
Lecture 19

Lectured by Prof. Caldwell and scribed by Sunil Kothari

October 30, 2008

1 Review - Use of the variables in the let con-
struct

Q: What is the use of variables - seems like extra computation ?
A: consider the following example let x = (z ∗ y) + (3 ∗ y) + (4 ∗ y) in x+ x+ y

The evaluation of a let construct is given as:
eval m (Let x e1 e2) = eval m′ e2
where m′ z = if z == x then eval m e1 else m z

Recall the datatype for the expression language:

data Exp= N Int | V String | Add Exp Exp | Let String Exp Exp

Suppose m z = 100, then what is eval m (Let ”x” (N 1) (Add (V ”x”)(V ”x”)))
?

eval m (Let ”x” (N 1) (Add (V ”x”)(V ”x”))) ; eval m′ (Add(V ”x”)(V ”x”)))

where m′ ”x” = N 1
m′ = 100

; (eval m′ (V ”x”)) + (eval m′ (V ”y”))
; (m′ ”x”) + (m′ ”y”)
; 1 + 100
; 101

Suppose we have a function f : a → b. We can make a function which be-
haves like f but differs on one of the inputs. The function update does this job
update :: (a→ b)→ (a, b)→ (a→ b)
update f (x, y) = \w → if w == x then y else f x

So, if f x = x then, g = update f (0, 1) is a function that behaves just like the
identity function except that on input 0 it returns 1.

1

Let’s do a computation with

g 0 = (updatef(0, 1))0
; (λw → if w == 0 then 1 else f w)0
; if 0 == 0 then 1 else f 0
; if true then 1else f 0
; 1

evalm(Add(V ”x”)(Let”x”(N2)(V ”x”))
. . .
; 100 + 2
; 102

This is same as ∀x : Int.P (x) where x in P (x) is a binding of x which is
quantified at the start of the expression.

2 Capture avoiding substitutions

Consider the lambda terms given by the following datatype:

data Lam = V String | Ap Lam Lam | Fun String Lam deriving (Eq, Show)

Ap(Fun”x”(V ”x”))(V ”y”) ; y

How does this evaluation happens ?
Ap(Fun”x”(V ”x”))[”x” := (V ”y”)]
where e1[x := y] replace all x by y in e1
; V ”y”

Main> :t subst
subst :: ([Char],Lam) -> Lam -> Lam
Main> subst ("x", V "y") (V "x")
V "y"
Main> subst ("x", V "y") (V "z")
V "z"
Main> subst ("x", V "w") (Fun "z" (Ap (V "z") (V "x")))
Fun "z" (Ap (V "z") (V "w"))
Main>

The following functions are equal
(λx→ x) = (λy → y)
(λx→ x y) = (λz → z y)

But (λx→ x y) not equal to (λy → y z) nor (λy → y y).

2

Main> subst ("x", V "w") (Fun "x" (V "x"))
Fun "x" (V "w")

Look what happened !!!
(λx→ x)[x := w] ; (λx→ w)

In the body of the lambda x is getting replaced by w even though x is bound.

In capture avoiding substitutions, we want to substitute only free varaibles.

Here’s an example :
(λx→ x y)[y := x z]
; λx→ x (x z)

As mentioned earlier, (λx→ x) = (λy → y)
In general, (λx→ m) = (λz → m[x := z]) and z ∈ FV (m)
So,

(λx→ x y) = (λz → z y)
= (λw → w y)

So we will define this notion of free variables (fv) of a term.

fv (V s) = [s]
fv (Ap m n) = fv m+ +fv n
fv (Fun s m) = filter (/ = s) (fv m)

Once we have this we can use this to avoid capturing bound variables in the
subst function and is defined as:

subst (x,n) (V s) = if x == s then n else (V s)
subst (x,n) (Ap m k) = Ap (subst (x,n) m) (subst (x,n) k)
subst (x,n) (Fun y m) =

if x == y
then Fun y m
else if y ‘elem‘ (fv n)
then Fun z (subst (x,n) (subst (y, V z) m))
else Fun y (subst (x,n) m)

where z = fresh "z" vars
where vars = x:y:((fv m) ++ (fv n)) -- what we need is a total

And a show function for the lambda terms as:

3

instance Show Lam where
show (V x) = x
show (Ap m n) = "(" ++ show m ++ ")(" ++ show n ++ ")"
show (Fun x m) = "

" ++ x ++"->"++ show m

Another helper function is test subst, which pretty prints the substitution.

test subst (x,n) t = show t ++ " ---> " ++ show (subst (x,n) t)

Now we can test our substitution function:

Main> test_subst ("x", V "w") (Fun "z" (Ap (V "z") (V "x")))
"\\z->(z)(x) ---> \\z->(z)(w)"
Main> test_subst ("x", V "w") (Fun "w" (Ap (V "w") (V "x")))
"\\w->(w)(x) ---> \\z->(z)(w)"
Main> test_subst ("x", V "w") (Fun "w" (Ap (V "w") (V "z")))
"\\w->(w)(z) ---> \\zz->(zz)(z)"
Main>

4

