3-319-10428-7_55
http://dx.doi.org/10.1016/B978-0-12-385512-1.00003-7
http://dx.doi.org/10.1007/978-3-319-23219-5_37
http://dx.doi.org/10.1109/CloudNet.2015.7335322
http://dx.doi.org/10.1109/CCGrid.2015.141
http://dx.doi.org/10.1109/CCGrid.2015.141
http://www.sciencedirect.com/science/article/pii/S0169207011000550
http://www.sciencedirect.com/science/article/pii/S0169207011000550
http://www.sciencedirect.com/science/article/pii/S221053791400050X
http://www.sciencedirect.com/science/article/pii/S221053791400050X
https://ideas.repec.org/a/for/ijafaa/y2014i32p43-48.html
http://dx.doi.org/10.1007/978-3-642-33558-7_68
http://dx.doi.org/10.1007/978-3-642-33558-7_68
http://dx.doi.org/10.1109/CGC.2013.25

ICON Loop Energy Show Case 347

15. Mehta, D., O’Sullivan, B., Simonis, H.: Comparing solution methods for the
machine reassignment problem. In: Milano, M. (ed.) [16], pp. 782–797. http://
dx.doi.org/10.1007/978-3-642-33558-7 56

16. Milano, M. (ed.): CP 2012. LNCS, vol. 7514. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-33558-7

17. Qureshi, A., Weber, R., Balakrishnan, H., Guttag, J., Maggs, B.: Cutting the
electric bill for internet-scale systems. SIGCOMM Comput. Commun. Rev. 39(4),
123–134 (2009). http://doi.acm.org/10.1145/1594977.1592584

18. Rahman, A., Liu, X., Kong, F.: A survey on geographic load balancing based data
center power management in the smart grid environment. IEEE Commun. Surv.
Tutor. 16(1), 214–233 (2014)

19. Simonis, H., O’Sullivan, B., Mehta, D., Hurley, B., Cauwer, M.D.: Energy-cost
aware scheduling/forecasting competition. Technical report, Insight Centre for
Data Analytics, University College Cork, May 2014

20. Weron, R.: Electricity price forecasting: a review of the state-of-the-art
with a look into the future. Int. J. Forecast. 30(4), 1030–1081 (2014).
http://www.sciencedirect.com/science/article/pii/S0169207014001083

http://dx.doi.org/10.1007/978-3-642-33558-7_56
http://dx.doi.org/10.1007/978-3-642-33558-7_56
http://dx.doi.org/10.1007/978-3-642-33558-7
http://dx.doi.org/10.1007/978-3-642-33558-7
http://doi.acm.org/10.1145/1594977.1592584
http://www.sciencedirect.com/science/article/pii/S0169207014001083

Author Index

Babaki, Behrouz 257
Balafrej, Amine 226
Beldiceanu, Nicolas 77
Bessiere, Christian 51, 96, 226, 303

Daoudi, Abderrazak 51
De Raedt, Luc 96, 257, 303
Dries, Anton 96, 257

Grossi, Valerio 25, 282
Guidotti, Riccardo 310
Guns, Tias 96, 257, 282, 303

Hebrard, Emmanuel 51
Hurley, Barry 3, 191, 325, 334

Katsirelos, George 51
Kotthoff, Lars 149, 191, 303, 310, 325

Lazaar, Nadjib 51
Le Van, Thanh 257

Malitsky, Yuri 191
Mechqrane, Younes 51

Mehta, Deepak 191
Monreale, Anna 282

Nanni, Mirco 282, 303, 310
Narodytska, Nina 51
Negrevergne, Benjamin 257
Nijssen, Siegfried 257, 282, 303

O’Sullivan, Barry 3, 191, 303, 310, 325, 334

Paparrizou, Anastasia 226, 303
Paramonov, Sergey 257
Passerini, Andrea 113
Pedreschi, Dino 25, 303, 310

Quimper, Claude-Guy 51

Simonis, Helmut 77, 303, 325, 334

Trombettoni, Gilles 226
Turini, Franco 25

Walsh, Toby 51

	Preface
	Reviewers
	Contents
	Background
	Introduction to Combinatorial Optimisation in Numberjack
	1 Introduction
	2 Modelling Using Numberjack
	2.1 Variables
	2.2 Constraints
	2.3 Inference
	2.4 Global Constraints
	2.5 Optimisation

	3 Solving Technologies
	3.1 Constraint Programming
	3.2 Satisfiability
	3.3 Mixed Integer Programming
	3.4 Choice Is Good

	4 Systematic Search
	4.1 Search Heuristics in Constraint Programming
	4.2 Restarting and Randomness

	5 Final Remarks
	References

	Data Mining and Constraints: An Overview
	1 Introduction
	2 Data Mining
	2.1 Predictive Modelling or Classification
	2.2 Clustering
	2.3 Pattern Discovery

	3 Using Constraints in Data Mining
	3.1 Object Constraints
	3.2 Hard and Soft Constraints
	3.3 Phase-Defined Constraints

	4 Conclusions: Towards New Frontiers of Data Mining
	References

	Learning to Model
	New Approaches to Constraint Acquisition
	1 Introduction
	2 Background
	3 Constraint Acquisition with Partial Queries
	3.1 Description of QUACQ
	3.2 Example
	3.3 Analysis

	4 Learning Simple Languages
	4.1 Languages for Which QUACQ is Optimal
	4.2 Languages for Which QUACQ Is Not Optimal

	5 Constraint Acquisition with Generalization Queries
	5.1 Description of GENACQ
	5.2 Completeness and Complexity
	5.3 Illustrative Example
	5.4 Using Generalization in QUACQ
	5.5 Strategies

