
Lecture 20

Lectured by Prof. Caldwell and scribed by Sunil Kothari

December 8, 2008

1 Review

Main> :t subst
subst :: ([Char],Term) -> Term -> Term
Main> :r

Λ ::= x | MN | λx.M

It turns out that this is a turing-complete but we want to add pairs as a means
of constructing lambda terms so

Λ ::= x | MN | λx.M |< M,N >| Spread(M ;x, y.N)

< λx.x, y > is a pair in our lambda calculus
So what is spread ?
In spread (M ;x, y.N), x and y are bound variables.

Recall that (λx.M)N ;β M [x := N]. For example, (λx.x)N ;β x[x :=
N] = N . The term (λx.M) N is also called a redex. This is the computation
mechanism in lambda calculus.
So, beta is given as:

beta (Ap (Abs x m) n) = subst (x,n) m
beta t = t

beta (V "x")
x::Term

beta (Ap (Abs "x" (V "x")) (V "N")
N::Term

Definition 1 (Fixpoint). x is a fixpoint for f if f x = x.

1

Spread is actually a destructor for pairs. The computation over spread terms
is defined by the spread rule.
spread(< M,N >;x, y.M ′) ; M ′[x := M,y := N] and
spread(M ;x, y.N) ; spread(M ;x, y.N) if M is not a pair.

We can define more primitive destructor for pairs in terms of spreads
fst p = spread (p;x, y.x)
snd p = spread (p;x, y.y)

fst < M,N > = spread (< M,N >;x, y.x)
= (x[x := M,y := N])
= M [y := N]
= M

We can do swap easily with spread.

swap p = spread (p, x, y. < y, x >)

NOTE: For some reason I was unable record all that was mentioned
in the lecture. You should also look at HW 16 description for more
material related to this lecture.

2

