
COSC 3015: Lecture 4

Lecture given by Prof. Caldwell and scribed by Sunil Kothari

September 16, 2008

1 Recap

Somebody asked about what’s going on ? So here is the response. Recall
functions from dom a to codomain b: a → b where, a and b are type variables
and they can stand for any type. Suppose we instantiate b with the type
Int → String Then if f :: a → (Int → String) so f maps things of type a
to functions of type Int→ String. That means if x :: a then
fx :: Int→ String

The result of applying the function f to the argument x. Here’s a concrete
example:

Example 1 f k = \ m− > m + k Here’s another equivalent definition
f k m = m + k So the type of f is Num a ⇒ a → (a → a) What does f look
like as a set of pairs ?

f 0 = \m→ m + 0
f 1 = \m→ m + 1
f (−1) = \m→ m + (−1)

In the last HW notes f was called plus.
In Haskell, the default is curried.

>:t plus (x,y) = x + y
Num a => (a,a) -> a

>:t plusc x y = x + y
Num a => a -> (a -> a)

input output
< 0 ,<< 0, 0 >, < 1, 1 >< −1,−1 >, · · · >>
< 1 ,<< 0, 1 >, < 1, 2 >< −1, 0 >, · · · >>

...

1



>:t plusc 5
Int -> Int\\

>:t plus 5
! splat - type error

2 Curry and Uncurry

So curry can be defined as :
curryf = \x → \y → f (x, y) Here’s an alternative definition curryf x y =
f (x, y) so the type of f is ((a, b)→ c)→ a→ b→ c.

Remember arrow associates to the right. so, a→ b→ c means a→ (b→ c).
Also, function application associates to the left. So - f x y means (f x) y and
not f (x y)

By default, type checker is gonna get rid of as many paranthesis as it can.
Normally, pairs are written as catesian product but in Haskell both type and
terms are represented by the same notation i.e. depending on the context (a,b)
might be a product type or a pair of terms.

And uncurry could be written as: uncurry f = \p → f (fst p) (snd p) ¿:t
fst Here’s an anternative definition uncurry f = \(x, y)→ f x y Here’s another
definition uncurry f (x, y) = f x y

So the type of uncurry is (a → b → c) → (a, b) → c. Again curry and
uncurry are fundamental notions. By default, things are written in curried
form.

3 Function composition

Consider three types A, B,C with f : A→ B, g : B → C so function composition
is defined as (g ◦ f)(x) = g(fx) The type of g ◦ f is a→ c.

To make it syntactic valid Haskell we can write backquotes around it. For
example ’◦’. In Haskell, we can write is as g.f . So g.f = \x− > g(fx). so - ”.”
is a special infix operator denoting function composition.

There is a Haskell notation for turning infix operator into a prefix operator.
If ⊕ is an arbitrary binary argument taking a and b to c - then (⊕) :: a→ b→ c.

So, what is the type of function composition (.) :: (b → c) → (a → b) →
(a→ c)

Example 2 add1x = x + 1 times2x = 2 ∗ x add1.times2 ; \y− > 2 ∗ y + 1
times2.add1 ; \y− > 2 ∗ (y + 1)

How can we calculate this ? what is the type of add1.times2 ? It’s Int→ Int.
So - choose an arbitrary int (say x) and then calculate with (add1.times2)x ;

add1(times2x) ; add1(2 ∗ x) ; (2 ∗ x) + 1
Now, consider show. One of the types of show is:: Int→ String. Consider

length :: [a]→ Int. So, what is length.show - calculates the length of the string
representation of its argument.

The type of length.show is (Show a) => a -> Int

2



3.1 Reasoning about functions

Consider the identity function idx = x.
x + 0 = x 0 is the right identity for +

1 ∗ x = x 1 is the left idenenity for ∗

id is the left and right identity for the function composition. So, we are
saying f.id = id.f = f

Recall that if f, g :: a→ b then f = g iff ∀x : a.f x = g x. So that the type
of f.id and id.f is a→ b

To show f = f.id show ∀x : a.f x = f.id(x) Choose arb. x :: a and show
fx = f.id(x).

Starting on the right (f.id) x = f (id x)
= f x

also, (id.f) x = id (f x)
= f x

What good is knowing what the identity of an operation is ?
Consider sum that sums all elemnets of the list

sum[] = 0
sumh :: t = h + sumt

prod[] = 1
prodh :: t = h ∗ (prodt)

compose[] = id
compose(h : t) = h.composet

So compose[f1, f2, f3] = f1.(f2.(f3.id)) = f1.f2.f3

3


