
COSC 3015: Lecture 3

Lecture given by Prof. Caldwell and scribed by Sunil Kothari

September 16, 2008

1 Recap

Last time we talked about functions and what they are. In Haskell, you can
write programs which fail to terminate. We wrote: :t infinity = infinity
a One of the features of Haskell program is polymorphism - an expression can
have many types. So , infinity has all types. Often, we want to show functions
have similar property.

2 Functions

Q:How to tell if functions are equal ? A:Extensionality (pointwise equality)

Definition 1 Extensionality If f, g ∈ A→ B,
f = g if and only if ∀x : A.f(x) = g(x)

This is introduced in discrete maths (COSC 2030). For any type we have
three things:

1. constructors

2. destructors

3. type notation

For functions, the constructor is \x → b is a function with one argument
(x here) and defined by the expression b. The destructor for a function is
function application - write name of the function next to the argument. For
example, (\x → b)a. The type notation is a → b. The notation in Haskell is
\x− > x :: a− > a.

2.1 Tuples

The constructor for tuples is ”()” brackets. The destructors for tuples are fst,snd
and are defined as follows:

1

fst(a, b) = a
snd(a, b) = b

The type notation is (a, b). In math, you use cartesian product of the form
(a× b).

2.2 Bool

The constructors for Bool are True, False. There are no destructors. And the
type notation is Bool.

2.3 List

The constructor for list is [] - Empty list, and ”::” - called cons. The destructors
are head and tail and they have the types: head:: a list -> a
tail:: a list -> a

2.4 Historical Note

About 1930, a guy named Alonzo Church invented a notation for a calculus of
functions. This was called the lambda calculus.

Λ ::= x | \x.M |MN
varibales abstraction application

where M,N are lambda terms constructed by the above grammar.
Alan Turing - student of Church - showed that Turing Machine are equivalent

to lambda calculus. Church’s thesis says

Everything that can in principle be computed can be computed by
lambda- term

Haskell Curry was working on logical systems called combinatory logic -
turn out closely related to lambda calculus. Why was everyone working on it ?
Around 1920’s people were wondering about what can be computed.

Curry noted that a propositional logic formula is valid (true) if and only
if the type associated with the formula is ”inhabited” by the λ-term. This is
called the Curry-Howard isomorphism.

So what’s the translation ?
A⇒ B = A→ B

A ∧B = (A,B)
A = A

2.5 Currying and Uncurrying

Curry noticed the following

((A ∧B)⇒ C)⇒ (A⇒ (B ⇒ C)) (Currying)
(A ∧ (B ⇒ C))⇒ ((A ∧B)⇒ C)) (uncurrying)

We can do the translation as follows:

2

((A ∧B ⇒ C)⇒ (A⇒ (B ⇒ C))
= ((A ∧B)⇒ C)⇒ (A→ (B ⇒ C))

=
...

= ((A,B)→ C)→ (A→ (B → C))

What is the function that has this type ? Approach - start labelling this argu-
ments curry :: ((A,B)→ C)→ (A→ (B → C))

:t curry f A ->(B ->C)
Suppose we are given f :: (A,B) → C, x :: A, y :: B. How can we get

something of type C ?

curry f x y = f (x, y)

To do this in Haskell, do the following

1. create a file curry.hs

2. put the definition of the curry function in to the file

3. do ¿:t curry

This will give the following output :t Main.curry ((a,b)-> c -> a -> b ->c
Note that arrow associates to the right by default so, a → b → c means a →
(b→ c).
This is like looking at a type and figuring out the function. But you should be
wondering how does the compiler looks at a function and figures out the type ?
There is a type inference algorithm that looks at the context and figures out
the type.
So, what is uncurry ? It has the type uncurry :: (a→ b→ c)→ (a, b)→ c. We
can define uncurry as:

uncurry f p = f (fst p) (snd p)

We can define add as: add x y = x + y

>:t add
add:: Num a => (a,a) -> a

>:t curry add
curry add:: Num a => a -> a ->a

Suppose Haskell only has Int’s, then

>t: add
add:: (Int,Int) -> Int
>t: curry add
curry add: Int -> Int -> Int
>t: addc
addc:: Int -> Int -> Int

3

We can define curry in a new way as :

curryf = \x→ \y → f (x, y) uncurryf = \p→ f (fst p) (snd p)
uncurryf = \(x, y)→ f x y

We can also do the following in Haskell

addc 5:: Int -> Int
addc 5 5 :: Int

4