	6 Experimental Evaluation
	6.1 Benchmark Problems
	6.2 QUACQ Evaluation
	6.3 Using Generalization Queries

	7 Conclusion
	References

	ModelSeeker: Extracting Global Constraint Models from Positive Examples
	1 Introduction
	1.1 A Running Example

	2 Workflow
	2.1 Transformation
	2.2 Sequence Generator
	2.3 Argument Creation
	2.4 Constraint Seeker
	2.5 Bottom-Up Dominance
	2.6 Dominance Check
	2.7 Trivia Removal
	2.8 Candidate List for Bundesliga Schedule
	2.9 Domain Creation
	2.10 Code Generation

	3 Evaluation
	4 Related Work
	5 Limitations and Future Work
	6 Conclusion
	References

	Learning Constraint Satisfaction Problems: An ILP Perspective
	1 Introduction
	2 Constraint Satisfaction Problems
	3 The Learning Task
	4 Relation to Inductive Logic Programming
	5 CSP Learning Systems
	5.1 Learning a CNF
	5.2 Learning a Single Clause

	6 Discussion
	7 Conclusion and Future Work
	References

	Learning Modulo Theories
	1 Introduction
	2 Background
	2.1 Satisfiability Modulo Theory
	2.2 Learning with Structured Outputs

	3 LMT for Structured-Output Prediction
	3.1 An Introductory Example
	3.2 The Method
	3.3 Experimental Results
	3.4 Related Work

	4 LMT for Preference Elicitation
	4.1 An Introductory Example
	4.2 The Method
	4.3 Experimental Results
	4.4 Related Work

	5 Conclusions
	References

	Learning to Solve
	Algorithm Selection for Combinatorial Search Problems: A Survey
	1 Introduction
	1.1 Practical Motivation
	1.2 Scope and Related Work
	1.3 Terminology
	1.4 Organisation

	2 Algorithm Portfolios
	2.1 Static Portfolios
	2.2 Dynamic Portfolios

	3 Problem Solving with Portfolios
	3.1 What to Select
	3.2 When to Select

	4 Portfolio Selectors
	4.1 Performance Models
	4.2 Types of Predictions
	5 Features
	5.1 Low and High-Knowledge Features
	5.2 Static and Dynamic Features
	5.3 Feature Selection

	6 Application Domains
	7 Summary
	References

	Advanced Portfolio Techniques
	1 Outline
	2 Proteus: A Hierarchical Portfolio of Solvers and Transformations
	2.1 Multiple Encodings and Solvers

	3 Advanced Portfolio Techniques
	3.1 Automated Portfolio Generation
	3.2 Dynamically Adapting Portfolios
	3.3 Feature Generation
	3.4 Conclusions

	References

	Adapting Consistency in Constraint Solving
	1 Introduction
	2 Background
	3 Parameterized Consistency
	3.1 Parameterized MaxRPC: p-maxRPC
	3.2 Experimental Validation of p-maxRPC

	4 Adaptative Parameterized Consistency: ap-maxRPC
	4.1 Constraint-Based ap-maxRPC: apc-maxRPC
	4.2 Variable-Based ap-maxRPC: apx-maxRPC
	4.3 Experimental Evaluation of ap-maxRPC

	5 Partition-One-Arc-Consistency
	5.1 The Algorithm
	5.2 Comparison of POAC and SAC Behaviors

	6 Adaptive POAC
	6.1 Principle
	6.2 Computing ki(j)
	6.3 Aggregation of the ki(j) Values
	6.4 Experimental Evaluation of (A)POAC

	7 Conclusion
	References

	Constraint Programming for Data Mining
	Modeling in MiningZinc
	1 Introduction
	2 Language
	2.1 MiniZinc
	2.2 Library
	2.3 Facilities for Loading Data
	2.4 Python Integration

	3 Modeling Data Mining Problems
	3.1 Itemset Mining
	3.2 Sequence Mining
	3.3 Constraint-Based Pattern Mining in Bayesian Networks
	3.4 Linear Regression
	3.5 Clustering
	3.6 Relational Data Factorization
	3.7 Ranked Tiling

	4 Related Work
	5 Solving
	6 Conclusion
	References

	Partition-Based Clustering Using Constraint Optimization
	1 Introduction
	2 Direct Methods
	2.1 Optimization Criteria
	2.2 Constraints
	2.3 Modeling Clustering as Constraint Optimization

	3 Indirect Methods
	3.1 Density-Based Clustering
	3.2 Label Propagation

	4 Conclusions
	References

	Showcases
	The Inductive Constraint Programming Loop
	1 Introduction
	2 Inductive Constraint Programming Loop
	3 Conclusions
	References

	ICON Loop Carpooling Show Case
	1 Introduction
	2 Related Work
	3 Simple Carpooling Loop
	3.1 Inferring Mobility Profiles
	3.2 Building the Carpooling Network
	3.3 Optimal Drivers-Passengers Matching

	4 Users' Preference Learning in Loop
	4.1 Preference Learning
	4.2 Preference-Aware Matching Model

	5 Simulation of a Carpooling Service
	5.1 Simulating Mobility
	5.2 Simulating Users' Preferences
	5.3 Results

	6 Conclusions
	References

	ICON Loop Health Show Case
	1 Overview
	2 World
	2.1 Workflow

	3 CP Component
	3.1 Simple Model
	3.2 Model 2 - Accepting Patients

	4 ML Component
	5 Evaluation
	6 Conclusions
	References

	ICON Loop Energy Show Case
	1 Overview
	2 World
	2.1 Evaluator

	3 Optimisation Component
	3.1 Notation
	3.2 Sets and Indices
	3.3 Constants
	3.4 Model

	4 Machine Learning Component
	5 Evaluation
	6 Related Work
	7 Conclusions
	References

	Author Index

