
Lecture 26

Lectured by Prof. Caldwell and scribed by Sunil Kothari

November 25, 2008

1 Review

We will start from the beginning. The goal is to apply parsers to a string
and that will generate tree in the end.

The book defines parsers as functions from String → Tree.
Then it is generalized to String → (Tree, String).
Then the author says that since a string can parsed in multiple ways so let’s
account for those. The resultant type of parsers is [(String → [tree, String)].
The one nice feature is that empty list will indicate failure. Finally, the type of
parser is Parser α = String → [(α, String)].

We hope to use sequencing operations from the Monad.

These are 3 different ways of defining a data type.
This is something new.

newType Parser a = MkP (String → [(a, String)])

The only difference here is that there is another version

type String = [Char]

Note that String is a synonym of [Char].

What happens in the data declaration ?

data Parser a = MkP (String → [(a, String)])

1

Typically, data is used for inductive data types so that you can do case and
pattern matching.

typeParsera = String → [(a, String)]

Putting a constructor (MkP here) tells the system to recognize the type as a
Parser. It’s more or less an efficiency thing . Note that there’s no recursion in
newType thing.

The newtype thing is not really there in the compiler.

Anyways we are adopting the newtype thing for Parser.

newtype Parser a = MkP (String -> [(a,String)])

apply is given as:

apply:: Parser a -> String -> [(a,String)]
apply (MkP f) i = f i

applyParser is given as:

applyParser :: Parser a -> String -> a
applyParser p = fst.head.apply p

Remember that (>>=) the type of bind operator is:

Hugs> :t (>>=)
(>>=) :: Monad a => a b -> (b -> a c) -> a c
Hugs>

Now, we can define an instance of Monad for Parser as given in Bird’s book:

instance Monad Parser
-- (>>=) :: Parser a -> (a -> Parser b) -> Parser b
p >>= q = MkP f

where f s = [(y,s’’)|(x,s’) <- apply p s, (y,s’’) <- apply (q x) s’]

-- return :: a -> Parser a
return v = MkP(i -> [(v,i)])

Note that list comprehension is like do notation for lists.
Interestingly, Hutton’s book defines the bind operator as follows:

instance Monad where
-- (* Hutton’s thing*)
p >>= f MkP (\i -> case (apply p i) of

2

[] -> []
[(v,out)] -> apply (f v) out

-- out is the remaining part of the input string

Next, we look at item, which parses a string character by character

item:: Parser Char
item = MkP(ı -> case i of

[] -> []
(x:xs) -> [(x,xs)])

Here’s an example of a parser which reads first two characters and returns the
remainder of the string

Parser> apply (do {x <-item; y <- item; return (y,x)}) "xyzzy"
[((’y’,’x’),"zzy")] :: [((Char,Char),String)]

Parser> apply (do {x <-item; y <- item; return (y,x)}) "x"
[] :: [((Char,Char),String)]

Parser> apply (do {x <-item; y <- item; return (y,x)}) "xyzzzy"
[((’y’,’x’),"zzzy")] :: [((Char,Char),String)]
Parser>

zero is a parser that always fails – returns an empty list.

zero :: Parser a
zero = MkP(\i -> [])

Parser> apply zero "xyzzy"
[] :: [(a,String)]

Next, we define a parser which reads the first three characters of a string and
returns a pair of the first and the third character, and also returns the remaining
string.

p :: Parser (Char,Char)

p = do x <- item
item
y <- item
return (x,y)

Parser> apply p "xyzzy"
[((’x’,’z’),"zy")] :: [((Char,Char),String)]

3

This business of instantiating monads and figuring out is a fascinating work of
functional programming people. The downside is that it is complicated. But it
gets easy when you use it.

As of now, we have simple parsers. Now we make a parser which uses a
predicate

sat::(Char -> Bool) -> Parser Char
sat p = do x <- item

if p x then return x else zero

Here’s some examples:

Parser> apply (sat (==’x’)) "wxyzzy"
[] :: [(Char,String)]
Parser> apply (sat (==’x’)) "xyzzy"
[(’x’,"yzzy")] :: [(Char,String)]

This is interesting – the type contains a function flip, which is normally not the
case.

