
COSC 3015: Lecture 12

Lecture given by Prof. Caldwell and scribed by Sunil Kothari

October 2, 2008

1 HW queries

data FinFun a b = FF [(a,b)]

update (x,y) (FF m) where,

• FF is the constructor

• a is the domain

• b is the range

apply f x = case f of ....
Here’s what we can do to get a hold of m - which is the list list of pairs for

that finite function. apply (FF m) x =

:t apply
apply ::(FinFun a b) -> a -> Maybe b

apply is just lookup. We want to go inside and check if the first component
of some pair in m matches x.

apply (FF []) x = Nothing

apply (FF ((z, y) : xys)) = if z == xthen (Just y) else apply (FF xys) x

Here’s a different way of writing the above code

apply (FF m) x =
case m of
[] -> Nothing
((z,y)::zys) -> if z == x then Just y else apply (FF zys) x

The finite map can also be oregnaized in a binary tree then the lookup can
be done in O(log n) time. With lists, it is O(n).

The map is called association lists in Haskell. So, lookup can be used for
the apply function above.
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Main> :t lookup
lookup :: Eq a => a -> [(a,b)] -> Maybe b

Q.What should update do on the following ? update (5, ”xyzzy”)(FF [(5, ”x”), (5, ”y”)])
A. Then the map is not functional. If we do not consider the functional aspect,
we can update the first occurrence - this is consistent with search where you
return the first occurrence.

One of the axioms for update is
apply (update (x, y) (update (x, z) f)) = apply (update (x, y) f)

2 List Induction

Remember that

Nat ::= Zero | Succ Nat

and the induction principle for Nat is:

((P (zero) ∧ ∀k : nat.P (k))⇒ P (Succk))⇒ ∀m : Nat.P (m)

Lists are defined as the following datatype

List a := [] | Cons a (List a)

The induction principle for list is

(P ([]) ∧ (∀xs : (List a).P (xs)⇒ (∀x : a.P (x : xs))))⇒ ∀xs : (Lista).P (xs)

This is called ”Structural induction” because it follows the ”structure” of
the datatype.

data Tree a = Leaf a | Node (Tree a) a (Tree a)

Some examples:

• (Leaf 5)

• (Node (Leaf 5) 4 (Leaf 3))

The induction principle for tree is:

((∀x : a.P (Leaf a) ∧ ∀t1, t2 : (Tree a), (P (t1) ∧ P (t2)))⇒ ∀x :
a.P (Node t1 x t2))⇒ ∀t : Tree a.P (t)

The point is if you define a datatype you get this powerful principle for your
data type which helps you in reasoning about the structure. There are some
extensions in Haskell which can allow you to refine the structure. For example
for the finite maps we can define the functionality condition as:
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data FinFun a b = FF [(a,b)]
condition (FF m) => (functional m)

Note: the syntax used might be different in Haskell.
Coming back to list induction, the book says it as follows:

1. P ([]) - base case

2. P (x : xs) - assume P(xs) and show P(x:xs) for arbitrary x.

3. P (⊥) - add this to show that P holds for partial lists. For example, [1..].

reverse [] = []
reverse (x : xs) = reverse xs ++ [x]

[] ++ ys = ys
(x : xs) ++ ys = x : (xs ++ ys)

length [] = 0
length (x : xs) = 1 + length xs

From now on we will use | to denote the list length.

Theorem 1. ∀xs, ys : [a]. | xs + +ys |=| xs | + | ys |

Proof. Choose arbitrary ys and do induction on xs.
P (xs) def= | xs++ys |=| xs | + | ys |

case []: we must show | []++ys |=| [] | + | ys |. On the L.H.S. | []++ys |
=| ys |. On the R.H.S. | xs | + | ys | = 0+ | ys | = | ys | Sp the base case
holds

case x : xs: assume P(xs) i.e. I.H. | xs++ys |=| xs | + | ys |
Show P (x : xs) i.e. show
| x : xs ++ ys |=| x : xs | + | ys |
Left side :
| x : xs ++ ys |<<+>>= | x : (xs ++ ys) |<<length>>

= | x | + | xs + +ys |=
1 + (| xs | + | ys |)
Right side :
| x : xs | + | ys |= (1+ | xs |)+ | ys |.
Now since + is associative, the induction step holds.

Q: which one should you choose to do induction ?
A: You can do it on both but look at the def. of append. It is defined by
induction on the first argument. Then there is another issue. we don’t need
forall on the ys.
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Strategy 1. Strategy: Arrange quantifiers so that the variable you want to do
induction on is innermost. For example,
∀x, ∀y.P (x, y)⇔ ∀y∀x.P (x, y)

Consider ∀xs, ys : [a].Q(xs, ys)
Then - if you do induction on xs - the property proved by induction is
P (xs) def= ∀ys : [a].Q(xs, ys)

Often, we do not need this generality.

But, suppose we want to prove
∀ys, xs : [a].Q(xs, ys)

- choose arb. ys and prove
∀xs : [a].Q(xs, ys)

by induction, then
P (xs) = Q(xs, ys)

Theorem 2. ∀xs, ys : [a].rev(xs ++ ys) = (rev ys) ++ (rev xs)

Remark :The above theorem will require that append is associative.
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