
COSC 3015: Lecture 13

Lecture given by Prof. Caldwell and scribed by Sunil Kothari

October 7, 2008

1 Trees

Chapter 5 has some really good examples. But, we will move on. And we may
move to Higher-Order Perl book. We will start with Chapter 6 on trees. Today’s
lecture is a sort of review, since many of the things discussed here are in 2300.
A binary tree is defined as:
data Btree a = Leaf a | Fork (Btree a) (Btree a)

So, here’s an example of a tree:

Fork (Leaf 1)
(Fork (Leaf 2)

(Leaf 3))

Main> :t Leaf
Leaf :: a -> Btree a

You get case statement for free when you create a datatype. For example,
consider the size function

size t =
case t of
(Leaf _) -> 1
(Fork xt yt) -> size xt + size yt

Main> :t size
size :: Num a => Btree b -> a
Main>

So, case is like a destructor for the datatype. What’s the other way of writing
it ?

size1 (Leaf _) = 1
size1 (Fork xt yt) = size1 xt + size1 yt

Main> :t size1
size1 :: Num a => Btree b -> a

1

Whenever you have a datatype, you also get a structural induction principle.
The induction principle for Btree is

∀x : a.P (Leaf x) ∧ (∀xt, yt : (Btree a).P (xt) ∧ P (yt)⇒ P (Fork xt yt))
⇒ ∀t : (Btree a).P (t)

1. ∀x : a.P (Leafx) [base case]

2. ∀xt, yt : (Btree a).P (xt) ∧ P (yt)⇒ P (Fork xt yt) [induction case]

We also have extra case for partial elements of the type

• P (⊥)

Definition 1. A Btree is finite if and only if size(t) 6= ⊥.

The book says that any finite path through a syntax tree of a recursive
datatype is linear. For example

succ
|

Zero
succ
|

succ
|

Zero

Similar is the case with lists.

So, let’s look at different trees - something used in 2300.

data TTree a = Leaf | Node2 a (TTree a) (TTree a)

Or we can also have a tree with three sub-trees.

data TTTree a = Leaf | Node3 a (TTTree a) (TTTree a) (TTTree a)

Q: Can we make circular structures ?
A: No, we can’t. But, we can define Nat as a form of DAG (directed acyclic
graph)

dataNat′ = Zero | SNat′ | SSNat′

where, SS k = S (S k).

So, what about the (finite) induction principle for TTTree a.

2

1. P (Leaf) [base case]

2. ∀x : a,∀xt, yt, zt : (Btree a). P (xt)∧P (yt)∧P (zt)⇒ P (Node3 x xt yt zt)
[induction case]

If we want infinite induction, we ought to have P (⊥) too.
Let’s define flatten.

flatten:: Btree a -> [a]
flatten (Leaf x) = [x]
flatten (Fork t t’) = flatten t ++ flatten t’

flatten (Node (Leaf 1) (Node (Leaf 2) (Leaf 3)))
= flatten(Leaf1)++flatten(Fork(Leaf2)(Leaf3))
= [1]++(flatten(Leaf2)++flatten(Leaf3))
= [1]++([2]++[3])
= [1, 2, 3]

Theorem 1. size = (length.flatten)

Proof. By extensionality we must show ∀t : Btree a, (size t) = (length.flatten) t.
Continue by structural induction on t. There are two cases:

P (leaf) We must show

∀x : a.P (leaf x).

i.e. that ∀x : a.size(leaf x) = (length.flatten)(leaf x)
Choose arb. x ∈ a and show

size(leaf x) = (length.flatten)(leaf x)

On the left:

size (leaf x) = 1

On the right:

(length.flatten)(leaf x) = length (flatten (leaf x))
= length [x]
= 1

P (Fork xs ys) : Assume P (xs) and P (ys) and show P (Fork xs ys) :

3

P (xs) : size xs = (length.flatten xs)
P (ys) : size ys = (length.flatten ys)

Show

size(fork xs ys) = length.flatten(fork xs ys)

On the left side

size(fork xs ys) = size xs + size ys

= (length.flatten xs) + (length.flatten ys)
= (length (flatten xs)) + (length (flatten ys))

On the right

length.flatten (fork xs ys)
compose

= length(flatten (fork xs ys))
flatten= length(flatten xs++flatten ys)

length−append
= (length (flatten xs)) + (length (flatten ys))

Note that ”.” is a function composition operator.

Lemma 1 (Length-Append). ∀xs, ys : [a]. | xs++ys |=| xs | + | ys |

We can define a function nodes as:

nodes (Leaf _) = 0
nodes (Fork xs ys) = 1 + nodes xs + nodes ys

Then, we can prove a theorem

Theorem 2. ∀xt : Btree a.size xt = 1 + nodes xt

Proof. By ind. on xt.
P(xt) def= size xt = 1+ nodes xt
Again, we have two cases:

Case P(leaf x). size (Leaf x) = 1 + nodes (Leaf x)
L.H.S
size (Leaf x) = 1
R.H.S.
1+ nodes (Leaf x) = 1 + 0 = 1
so the base case holds.

4

Case P(Fork xs ys). Assume
size xs = 1+ nodes xs
size ys = 1 + nodes ys
Show
size (Fork xs ys) = 1 + nodes xs ys
L.H.S = size (Fork xs ys)
= 1 + nodes xs + 1 + nodes ys
R.H.S
1 + nodes(Fork xs ys)
= 1 + 1 + nodes xs + nodes ys

5

