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1 Recap

We talked about functional Programming vs. Logic programming vs. Impera-
tive Programming. The first two categories are declarative.

qsort [] = []
qsort (h:hs) = qsort smaller ++ [h] ++ qsort larger

where smaller = [a | a<- hs, a <= h]
larger = [b | b <- hs, b > h]

This is more declarative than what you would do in Java or C++. This is a very
natural description of the problem. The functional languages like ML, Haskell
are strongly typed languages. They have type inference. Type inference works
well with the functional programming languages. For example,

>:t qsort
Ord a => [a] -> [a]

where,

1. a is a type variable

2. [a] is the type of lists containing elements of type a.

We can run qsort as:

> qsort (reverse [1 ..10])
> [1,2,3,4,5,6,7,8,9,10]

> qsort (reverse [’a’..’z’])
> "abcdefghijklmnopqrstuvwxyz"
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2 Interaction with the programming environment

...

3 Functions in Haskell

Q:What’s an example of things that cannot be compared ?
A:Functions.

3.1 Notation for functions

Notation that allows you to write down a function but you don’t have to give a
name to a function. Haskell expression or functions: add1 x = x + 1 ≡ (\x ->
x + 1) where,

• (x+1) is the body of a function

We cannot print a function (in a resonable way) but we can get its type. but
we can apply the function so (\ x -> x+ 1) 5) returns 6 in Haskell. So, how
does a function gets evaluated ?

(λx.x+ 1)5 = (x+ 1)[x := 5])
↪→ (x[x := 5] + 1[x := 5])
↪→ (5 + 1)
↪→ 6

where, x[x:=5] is a substitution operation.
map is a higher-order function. Its type is map :: (a -> b) -> [a] -> [b]

How do we know which ways the arrows associate ? arrows associate to the
right so a→ b→ c is a→ (b→ c)

map is defined as :

map f [] = []
map f (h : hs) = f h : map f hs

In Haskell, we can use map as:

Main> ( \x-> x + 1) [1..10]
[2,3,4,5,6,7,8,9,10,11]

Main> :t (\x -> x + 1)
\x -> x + 1 :: Num a => a + 1

Main> :t infinity
infinity ::a

So, let’s back up on what is a function.

2



3.2 Cartesian Product

Remeber A×B = {< a, b >| a ∈ A ∧ b ∈ B}
{1, 2, 3} × {a, b} = {< 1, a >,< 1, b >,< 2, a >,< 2, b >,< 3, a >,< 3, b >}
{a, b} × {1, 2, 3} = {< a, 1 >,< a, 2 >,< a, 3 >,< b, 1 >,< b, 2 >,< b, 3 >}

In Haskell, (a,b) - is a pair if a::A and b::B (A,B) - is the cartesian product
- if A and B are types

Main> (1,"abc")
(1,"abc")::(Integer,[Char])
Main>

R is a binary relation on A and B if R ⊆ A×B.
For example, A = {1, 2, 3}
R ⊆ A×A
R = {< 1, 1 >,< 1, 2 >,< 1, 3 >}

The proeprty of being a function, called functionality for f ⊆ A×B, is

∀x : A,∀y, z : B.(f(x) = y ∧ f(x) = z)⇒ y = z

A function is total if

∀x : A,∃y : B.f(x) = y

Main> :t ( \x -> if x <0 then infinity else -x )
(\x -> if x <0 then infinity else -x)::(Num a, Ord a) => a -> a
Main> (\x -> if x <0 then infinity else -x)(-5)
{Interrupted!}

When a system gives a type it is saying that if the function halts it will have the
type but if it does not halt then it might be undefined but still it has a type.

So, when we write f :: a→ b as a Haskell type- we mean that f is a function
(not necessarily total) from domain a to range b.

Here’s an example of a function from any type to any other type.

Main> :t (\x -> infinity)
\x -> infinity :: a -> b

A lot of Haskell-related topics are on YouTube - some are Google tech talks.
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