COSC 3015: Lecture 7

Lecture given by Prof. Caldwell and scribed by Sunil Kothari

September 16, 2008

1 Inductive Datatype

data Nat = Zero | Succ Nat

There is recursion in the datatype equation. We are defining the datatype Nat - and in doing so, use the data type Nat.

Zero and Succ are constructors for the data type. Zero::Nat - is a constant of the type nat. Succ:: $Nat \rightarrow Nat$ - is a constant that maps Nats to Nats

Main> :t Zero Zero :: Nat Main> :t Succ Zero Succ Zero :: Nat Main>

To apply the constructor Succ - we must have a previously constructed Nat to apply to it. What objects have type Nat ?? $Nat = \{Zero, SuccZero, Succ(SuccZero), \dots\}$

This representation goes back to Peano, an Italian logician and mathematician. In Haskell, we have the most refined form of equality.

```
instance Eq Nat where
  Zero == Zero = True
  Zero == Succ n = FalseSucc n == Zero = False
  Succ n == Succ m == nMain> :t (==)
(==) :: Eq a => a -> a -> Bool
```
By default, we also get not equal to

:t $($ /=) (\neq) :: Eq a => a -> a -> Bool Main>

If we had said data $Nat = Zero$ Succ Nat deriving Eq

Haskell would have derived an equivalent $==$ function to one we have writ-

ten. Succ $Zero == Succ$ (Succ $Zero$) \sim Zero == Succ Zero \sim False

Nat terms have a tree structure. We can define our own $++$ as : $(++)$:: $Nat \rightarrow Nat \rightarrow Nat$ m +++ $zero = m$

 $m +++ (Succ n) = Succ (n ++ + m)$

Theorem 1. $\forall m : Nat.m +++ (succ 0) = succ m$

Proof. Choose an arbitrary m and show $m +++$ (succ 0) = succ m. Starting with LHS

 m +++ (succ 0) \leq < defn of +++>> $succ$ (m +++ zero) \Box $=$ succ m

Similarly, we can check if zero is same as our notion of 0 in mathematics

 \Box

Theorem 2. $\forall m : Nat.zero +++ m = m$

Proof by induction on m. .

1.1 Induction Principle

Consider again inductively defined data type. data $Nat = Zero | Succ Nat deriving Eq$ The induction principle for Nat. (as is in the book)

> Case (Zero): $P(Zero)$ holds Case (succ n): Assuming $P(n)$ holds, show $P(succ n)$ holds.

What is P?? P :: $Nat \rightarrow Bool$ - P is a property of natural numbers. Another way of thinking this is :

 $(P(0) \wedge \forall m : Nat.P(m) \Rightarrow P(m+1)) \Rightarrow \forall m : Nat.P(m)$

Theorem 3. $\forall m, n : Nat.n \rightarrow ++ m = m \rightarrow ++ n$

By induction on m. What is P(m)? we can look at the statement as $\forall m, \forall n$: $Nat.n +++ m = m +++ n$ So the property is $P(m) \stackrel{\text{def}}{=} \forall n : Nat.n+m = m+n$. So we have to show:

case (P(zero) : $\forall n : Nat.n$ +++ zero = zero+++n. Choose an arbitrary n. L.HS. $n + + +$ zero = n (by definition of +) $zero + + + n = n$ (by Lemma 1)

case P(Succ n) : Assume P(k), *i.e.* $\forall n : Nat.n+k = k+n$ Show P(Succ k) - $\forall n : Nat.n+++(Succ k) = (Succ k) +++ n$ Choose arb. n and show that $n +++ (succ k) = (succ k) ++ + n$ On the left, $n+++(Succ k)$ = $succ (n +++ k)$ (by definition of plus) $= succ(k+++n)$ (by $P(k)$) $=$ $k + (succ n)$ On the right, since $\forall n : Nat, n + k = k + n$

we know (succ n) $+++ k = k +++$ (succ n)

 \Box

Lemma 1. $\forall n : Nat. zero +++ n = n$

Proof. By induction on n. What is $P(n)$? $P(n) \stackrel{\text{def}}{=} zero + + + n = n$

Base case: show $zero +++$ $zero = zero$. But $zero +++$ $zero = zero$ so the base case holds.

Induction case show $P(\text{succ k})$: assume $P(k)$ and show $P(\text{succ k})$.

 $P(k) \stackrel{\text{def}}{=} zero + + + k = k$ $P(succ k) \stackrel{\text{def}}{=} zero +++(succ k) = succ k$

Start on the left $P(succ k) \stackrel{\text{def}}{=} zero +++(succ k)$ $= succ$ (zero $+k$) $= succ k$

So the induction principle holds.

 \Box

We are trying to prove properties of our recursive program. We are proving properties of our haskell function