
Lecture 22

Lectured by Prof. Caldwell and scribed by Sunil Kothari

November 11, 2008

1 Review

Remember two types are unifiable if there exists a substitution σ such that
σt1 = σt2.

The types are defined by the following grammar:

Type = TyVar String | Arrow Type Type

The HW was to extend the unification algorithm to product types. Last time,
we couldn’t get the unification completely done. The goal is to use unification
to solves equations to infer a type for a term.

2 Substitution

unify :: type→ type→ Substitution

data Substitution = S [(String, Type)]

subst (S []) t = t
subst (S (x,t1):xts) (TyVar y) = if x == y then t1 else subst (S xts) (TyVar y)
subst s (Arrow t1 t2) = Arrow (subst s t1) (subst s t2)

The subst is a simultaneous substitution or parallel substitution.
We need a couple of operators: subst subst,+++.

1. subst subst

subst_subst s1 (S s2) = S (map_snd (subst s1) s2)
where map_snd f [] = []

map_snd f ((x,t):xts) = (x,f t): map_snd f xts

Our goal is that the substitution should behave as a function.

1

2. The composition of substitution (s1+++s2) is defined as:
subst (s1+++s2) t = subst s1 (subst s2 t)

The mathematical notion for composition is:
(f.g) x = f (g x)

(S s2) +++ (S s1) =
let (S s1’) = subst_subst (S s2)(S s1) in

But doing like this we have a problem. Suppose s2 = [y := t1] and
s1 = [x := V y]
then subst subst s2 s1 = [x := t1]

But when we apply this subst subst (s2+++s1) (Arrow (V y) (V x)) ;

Arrow t1 t1.

So we change to

(S s2) +++ (S s1) =
let (S s1’) = subst_subst (S s2)(S s1) in
S (functionalize (s1’ ++ s2))

where functionalize [] = []
functionalize ((x,t):xts) = (x,t):functionalize (filter ((/= x).fst) xts)

The complicated piece of code (filter((/ = x).fst)xts) is : apply first to
each element of xts and if it’s not equal to x keep it.

But this is a O(n2) algorithm - but we are not concerned since substitu-
tions don’t become very big for the terms that we consider here.

3 Unification Algorithm

1. A variable (say x) unifies with any term t1 as long as x /∈ FV (t). i.e.
make a substitution [(x, t)]

2. t1 and t2 unify if t1 and t2 have the same constructor and their corre-
sponding subterms unify.

The code in the HW unifies a list of term-term pairs.

unify (Var x) t = if x ‘elem‘ (fv t) then error "unify:occurs check" else
case t of
Var y -> if x == y then S [] else S[(x,t)]

2

Just a bit of history, unification was invented by Robinson in 1965 for theorem
proving.

What happens with occurs check ? If we could unify the types a and a → a
by the substitution S[(a, a → a)] then we loose the property that substitution
makes the types equal.
subst s a = a→ a 6=
subst s (a→ a) = (a→ a)→ (a→ a)

unify t (Var x) = unify (Var x) t
unify (Arrow t1 t2) (Arrow t3 t4) = let s = unify t1 t3 in let

let s2 = unify (subst s1 t2) (subst s1 t4) in
s2.

It turns out that we want to have a unification algorithm for a list of equations.

unify_list [] = S []
unify_list ((t,t’)::tts) = let s = unify t t’ in

s +++ unify_list (map2 (subst s) tts)
where map2 [] = []

map2 ((x,y):(xys)) = (f x, f y):map2 f xys

Note that this unification algorithm returns most general unifier. Here’s an ex-
ample:
unify a b→ b = S[(a, b→ b)]

Another substitution could be s′ = S[(a, c→ c), (b, c)]
Then s′a = c→ c and

s′(b→ b) = (s′b)→ (s′b)
= c→ c

A substitution σ is a most general unifier of T1 and T2 if for every σ̂ that
unifies T1 and T2 there exists a substitution σ such that σ̂ = σ ◦ σ.

Definition 1 (Most general unifier). σ is a most general unifier for t1 and t2
iff for all unifiers σ′, there exists σ such that σ′ = σ̂ ++ σ.

The unification algorithm discussed above has linear complexity if we represent
terms as DAGs but the time complexity is exponential if the terms are repre-
sented as strings.

Why are we doing this ? Remember we had to do some reasoning and do some
manipulation but with type inference algorithms we do not have to do those
manipulations.

3

4 Type Inference

If {} ` M : α yields σ then there is a proof in the type system that {} ` M :
σ(α).

The first type inference algorithm was given by Milner in 1978 but Hindley and
Seldin came up with the ideas in 1965. Mitchell Wand (1986) gave an algorithm
where substitutions are not built as the proof tree is constructed. Instead the
equations are generated and substitution is then generated from those equations.
Here’s the proof rules for the Wand’s type system
We write Γ ` x : t where,

1. Γ is called a context and is a list of variable × type pairs;

2. E is a constraint set and is a list of type [(type, type)].

3. t is a term; and

4. α is a type.

The terms are given by the following grammar
Term ::= V String | Abs String Term | Ap Term Term

The rule for a type variable is:

Γ {α = τ} ` x : α
where x : τ ∈ Γ (Axiom)

Γ\x ∪ {x : α} ` M : β

Γ , E ∪ {τ = α→ β} ` λx.M : τ
where α and β are fresh (Abs)

The rule for application is:
Γ, E1 ` M : α→ τ Γ, E2 ` N : α

Γ, E1 ∪ E2 ` MN : τ
where α is fresh (App)

Next time we will look at a recursive algorithm which will generate this con-
straint set on which we apply the unification algorithm to give a type for the
term.

4

