
Lecture 23

Lectured by Prof. Caldwell and scribed by Sunil Kothari

November 13, 2008

1 Review

We looked at unification, substitutions, and various substitution operators.
Remember two types are unifiable if there exists a substitution σ such that
σt1 = σt2.

The terms are defined as:

data Term = V string | Abs String Term | Ap Term Term

The types are defined as:

Type = TyVar String | Arrow Type Type

The goal is a function infer :: Term → Type where infer t returns the Type of
term t (if there is one).

2 Type Inference

We can make it a MayBe type to handle cases when a term has no type.

data MayBe A = Just A | Nothing

We have a little proof system for the type inference.

But first lets introduce the various concepts
A sequent (a state in the proof) for the type inference Γ ` x : t where,

1. Γ is called a context and is a list of string × type pairs; the context is
what we know so far.

2. E is a constraint set and is a list of type [(type, type)].

3. t is a term.

4. α is a type.

1

The constraints get synthesized from the proof by propagating back down whereas
we construct the proof tree bottom up.

The rule for a type variable is:

Γ, {α = τ} ` x : α
where x : τ ∈ Γ (Var)

Here’s an example of Axiom rule:
So [x, α→ α] , {α→ α = τ} ` x : τ .

Γ\x ∪ {x : α} ` M : β

Γ , E ∪ {τ = α→ β} ` λx.M : τ
where α and β are fresh (Abs)

The notation means Γ\x - Remove pairs from Γ where x is the first element.

The rule for application is:
Γ, E1 ` M : α→ τ Γ, E2 ` N : α

Γ, E1 ∪ E2 ` MN : τ
where α is fresh (App)

So we can now do a proof

(Var)
[x : α], β = α ` x : β

(Abs)
[], {β = α, τ = α→ α} ` λx.x : τ

Suppose we wanted to find the type of the term (λx.x) y.

(Var)
[y : β, x : β′], {τ = β′} ` x : τ

(Abs)
[y : β], {τ = β′, α′ → α = β′ → τ} ` λx.x : α′ → α

(Var)
[y : β], {α′ = β} ` y : α′

(App)
[y : β], {τ = β′, α′ → α = β′ → τ, α′ = β} ` (λx.x)y : α

The constraint set generated by collecting the constraints from the above proof
tree is:
τ = β′

α′ → α = β′ → τ
α′ = β

The unification algorithm gives the substitution
α = β
α′ = β
τ = β′

This substitution when applied to the type we assumed earlier i.e. α gives β,
which is what we expected.

2

Now we can type this all in Haskell. First, we start with the axiom rule.

We have a function infer which takes as argument, a context, a term, a type,
and list of fresh variables generated so far. Again, the function is defined by
case analysis on the term.

infer_type context trm typ vars =
case trm of
(V x) ->

case (lookup x context) of
(Just t1) -> ([(typ,t1)],x:vars)
Nothing -> error ("infer: " ++ x ++ "not in context.")

(App m n) -> []
(Abs x m) -> []

Recall that lookup has the following type:

*Type_inference> :t lookup
lookup :: (Eq a) => a -> [(a, b)] -> Maybe b

We can test our code now (even though the code for application and abstraction
returns just an empty list):

*Type_inference> infer_type [("x",Arrow (TyVar "a") (TyVar "a"))] (V "x") (TyVar "a") []

([(a,(a -> a))],[])

*Type_inference> infer_type [("x",Arrow (TyVar "a") (TyVar "a"))] (V "x") (TyVar "b") []

([(b,(a -> a))],[])

We can now fill up the code for abstraction and application as follows:

(Ap t1 t2) ->
let a = fresh "a" ((vars_of context) ++ vars ++ (fv typ)) in
let (e1,vars1) = infer_type context t1 (Arrow (TyVar a) typ) (a:vars) in
let (e2,vars2) = infer_type context t2 (TyVar a) (vars1 ++ vars) in

(e1 ++ e2, vars1 ++ vars2)

(Abs x t1) ->
let vars1 = ((vars_of context) ++ vars ++ (fv typ)) in
let a = fresh "a" vars1 in
let b = fresh "b" (a:vars1) in
let vars2 = a:b:vars1 in
let (e1,vars’) = infer_type ((x, TyVar a):context) t1 (TyVar b) vars2 in
((typ, Arrow (TyVar a) (TyVar b)):e1, vars’ ++ vars2)

We will create a helper function infer to pass the arguments which remains
more or less the same each time.

infer context trm =
let (e,_) = infer_type context trm (fresh "a" (fvars context)) []

3

in subst (unify e) trm
where fvars [] = []

fvars ((x,t):xts) = (fv t) ++ fvars xts

Now we can test our code:

*Type_inference> :t infer

infer :: [(String, Type)] -> Term -> ([([Char], Type)], [a])

infer [("y", TyVar "b")] (Ap (Abs "x" (V "x")) (V "y"))

aaaa

*Type_inference> infer_type [("y", TyVar "b")] (Ap (Abs "x" (V "x")) (V "y")) (TyVar "a") []

([(b,aaaa),((aa -> a),(aaaa -> b)),(aa,b)],["aaaa","b","aa","y","aa","a"])

*Type_inference> let (e,_) = infer_type [("y", TyVar "b")] (Ap (Abs "x" (V "x")) (V "y"))

(TyVar "a") [] in unify e

[a := aaaa,aa := aaaa,b := aaaa]

*Type_inference> let (e,_) = infer_type [("y", TyVar "b")] (Ap (Abs "x" (V "x")) (V "y"))

(TyVar "a") [] in unify [head e]

[b := aaaa]

*Type_inference> let (e,_) = infer_type [("y", TyVar "b")] (Ap (Abs "x" (V "x")) (V "y"))

(TyVar "a") []

in map2 (subst (unify [head e])) (tail e)

[b := aaaa]

*Type_inference> infer_type [("y", TyVar "b")] (Ap (Abs "x" (V "x")) (V "y")) (TyVar "a") []

([(b,aaaa),((aa -> a),(aaaa -> b)),(aa,b)],["aaaa","b","aa","y","aa","a"])

4

