COSC 3015: Lecture 7

Lecture given by Prof. Caldwell and scribed by Sunil Kothari

September 16, 2008

1 Inductive Datatype

data Nat = Zero | Succ Nat

There is recursion in the datatype equation. We are defining the datatype *Nat* - and in doing so, use the data type *Nat*.

Zero and Succ are constructors for the data type. Zero::Nat - is a constant of the type nat. Succ:: Nat \rightarrow Nat - is a constant that maps Nats to Nats

Main> :t Zero Zero :: Nat Main> :t Succ Zero Succ Zero :: Nat Main>

To apply the constructor Succ - we must have a previously constructed Nat to apply to it. What objects have type Nat ?? $Nat = \{Zero, SuccZero, Succ(SuccZero), \dots\}$

This representation goes back to Peano, an Italian logician and mathematician. In Haskell, we have the most refined form of equality.

```
instance Eq Nat where
Zero == Zero = True
Zero == Succ n = False
Succ n == Zero = False
Succ n == Succ m = m == n
Main> :t (==)
(==) :: Eq a => a -> a -> Bool
```

By default, we also get not equal to

:t (/=) (/=) :: Eq a => a -> a -> Bool Main>

If we had said data Nat = Zero |Succ Nat deriving Eq.

Haskell would have derived an equivalent == function to one we have writ-

ten. Succ Zero == Succ (Succ Zero) \sim Zero == Succ Zero \sim False

Nat terms have a tree structure. We can define our own +++ as : $(+++) :: Nat \rightarrow Nat \rightarrow Nat$ m +++ zero = mm +++ (Succ n) = Succ (n +++m)

Theorem 1. $\forall m : Nat.m + + + (succ \ 0) = succ \ m$

Proof. Choose an arbitrary m and show $m + ++ (succ \ 0) = succ \ m$. Starting with LHS

 $m + (succ \ 0) \qquad \stackrel{<<\text{defn of } +++>>}{=} \qquad succ \ (m + + + zero) \qquad \square$

Similarly, we can check if zero is same as our notion of 0 in mathematics

Theorem 2. $\forall m : Nat.zero +++m = m$

Proof by induction on m. .

1.1 Induction Principle

Consider again inductively defined data type. data Nat = Zero | Succ Nat deriving Eq The induction principle for Nat. (as is in the book)

> Case (Zero): P(Zero) holds Case (succ n): Assuming P(n) holds, show P(succ n) holds.

What is P?? $P :: Nat \rightarrow Bool - P$ is a property of natural numbers. Another way of thinking this is :

 $(P(0) \land \forall m : Nat. P(m) \Rightarrow P(m+1)) \Rightarrow \forall m : Nat. P(m)$

Theorem 3. $\forall m, n : Nat.n + + + m = m + + + n$

By induction on m. What is P(m) ? we can look at the statement as $\forall m, \forall n : Nat.n + ++ m = m + ++ n$ So the property is $P(m) \stackrel{\text{def}}{=} \forall n : Nat.n + m = m + n$. So we have to show:

case (**P(zero)** : $\forall n : Nat.n +++ zero = zero+++n$. Choose an arbitrary n. L.HS. n+++ zero = n (by definition of +) zero +++ n = n (by Lemma 1)

case $\mathbf{P}(\mathbf{Succ n})$: Assume $\mathbf{P}(\mathbf{k})$, *i.e.* $\forall n : Nat.n + k = k + n$ Show $\mathbf{P}(\mathbf{Succ k}) - \forall n : Nat.n+++ (Succ k) = (Succ k) +++ n$ Choose arb. n and show that n +++ (succ k) = (succ k) +++ nOn the left, n+++(Succ k) = succ (n +++ k)(by definition of plus) $= succ (k+++n) (by \mathbf{P}(\mathbf{k}))$ = k + (succ n)On the right, since $\forall n : Nat, n + k = k + n$

we know (succ n) +++ k = k +++ (succ n)

Lemma 1. $\forall n : Nat.zero + + + n = n$

Proof. By induction on n. What is P(n)? $P(n) \stackrel{\text{def}}{=} zero + + + n = n$

Base case : show zero +++ zero = zero. But zero +++ zero = zero so the base case holds.

Induction case show P(succ k): assume P(k) and show P(succ k).

$$\begin{split} P(k) &\stackrel{\text{def}}{=} zero + ++ k = k \\ P(succ \ k) &\stackrel{\text{def}}{=} zero + ++ (succ \ k) = succ \ k \end{split}$$

Start on the left $P(succ \ k) \stackrel{\text{def}}{=} zero +++ (succ \ k)$ = $succ \ (zero + k)$ = $succ \ k$

So the induction principle holds.

We are trying to prove properties of our recursive program. We are proving properties of our haskell function