
Lecture 25

Lectured by Prof. Caldwell and scribed by Sunil Kothari

November 20, 2008

1 Review

Are there any questions about the HW ?

You can use the constraint set to check your answer - by using the unification
algorithm.

Basically, it’s look at the proof rules and generate constraints.

2 Monads

We mentioned that IO was implemented in Haskell using this very abstract but
powerful mechanism.

If you read Chapter 10, it’s pretty dense. May be you don’t have to read all of
Chapter 10. It’s very interesting stuff.

Just like you can do higher-order programming in visual basic. The monads will
also show up in other languages.

Monads are defined as a type class in Haskell. When you have a type class
you basically give the signature of the type operators that any class has to sat-
isfy. But not all classes defined like this are valid monads.

Here’s the Monad type class :

class Monad m where
return :: a -> m a

Here we are looking at higher-order feature - m maps types to types. There
are certain other features in Haskell type classes. All other functional languages
have this small imperative feature for IO.

class Monad m where
return :: a -> m a

1

(>>=):: m a -> (a -> m b) -> m b

bind is used as p >>= q. For example, consider the following expression in
Haskell

getChar >>= (\c1 -> getchar >>=\c2 -> return <c1,c2>)

The type of the above expression is:

Hugs> :t (getChar >>= (\c1 -> getChar >>= (\c2 -> return (c1,c2))))
getChar >>= (\c1 -> getChar >>= (\c2 -> return (c1,c2))) :: IO (Char,Char)
Hugs>

The expression gets evaluated and waits for two char input from the user and
returns a pair.

Hugs> getChar >>= (\c1 -> getChar >>= (\c2 -> return (c1,c2)))
gh
Hugs>

Remember we also had the do notation, so we can write the above as

do c1 <- getChar
c2 <- getChar
return <c1,c2>

Whenever you declared something an instance of monad you also get do nota-
tion.

Let’s look at some other things which are monads.

There’s that algebraic relationship with monads. If you ever want your own
monads, you will have to ensure it satisfies the monad laws.

1. p >>= return = p.
For example, putChar ′a′ >>= return = putChar a.

2. (return e) >>= q = q e
For example, (return ′a′) >>= putchar = putChar ′a′.

3. (p >>= q) >>= r = p >>= s where, s x = q x >>= r. Another way to
write this (p >>= q) >>= r = p >>= (\x− > q x >>= r)

Laws 1 and 2 say that return is a right and left identity for bind.
IO monads are something which do something but it’s all within. Whereas, lists
live in the outside world.

2

all_pairs m n = do x <- m
y <- n
return (x,y)

We can instantiate lists as monads as follows:

instance Monad [] where

There is a little bit of magic going on here. As a type constructor for [] ::
Type→ Type so [] a ; [a]

instance Monad [] where
return x = [x]
m >>= f = concatMap f m

There are a few different ways to write concatMap

concatMap f = foldr ((++).f) []

or

concatMap f [] = []
concatMap f (x : xs) = (f x) + +concatMap f xs

concatMap(λx→ [x, x])[1, 2]
; (d1)concatMap d [2]
; [1, 1] + +d2 + +concatMap d []
; [1, 1] + +[2, 2] + +[]
; [1, 1, 2, 2]
where, d = (λx→ [x, x])

To show list is a monad we prove the monad laws.

Theorem 1. ∀p : [a].p >>= return = p

Proof. Choose an arb. p ∈ [a]. We must show

p >>= return

On the left
<<defn.>> concatMap return p
<<lemma below>>= p

3

We would like to show concatMap return p = p. So we need a lemma:

Lemma 1. ∀m : [a].concatMap return m = m

Proof. Proof by induction on the list m.

Case []. concatMap return [] = [] (by definition of ConcatMap).

Case(x:xs) . Assume concatMap return xs = xs We must show
concatMap return (x : xs) = x : xs

On the left
concatMap return (x : xs)
= (return x) + +concatMap return xs
= x : ([] + +xs)
= x : xs

To show the second law:
∀e : [a].∀q : a→ [b].(return e) >>= q = q e

Proof. Choose arb e ∈ a and q ∈ a→ [b] and show (return e) >>= q = q e
On the left
(return e) >>= q
<<def. of bind>>= concatMap q(return e)
<<def. of return>>= concatMap q [e]
<<def. of concatMap>>

= q e ++ concatMap q []
= q e ++ []
= q e

So what are we doing when we do these proofs ?
We are verifying that type class of monads needs two functions with proper
signature. But will it do the correct thing ? Essentially it’s guaranteeing that
do notation will work out just fine.

Let’s look at the type of bind
(>>=) :: ma− > (a− > mb)− > mb

4

Note that in p >> q, >> is a sequencing operator and it means that do p -
ignore any result and then do q.

p >> q = p >>= (\ → q)

Theorem 2. ∀p : [a],∀q : a → [b], r : b → [c], (p >>= q) >>= r = p >>=
(\x→ qx >>= r)

By induction on p.

3 Functional Parsers

A parser is a function essentially from string → tree.

Remember the terms are given by the following datatype:

data Term = V String | Abs String Term | Ap Term Term

Remember, that our idea is to come up with a function parse parse (\x.x)y
as (Ap(Abs”x”(V ”x”))(V ”y”))

newtype Parser = MkP (String -> (Tree, String))

If we define the Parser type as above a string eat some of it build a tree and
return the string that is left after the build. But that’s not sufficient. So we
change our definition to

data Parser = MkP(String ->[(Tree,String)])

We want to parameterize the parser on type of tree. So here’s the changed
datatype:

data Parser a = MkP (String -> [(a,String)])

We define a function apply as:

apply :: Parser a ->String ->[(a,String)]
apply (MkP f) s = f s

Note that Bird does monad first and then parsers whereas Hutton does the other
way.

instance Monad Parse where
return x = (MkP f)

where f s = [(x,s)]
p >>= q = MkP (\s -> case (apply p s) of

[] -> []
[(v,out)] -> apply (f v) out)

5

item::Parser Char
item ::= MKp (\i -> case i of

[] -> []
(x:xs) -> [(x,xs)])

do y <- item
item
z<- item
return (y,z)

6