:t (==’x’)
flip (==) ’x’ : Char -> Bool

We can do more

Parser> apply (sat (¸-> c ‘elem‘ "xyzzy")) "wxyzzy"
[] :: [(Char,String)]

Parser> apply (sat (¸-> c ‘elem‘ "xyzzy")) "xyzzy"
[(’x’,"yzzy")] :: [(Char,String)]

Parser> apply (sat (¸-> c ‘elem‘ "xy")) "xyzzy"
[(’x’,"yzzy")] :: [(Char,String)]

Then we have a parser which parses only digits and another which parses
returns the character corresponding a particular digit.

digit :: Parser Char
digit = sat isDigit

digit’ :: Parser Int
digit’ = do d <- digit; return (ord d - ord ’0’)

Parser> apply digit "1234"
[(’1’,"234")] :: [(Char,String)]

Parser> apply digit "abcd"
[] :: [(Char,String)]

4

Parser> apply digit’ "abcd"
[] :: [(Int,String)]

Parser> apply digit’ "1234"
[(1,"234")] :: [(Int,String)]
Parser>

More sophisticated parsers can now be defined

lower :: Parser Char
lower = sat isLower

Parser> apply lowers "sUpper"
[("s","Upper")] :: [([Char],String)]
Parser> apply lowers "ssUpper"
[("ss","Upper")] :: [([Char],String)]

upper :: Parser Char
upper = sat isUpper

char :: Char -> Parser Char
char x = sat (==x)

sat (!==) is a parser which matches the first character with !.

string [] = return []
string (x:xs) = do char x

string xs
return (x:xs)

If it’s an actual string - eat a character x and then recursively call string on
xs

Parser> apply (string "xy") "xyzzy"
[("xy","zzy")] :: [([Char],String)]

Parser> apply (string "wxy") "xyzzy"
[] :: [([Char],String)]
Parser>

The two parsers can also be combined using the +++ (choice) operator.

p ‘plus‘ q = Mkp f
where fx = apply p s ++ apply q s

Hutton’s choice operator

5

p +++ q = MkP (\i -> case apply p i of
[] -> apply q i
m -> m)

Hutton has simplified it so as to have deterministic parsers.

Parser> apply (char ’x’ +++ char ’y’) "xyzzy"
[(’x’,"yzzy")] :: [(Char,String)]

Parser> apply (char ’x’ +++ char ’y’) "yxzzy"
[(’y’,"xzzy")] :: [(Char,String)]

Parser> apply (char ’x’ ‘plus‘ char ’y’) "yxzzy"
[(’y’,"xzzy")] :: [(Char,String)]

Also, consider lowers:

lowers :: Parser String
lowers = do {c <- lower; cs <- lowers; return (c : cs)} +++ return ""

Here’s some examples:

Parser> apply lowers "xyzzy"
[("xyzzy","")] :: [([Char],String)]

Parser> apply lowers "xyzzyABCD"
[("xyzzy","ABCD")] :: [([Char],String)]

Parser> apply lowers "xXyzzyABCD"
[("x","XyzzyABCD")] :: [([Char],String)]

Let’s look futher down. Read is a type class.

Parser> :t read
read :: Read a => String -> a

Parser> read "123" :: Int
123 :: Int

digit is defined as

digit :: Parser Char
digit = sat isDigit

The nat is a parser that reads one or many digits.

6

nat :: Parser Int
nat = do xs <- many1 digit

return (read xs)

Parser> apply nat "123"
[(123,"")] :: [(Int,String)]
Parser> apply nat "123abc"
[(123,"abc")] :: [(Int,String)]

many is a parser to read zero or more times.

:t many lower
many lower :: Parser [Char]

A standard thing is to tokenize i.e. eat as many space as possible.

space :: Parser ()
space = do many (char ’ ’)

return ()

Here’s an example.

Parser> apply space " xyzzy"
[((),"xyzzy")] :: [((),String)]

The following parser parses a list of natural numbers (including any spaces).

natural :: Parser Int
natural = token nat

symbol :: String -> Parser String
symbol xs = token (string xs)

natlist :: Parser [Int]
natlist = do symbol "["

n <- natural
ns <- many (do symbol ","

natural)
symbol "]"
return (n:ns)

Parser> apply natlist "[1, 2,3, 5]"
[([1,2,3,5],"")] :: [([Int],String)]
Parser> apply natlist "[]"
[] :: [([Int],String)]
Parser> apply natlist "[1, 2,3, 5]zbcd "
[([1,2,3,5],"zbcd ")] :: [([Int],String)]
Parser>

7

