
COSC 3015: Lecture 7

Lecture given by Prof. Caldwell and scribed by Sunil Kothari

September 16, 2008

1 Inductive Datatype

data Nat = Zero | Succ Nat

There is recursion in the datatype equation. We are defining the datatype Nat
- and in doing so, use the data type Nat.

Zero and Succ are constructors for the data type.
Zero::Nat - is a constant of the type nat.
Succ:: Nat → Nat - is a constant that maps Nats to Nats

Main> :t Zero
Zero :: Nat
Main> :t Succ Zero
Succ Zero :: Nat
Main>

To apply the constructor Succ - we must have a previously constructed Nat to
apply to it. What objects have type Nat ?? Nat = {Zero, SuccZero, Succ(SuccZero), · · · }

This representation goes back to Peano, an Italian logician and mathemati-
cian. In Haskell, we have the most refined form of equality.

instance Eq Nat where
Zero == Zero = True
Zero == Succ n = False
Succ n == Zero = False
Succ n == Succ m = m == n

Main> :t (==)
(==) :: Eq a => a -> a -> Bool

By default, we also get not equal to

1



:t (/=)
(/=) :: Eq a => a -> a -> Bool
Main>

If we had said data Nat = Zero |Succ Nat deriving Eq
Haskell would have derived an equivalent == function to one we have writ-

ten.
Succ Zero == Succ (Succ Zero)
; Zero == Succ Zero
; False

Nat terms have a tree structure.
We can define our own +++ as :

(+++) :: Nat→ Nat→ Nat
m +++ zero = m
m +++ (Succ n) = Succ (n +++ m)

Theorem 1. ∀m : Nat.m +++ (succ 0) = succ m

Proof. Choose an arbitrary m and show m +++ (succ 0) = succ m. Starting
with LHS
m +++ (succ 0) <<defn of +++>>= succ (m +++ zero)

= succ m

Similarly, we can check if zero is same as our notion of 0 in mathematics

Theorem 2. ∀m : Nat.zero +++ m = m

Proof by induction on m. .

1.1 Induction Principle

Consider again inductively defined data type.
data Nat = Zero | Succ Nat deriving Eq
The induction principle for Nat. (as is in the book)

Case (Zero): P (Zero) holds
Case (succ n): Assuming P (n) holds, show P (succ n) holds.

What is P?? P :: Nat→ Bool - P is a property of natural numbers.
Another way of thinking this is :

(P (0) ∧ ∀m : Nat.P (m)⇒ P (m + 1))⇒ ∀m : Nat.P (m)

Theorem 3. ∀m, n : Nat.n +++ m = m +++ n

2



By induction on m. What is P(m) ? we can look at the statement as ∀m,∀n :
Nat.n +++ m = m +++ n So the property is P (m) def= ∀n : Nat.n+m = m+n.
So we have to show:

case (P(zero) : ∀n : Nat.n +++ zero = zero+++n. Choose an arbitrary n.
L.HS. n +++ zero =n (by definition of +)

zero +++ n = n (by Lemma 1 )

case P(Succ n) : Assume P(k), i.e. ∀n : Nat.n + k = k + n
Show P(Succ k) - ∀n : Nat.n+++ (Succ k) = (Succ k) +++ n
Choose arb. n and show that
n +++ (succ k) = (succ k) +++ n
On the left,
n+++(Succ k) = succ (n +++ k)(by defnition of plus)

= succ (k+++n) (by P(k))
= k + (succ n)

On the right, since ∀n : Nat, n + k = k + n
we know (succ n) +++ k = k +++ (succ n)

Lemma 1. ∀n : Nat.zero +++ n = n

Proof. By induction on n. What is P(n)? P (n) def= zero +++ n = n

Base case : show zero +++ zero = zero. But zero +++ zero = zero so the
base case holds.

Induction case show P(succ k): assume P (k) and show P (succ k).
P (k) def= zero +++ k = k

P (succ k) def= zero +++ (succ k) = succ k

Start on the left P (succ k) def= zero +++ (succ k)
= succ (zero + k)
= succ k

So the induction principle holds.

We are trying to prove properties of our recursive program. We are proving
properties of our haskell function

3


