
COSC 3015: Lecture 9

Lecture given by Prof. Caldwell and scribed by Sunil Kothari

September 23, 2008

1 Functions on lists

Lists are the bread and butter of functional programming. At least they started
out that way. The first functional programming language, LISP - List Process-
ing, 1960 by John McCarthy, had list as the fundamental data-structure. LISP
is great at symbolic processing - the AI programming language.

Using the Haskell notation we can write list as data Nat [a] = [] | a:[a]
so we can say

Hugs> :t []
[] :: [a]
Hugs> :t (:)
(:) :: a -> [a] -> [a]

1.1 null function

The term cons actually means list constructor.

null2 [] = True

null2 = False

” ” is a specification that matches any pattern
Alternative:

If we define null as

null3 x = (x == [])

then the type is

Main> :t null
null1 :: Eq [a] => [a] -> Bool

1

if (x==[]) then True else False is a really dumb way of defining the above
function.

if b then e1 else e2, where

• b - bool

• e1, e2 - both must have the same type.

Evaluation for if-then-else
if True then e1 else e2 ; e1
if False then e1 else e2 ; e2

In the book null is defined as:

null2 [] = True

null2 (x : xs) = False

How is this different from one above ?

null1 ⊥ = ⊥

So- null is strict - i.e. if it is applied to ⊥ then the result is ⊥. null[(+), (−)]

:t [(+),(-)]
[(+),(-)] :: Num a => [a -> a -> a]
Main>

But we cannot do so for null3, it generates a type error.

Main> null3 [(+),(-)]
ERROR - Unresolved overloading
*** Type : (Num a, Eq (a -> a -> a)) => Bool
*** Expression : null3 [(+),(-)]

But, null2 and null1 behave differently than null3.

Main> null2 [(+),(-)]
False
Main> null1 [(+),(-)]
False

So null1 and null2 apply to a wider class of list types - those that are
instances of the Eq type class and those that are not.

2

1.2 Append (++)

We want that [1,2]++[3,4,5] = [1,2,3,4,5] If we had some reflection we can do it.
So how can we do it ? We are gonna define it by recursion on the first argument.

[] + +ys = ys

(x : xs) + +ys = x : (xs + +ys)

So how dowe think about it. We have a cons and we want to glue together it
with ys. So what is thew first element of what we wwant ? The first element is
x. So the pattern is almost always same. In this case we take out x and recurse
down on the smaller structure.

[1, 2] + +[3, 4, 5] = 1 : ([2] + +[3, 4, 5])
= 1 : (2 : ([] + +[3, 4, 5]))
= 1 : (2 : [3, 4, 5])
= [1, 2, 3, 4, 5]

Let’s try another recursive definition.

1.3 length

What about length ? It’s defined as

Main> :t length
length :: [a] -> Int
Main>

length[] = 0
length(x : xs) = 1 + (lengthxs)

1.4 reverse

Let’s try reverse:

Main> :t reverse
reverse :: [a] -> [a]

and is defined as

reverse[] = []
reverse(x : xs) = reversexs + +[x]

3

1.5 concat

Let’s do concat

Main> :t concat
concat :: [[a]] -> [a]

concat [[1,2],[],[3,4,5]] = [1,2,3,4,5] and is defined as

concat [] = []
concat (x : xs) = x + +(concat xs)

How do we compute with the concat function ?

concat[[1, 2, 3]] = [1, 2, 3] + +concat []
= [1, 2, 3] + +[]
= [1, 2, 3]

Another example:

concat[[1, 2, 3], [], [4, 5]] = [1, 2, 3] + +concat [[], [4, 5]]
= [1, 2, 3] + +[] + +concat [[4, 5]]
= [1, 2, 3] + +([] + +[4, 5] + +concat [])
= [1, 2, 3] + +([] + +([4, 5] + +[]))
= . . .

= [1, 2, 3, 4, 5]

1.6 zip

Main> :t zip
zip :: [a] -> [b] -> [(a,b)]

We define it by recursion on the first argument.
Here’s an alternate definition

zip []ys = []
zip (x : xs) ys = (x, headys) : zip xs (tailys)

zip (x : xs) (y : ys) = (x, y) : zip xs ys

Design choice for zip - what is the right length ??

length (zip xs ys) ?= min (length xs, length ys)
?= max(length xs, length ys)
?= if length xs <> length ys then error else length xs
?= length xs or if length xs > length ys then error

4

zip1 is strict in both argument

zip1 [] [] = []
zip1 (x : xs) [] = []
zip1 [] (x : xs) = []

zip1 (x : xs)(y : ys) = (x, y) : zip1xsys

zip′ [] ⊥ = []
zip′ ⊥ [] = ⊥
zip [] ⊥ = ⊥

zip’ is not strict in its second argument.

zip [] ys = []
zip xs [] = []

zip (x : xs) (y : ys) = (x, y) : zip xs ys

In Haskll there is intersting notation

• An infinits list of ints:
[1..] = [1, 2, 3, 4, . . .]

• Partial lists

1. ⊥
2. 1 : ⊥
3. 1 : 2 : ⊥

• Finite lists [⊥,⊥] - the type of lists is [a]

1.7 last

last [] = error

last (x : xs) = if (null xs) then x else last xs

last [1, 2, 3] = last [2, 3]
= last [3]
= 3

5

Here’s another way of doing it

last [x] = x

last x : xs = last xs

yet another way is:
last = head · reverse

Main> :t error
error :: String -> a

In a way the result of error is like bottom.

6

