
COSC 3015: Lecture 5

Lecture given by Prof. Caldwell and scribed by Sunil Kothari

September 16, 2008

1 Some Notes on Haskell Syntax

Function names, variable names starts with lowercase letter - followed by
zero or more digits, underscores () upper or lowercase letters, forward
quotes ()́. For example, x1, x′, x1, x

′′.

Datatype and datatype constructor names start with uppercase letters
and are otherwise like functions and variable names. For example, Bool,
String, Int , True, False.

Keywords case, class, data, default, deriving, do, else, if, import, in , infix,
infixl, infixr, instance, let, module, newtype, of , then, type, where.

1.1 Layout rule

Each function definition must begin in the same column.

a = b + c
where
b = 1
c = 2

d a = a* 2

a = b + c
where
{b = 1; c = 2}

d a = a* 2

1.2 Comments

Line comments start with ”–” and continue to the end of the line. For exam-
ple,
fx = x + 1−−dumbfunction
Nested comments are of the form {− · · · −}

1

1.3 Local Definition

The following code has the same effect as the ex. 1

a = let b = 1
c = 2

in
b + c

Here’s another version of it.

a = b + c
where

b = 1
c = 2

Meaning of let-in. let x = t1 in t2 means t2[x := t1] where,

• x is locally defined variable

• t1 is local declaration of x

• t2 body of the let-declaration

and t2[x := t1] - evaluate expression t2 where all free occurrences of x get the
value of expression t1. Note that ”:=” is a capture-avoiding substitution

let x = 1 in
let x = 2 in
x

; 2
we can elaborate on it
∀x : Int,∀x : nat.x ≥ 0. Choose arb. y ∈ int and show ∀x : Int,∀x : nat.x ≥

0[x := y] ; ∀x : nat, x ≥ 0

1.4 if-then-else

A code fragment in an imperative language

if x > 0 then
y := x

else
y:= (-x)

In C and C++ there is a conditional expression

2

y:= x >0 ? x: -x

i.e. it returns a value of x or -x depending on whether x > 0
The type of if-then-else, for example \ b -¿ \ t1 -¿ \ t2 -¿ if b then t1 else

t2 is Bool→ a→ a→ a.
Note: if True then 0 else ”foo” is not well-typed.

Evaluation rules for if-then-else

if True then t1 else t2 ; t1 if False then t1 else t2 ; t2

If we evaluate if (True && False) then 0 else 1 then the interpreter responds
with 1.

fact k = if k ¡0 then error ”fact of a negative number not defined” else if k
== 0 then 1 else k * fact (k-1)

>:t fact
(Num a, Ord a) => a -> a

fact1 k
| k ==0 = 1
| k >0 = k * fact1(k-1)

>:t (Num a, Ord a) => a -> a

1.5 Standard Prelude

It’s a default library which gets loaded when you start-up. Haskell supports
datatype declarations -

Enumerated Types - In Haskell, Bool is defined as a datatype with two
constructor data Bool = True | False

>:t True
True::Bool

But in the prelude it is defined as

data Bool = True | False deriving (Eq, Ord, Enum, Read, Show, Bounded)

Here, deriving tells Haskell to derive all the operations for all the named type
classes

>:t (show True)
(show True)::String

3

1.6 Infix operators

(&&),(||) :: Bool -> Bool -> Bool

True && x = x
False && _ = False

True || x = True
False || x = x

> False && infinity

In Haskell, we have lazy evaluation so if we try to evaluate the above expression
it evaluates to False. But in eager evaluation it will loop forever. There is a
little bit of asymmetry here - Infinity and False will not terminate but evaluate
to infinity.

not ::Bool -> Bool
not True = false
not False = True

otherwise::Bool
not otherwise = True.

4

