
Lecture Notes for

Functional Programming

(COSC 3015)

James Caldwell

September 15, 2015

1 Lambda Terms

A lambda term has the form (\y → t[y]) where t[y] is an arbitrary term,
possibly containing free occurrences of the variable y. This free occurrence
business is a bit tricky, perhaps best first explained by a few examples. But
first, we need to describe how to make the computational step of applying
a function (presented as a lambda term) to an argument (which can be any
other lambda term), say t̂.

(\y → t[y]) t̂ =⇒ t[t̂]

In this notation, t[t̂] is the term that results from substituting t̂ for all
the free occurrences of y in t. Thus:

i.) (\y → y) 5 =⇒ 5
ii.) (\y → y) ”xyzzy” =⇒ ”xyzzy”
iii.) (\y → \x → y + x) 5 =⇒ (\x → 5 + x))
iv.) (\y → \y → y) 5 =⇒ (\y → y)

Example (i.) is easy, in this case, the term t[y] is just the variable y and
so just becomes 5. Example (ii.) is the same but the argument is a string
”xyzzy”. In example (iii.), t[y] is the term (\x → y+x) and y is free in this
term, because there is no lambda binding of y. Thus, the free occurrence of
y is replaced by the argument 5 yielding the term (\x → 5 + x). Example
(iv.) is a bit wierd. In the term (\y → \y → y), t[y] is the term (\y → y)

1

The leftmost y in this term is the binding occurence of y. The second y in
the term is “bound” by the lambda expression and so we say:

There are no free occurences of y in the term (\y → y).

2

